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Abstract

An overarching principle accepted by space-faring nations and industry alike is to maintain
freedom of operations in a safe and secure environment, commensurate with national and
commercial interests. Deterrence concepts and escalation control play key roles in realizing this
principle in the increasingly congested, competitive and contested space environment. Al and
autonomous machine learning are being pursued as critical enablers in commercial and military
programs for space traffic management, routine space operations, space domain awareness (SDA),
and space control. Al systems hold the potential to strengthen deterrence by improving both the
speed and ability to assess threats and inform decision makers in times of crisis. However, issues
that have arisen in terrestrial Al applications will be also present in these applications, with
implications for space deterrence and escalation scenarios. Key among these are performance,
explainability, and vulnerability. To date there are few if any international standards or regulations
to guide best practices for choosing Al methods for space operations and developing a shared
understanding of the risks and benefits to strategic stability. This paper explores trade-offs
between explainability, performance, and vulnerability in AI methods applied to space control and
SDA scenarios, and illustrates how choices on these trade-offs may affect deterrence signaling and
escalation control in space.

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



For Poster Presentation in AMOS Conference Policy Track

Introduction and Key Research Question

Freedom of operations in a safe and secure environment in space, commensurate with national and
commercial interests, is a fundamental principle of international policy as well as most space-
faring nations. Preventing damage to space assets is tantamount to achieving a safe and secure
space environment (Defense Intelligence Agency, 2019). However, to date, there is less ability to
respond to threats in space than to conventional threats, and countries with developed space assets
are perceived to rely heavily on these assets for everything from civil uses to military use. As a
result, deterrence concepts and escalation control play key roles in ensuring unimpeded use of
space in the increasingly congested, competitive and contested space environment.

Artificial Intelligence (Al) and autonomous machine learning are being pursued as critical enablers
in commercial and military programs for space traffic management (STM), routine space
operations, space domain awareness (SDA), and space control (Chien and Morris, 2014; Girimonte
and 1zzo, 2007). Al is generally defined as methods capable of rational and autonomous reasoning,
action or decision making, and/or adaptation to complex environment, and to previously unseen
circumstances (Hamon and Sanchez, 2020). Al systems hold the potential to strengthen deterrence
by improving both the speed and ability to assess threats and inform decision makers in times of
crisis. However, issues that have arisen in terrestrial Al applications will be also present in these
applications, with implications for space deterrence and escalation scenarios. Key among these are
performance, explainability, and vulnerability — all of which can vary depending on the Al
algorithms, training data, and platforms. For example, deterrence signaling might be misconstrued
and responses deemed escalatory if one nation does not fully understand the intentions and
strategic goals of the other nation. Al systems could negatively affect signaling by compressing
the timescale for making and communicating decisions, or incorrectly classifying observed
behaviors. A result could be unintentional conflict escalation.

To date there are few if any international standards and/or regulations to guide best practices for
choosing Al methods for space operations and developing a shared understanding of the risks and
benefits to strategic stability. This paper explores how Al deployed on critical space systems —
and the design choices made about the characteristics of the Al methods - may impact deterrence
signaling and escalation control. Qur Kkey research question is, how might trade-offs between
explainability, performance, and vulnerability in Al methods applied to space control and
SDA scenarios affect deterrence signaling and escalation control in space? The purpose is to
stimulate dialogue on best practices for choosing Al methods for space operations and developing
a shared understanding of the risks and benefits to strategic stability.

Al in Space Operations: Exemplars and Use Cases

Current and potential applications of Al in space operations are many. Al will be essential for
managing mega-constellations (tens of thousands) of commercial telecommunications satellites in
low Earth orbit (LEO); guiding functions such as scheduling and tasking; collision avoidance; and
space debris mitigation. Al is also being explored for classification of observations from LEO
constellations proposed to serve national security applications such as persistent overhead
coverage and missile defense. Advancements in Al, in combination with increased availability of
low-cost and secure cloud storage, have simultaneously led to improvements in SDA capabilities
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while decreasing costs. As databases grow with an increased number of objects to track and
characterize, companies and countries will employ Al to make timely, cost-effective assessments
for SDA, while reducing the role of the human-in-the-loop.

For this research, we examine two exemplars of Al applications in space, with three different use
cases for each (Table 1). The first exemplar involves scenarios for threat detection and response,

Table 1 Exemplars of Al in Space and Use Cases

Use Case A:
Immediate Threat

Use Case B:
Protracted Threat

Use Case C:
Crisis Breakout

Exemplar 1: Threat Detection, Assessment, and Response

Space asset of Country B
senses an imminent and
unexpected conjunction
with space asset of Country
A of unknown capabilities.

Scenario

Al Function Integrate and analyze
sensor input to characterize
threat (identification and
classification) and assess
time available to act
(prediction); Assess
options and generate list of
responses (operational and
strategic planning) Direct
action/implement
command (autonomous
navigation/manipulation)

Modeling Types DES, ABM, SD

Satellite from Country A
tailing national security
satellite of Country B in
orbit; no immediate threat
exists, but intentions
questionable

Integrate and analyze sensor
input to monitor gap between
satellites (operational
planning); Assess
capabilities of Country B
satellite and potential threat
(identification and
classification); Assess and
recommend options to
counter actions of Country B
satellite without escalation
(operational and strategic
planning)

GT, ABM, SD

Satellite from Country A
trailing satellite from Country
B begins closing orbital gap
and approaching asset

Integrate and analyze sensor
input to assess threat
(identification and
classification) and time
available to act (prediction);
Assess and generate list of
possible responses
(operational planning); assess
escalation potential of counter
actions (strategic planning),
Direct action/implement
commands (autonomous
navigation/manipulation)
DES, GT, SD, ABM

Exemplar 2: Resiliency of Mega-Constellation in LEO

Scenario Country B experiences
sudden loss of
functionality of entire

constellation.

Conduct root cause
assessment (attribution);
Assess damage; Assess
options and generate list of
responses (to reconstitution
AND potentially to
retaliate)

Al Function

Modeling Types ' DES, ABM, SD

A Mega-Constellation of
Country B experiences
cascading losses of nodes
over time in a single
constellation.

Root cause assessment
(attribution); damage
assessment; Assess options
and generate list of responses
(reconfiguration,
reconstitution AND
signaling)

GT, ABM, SD

Country A uses anti-satellite
(ASAT) capabilities against a
node in the constellation of
Country B, causing massive
debris which threatens to
interfere further with other
nodes in the constellation.
Attribute actions, predict
debris field over time; conduct
and enact reconfiguration
accounting for future debris
given risk/functionality trade-
off; assess and generate
suggestions for retaliatory
responses (could be cross-
domain)

DES, GT, SD, ABM

DES—Discrete Event Simulation; SD—System Dynamics; ABM—Agent Based Model; GT — Game Theory
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in three different use cases that correspond to different phases of deterrence and escalation. In the
scenarios for Exemplar 1, a national security satellite faces a potential threat that has yet to be
realized. The primary functions of Al under these scenarios are to characterize and assess the
threat, recommend (and potentially direct) options for defensive measures, and communicate a
credible deterrence signal. The second exemplar involves scenarios to ensure resiliency of a meg-
constellation. In these scenarios, a mega-constellation of satellites experiences failures of varying
degrees. Here, primary functions of Al are to assess damage, attribute the cause, and recommend
options for reconstitution and potential retaliation. These exemplars and scenarios are summarized
in Table 1, along with functional roles of Al. The scenarios are viewed from the perspective of
Country B.

Different types of models that might be used to explore how Al may impact deterrence dynamics
are also listed in Table 1. Discrete event simulation (DES) models the operation of a system as a
sequence of events over time, where each event results in a change of state in the system. DES
can be helpful in setting requirements for Al in different functional roles in the use cases. Agent
Based Modeling (ABM) models the system as a collection of autonomous, goal-seeking, decision-
making entities. ABM can be useful for simulating the decision-making process, whether it be Al
or a human-in-the-loop and interactions between decision-makers. Game theory, which can be
embedded within decision-making agents, provides strategic pay-off frameworks to inform
decision-making. System dynamic (SD) models represent complex systems as a network of
nonlinear accumulation and feedback processes, the structure of which is designed to achieve
certain goals, and whose behavior is determined by differential equations and constraints. SD
simulates feedback between decisions and actions, making it particularly useful for analysis of
different policy and design options for Al within each exemplar. For this initial, conceptual phase
of research, we adopted an SD approach to explore system level impacts of Al design choices. We
expect to incorporate additional methods (e.g., ABM and game theory) in follow-on.

The Use Cases in Table 1 present scenarios that correspond to different deterrence phases. The
first column, the Immediate Threat Use Case, contains scenarios in which a triggering event occurs
without forewarning that impedes the functionality of an asset or system. This could be the result
of'a natural event, an accidental interaction with another country’s satellite, or an unexpected attack
from an aggressor. Such events require damage assessment and immediate action to resolve or
mitigate damage but may not be escalatory in and of themselves. The second column, Protracted
Threat Use Case, presents scenarios in which a potential threat may be perceived in the near term,
requiring inference analysis, ongoing monitoring, and potential deterrence measures such as denial
or dissuasion. The third column, Crisis Breakout Use Case, presents escalatory scenarios, in which
a potential threat that has been monitored is being actively carried out or has just occurred.
Examples could include the clearly hostile approach of a space asset or the use of Anti-Satellite
(ASAT) capabilities. Such events require immediate crisis decision support and attribution, and
potentially retaliation.

Table 1 also lists the functional role for Al in each of these scenarios. These roles are:
identification, classification, prediction, generating responses for operational and strategic
planning, and potentially the autonomous direction of action. Understanding the role of Al in each
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of these use cases, how humans interact with the Al, and ultimate responsibility for decisions to
act to support deterrence, allows us to explore how Al systems’ designs may best mitigate
escalation and improve deterrence stability in space. The degree to which humans interact with the
Al for decision-making, especially for retaliatory responses, will be critical in real scenarios.
However, varying the degree of human-in-the-loop is outside the scope of this paper. Instead, we
focus on the impact of explainability, which is a critical element for all levels of AI-Human
interaction in deterrence scenarios.

Theoretical Framework: Deterrence and escalation models

We define deterrence as the ability to discourage an aggressor from taking action by either
decreasing the aggressor’s likelihood of success, decreasing the possible benefit the aggressor
would obtain by acting, or by demonstrating that retaliation will occur if the aggressor acts.
Deterrence frameworks and modeling have been discussed since the nuclear age, and there have
been many different ways of conceptualizing deterrence concepts. Key to our research is the
literature on models of arms races, power struggles, and deterrence (within the same domain and
across domains) and escalation (including the outbreak of conflict).

We adopt the theoretical deterrence framework of Bonin and Reinhardt (2019). In this framework,
effectiveness of deterrence is the product of clarity of communication, correctness of attackers’
calculated risks, the credibility of signaled threats, and the possession of capable means of
retaliation (Figure 1). These factors are dynamic and their interdependencies are important to
understanding how events in space and responses to those events may evolve. We hypothesize
that Al deployed on space systems may play a significant role in each one of these factors, based
on their functional roles as described above.

A Framework for Deterrence Effectiveness

Commun- .
; X | Credible |X| Capable |X| Calculated
icated
/\ /\
Principled | X | Rational Executable | X | Painful
C icated The protagonist must issue a counter-threat, and the antagonist
ommunicate must receive, and understand that threat.
Credibl The counter-threat must align with the protagonist’s principles, and
redible must be rational to carry out.
C bl The protagonist must be able to execute counter-threat, and it
apable must inflict pain on the antagonist if executed.
Calculated The antagonist must consider the counter-threat and its
alciiare implications when choosing a course of action.

Figure 1: Theoretical framework that describes deterrence as the product of four key factors (From Bonin & Reinhardt, 2019).

We draw on a number of additional modeling constructs in the literature on deterrence and
escalation to instantiate this framework into a conceptual model. Table 2 shows a summary of this
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literature, and the relevant deterrence and modeling concepts; These are a select subset of the
literature that we deem most relevant for the understanding and formulation of our conceptual
model of potential roles of Al in deterrence and escalation dynamics.

Table 2 summary of key literature that seeks to model deterrence and escalation concepts.

Model Methods Features of Deterrence

Richardson Arms DE Seeks to understand arms races, how they arise and perpetuate, and their

Race (1960) impact on the likelihood that conflict will occur. One nation's investment
in capabilities is dependent on the arms of the adversary, the fatigue of the
nation itself, and the history between the two nations.

Mauro’s Mixed- SD, GT, | This model predicts that signaling, perception of the adversary, and

Strategy Models of LL dominant strategies greatly influence the outcome of a conflict. It also

Conflict (2016) creates a valuation of payoffs using dollar amounts and expected loss per
engagement which could be used by an Al to determine the risk/benefit
payoff of a given action or series of actions during a potential threat or
disruption.

Lutijen’s Major ABM, GT | Conflicts become more likely when power parity exists, when satisfaction

Power Escalation with the status quo is low, and when one's power is not in decline

(n.d.)

Lanchester Model of DE If one force outnumbers its opposition, its effective firepower is the square

Fighting War, of the total number of units in the larger force. As a result, the smaller

Lanchaster Square force should engage the larger in limited arenas and focus their attack into

Law (1916) a limited part of the larger force.

Intriligator and Brint GT, DE Stable deterrence exists when costs of conflict are sufficiently high, and

(1984) dynamic changes occur when capabilities suddenly expand.

DE-Differential Equations;, GT-Game Theory, SD-System Dynamics; LL—Lanchester Laws; ABM—Agent Based Modeling

The Lanchester Laws (1916) provides a lens through which to look at a nation’s credibility and an
antagonist’s calculation and helps explain why threats in space are increasing. Utilizing
differential equations, these laws predict that if one force outnumbers its opposition, its effective
firepower is the square of the total number of units in the larger force. As a result, the smaller force
should engage the larger in limited arenas and focus their attack into a limited but critical part of
the larger force. This conclusion is relevant within the space domain as powerful countries are
perceived to rely heavily on their space assets (Defense Intelligence Agency, 2019), yet have less
ability to respond to threats in space than to conventional threats. Thus, the Lanchester Laws
predict that nations or entities with less power may calculate that they should act against more
powerful countries in the space domain where aggressors can focus their efforts on high value
targets that are harder to defend. This incentive is augmented by the decreasing barriers to enter,
navigate, and act in space, further enabling aggressors to target space assets. By bolstering a
countries’ ability to detect, assess, and respond to threats, usage of reliable Al systems would make
evasive responses in space more credible and would decrease the likelihood of success for would-
be aggressors, thereby deterring threats on space assets. The more painful a potential reposnse
might be, the more important it will be to ensure accountability for principled reponses, which
may require an accountable human-in-the-loop. This dynamic behavior between Al capabilities,
credibility of crisis management, and calculation of aggressor’s actions is pivotal to modeling how
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a nation would act and interact in the space domain and can be further enhanced with concepts like
game theory.

Intriligator and Brint (1987) did just this, combining differential equations and game theory to
understand when and how deterrence holds. Each actor has some threshold under which they
would not initiate conflict because the benefits are too small, and another threshold over which
they would not initiate conflict because the potential costs are too large. Figure 2 shows these
thresholds and the resulting regions of the graph where deterrence holds, where deterrence is
uncertain or unstable, and where one actor can successfully make the other comply. Intiligator
and Brint also show how the region of the graph the actors find themselves in changes dynamically
as capabilities change. The arrow labeled (2) in Figure 2 demonstrates the pathway that would be
traversed if entity j installs a new capability that entity i cannot effectively respond to and deter,
thereby shifting the balance of power in j’s favor and increasing the odds of conflict. We postulate
that this pathway can lead to a Richardson-esque arms race, and that the two models can be
combined to understand dynamic behavior in the system.

Costs
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Figure 2: A graphical view of deterrence demonstrating regions of compellence, stable deterrence, and unstable deterrence
(From Intrilligator and Brito, 1987).

Hypotheses for Al impacts on deterrence

Al methods are constantly evolving and improving with new and complex algorithms being
routinely developed by researchers for competitive advancements across many different fields
within public and private sectors, including the space domain. Table 3 summarizes some
common types of algorithms and methods used for Al, the primary function of each method and
its utility, and data needs.
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Table 3 Al Algorithm Types, Functions and Data Needs

Algorithm Type Utility Data Needs
Supervised classification based on pre-determined categories
Support Vector Machine PREDICT a category/IDENTIFY trends, sentiments, fraud, | Sensor data, numeric data/ streaming

(Vapnik, 1995)

or threats

text data, static text data

Discriminant analysis
(McLachlan, 2004)

PREDICT an output based on historical and current data

Continuous sensor, numeric data

Naive Bayes
(Russell and Norvig, 2020)

PREDICT a category, IDENTIFY trends, sentiments, fraud,
or threats

Sensor data, numeric data/ streaming
text data, static text data

Nearest Neighbor
(Russell and Norvig, 2020)

PREDICT an output based on historical and current data

Sensor data, numeric data/ streaming
text data, static text data

Supervised regression based on correlation

Linear regression,
Generalized Linear Models
(Russell and Norvig, 2020)

IDENTIFY trends, sentiments, fraud, or threats

Sensor data, numeric data/ streaming
text data, static text data

Support Vector
Regression, Gaussian
Process Regression

PREDICT a quantity

Sensor data, numeric data/ streaming
text data, static text data

Ensemble methods

PREDICT a quantity

Sensor data, numeric data

Decision trees

PREDICT an output based on historical and current data

Sensor data, numeric data

Neural networks

MOVE an object physically or in a simulation

Sensor data, numeric data,
Mathematical models, videos, lidar

Unsupervised clustering based on observed patterns

K-means, K-medoids
Fuzzy C-Means

IDENTIFY objects or actions in image, video, and signal
data, Anomaly detection

Images, videos, signals

Hierarchical Clustering

IDENTIFY objects or actions in image, video, and signal
data

Images, videos, signals

Gaussian Mixture

IDENTIFY objects or actions in image, video, and signal
data

Images, videos, signals

Neural Networks

IDENTIFY objects or actions in image, video, and signal
data and ENHANCE images and signals and RESPOND to
speech or text commands based on context and learned
routines

Images, videos, signals

Hidden Markov Model

Compute probability of sequence of observable events
(PREDICT), including those we infer because cannot
observe directly.

Images, videos, signals

Reinforcement Learning based on goal-oriented interactions with environment

Deep neural networks

Determines optimal behaviors based on past experiences

Large data sets on actions and

(DNNs) and current state of the environment (PLANNING), can outcomes.
model complex, non-linear relationships without a
significant amount of marked data.
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The AI methods (algorithms types) in Table 3 are grouped into four categories: supervised
classification, supervised regression, unsupervised clustering and reinforcement learning.
Supervised algorithms require labeled training data to help predict outcomes for unforeseen data.
Unsupervised algorithms can find unknown patterns and features in unlabeled data useful for
categorization, and are used for more complex problems, (Filiz, 2017). Finally, reinforcement
learning describes a class of problems where an agent operates in an environment without an initial
training dataset. The agent learns to map situations to actions and the feedback loop is between the
agent’s actions and the environment, (Sutton and Barto, 2018). Some of the recent advancements
in reinforcement learning employ combinations of efficient learning algorithms that explore huge
parameter spaces (e.g., hundreds of layers and millions of parameters) in complex “black-box”
DNN models (Arrieta et al, 2019).

An Al system may involve many of these methods, each with a different function relative to space
control and/or SDA. Issues that have arisen in terrestrial Al applications will be also present in
these applications, with implications for space deterrence and escalation scenarios. Key issues for
deterrence and escalation are performance, explainability, and vulnerability.  Specific
characteristics depend on the context and circumstances of each application, and whether those
conditions are changing over time. As a general rule of thumb, all else being equal, current
reinforcement learning methods can be expected to have the highest performance but lowest
explainability; while supervised classification methods will have higher explainability but lower
performance, and higher vulnerability. Current unsupervised learning methods are typically
somewhat in between the two (Figure 4). These general assumptions may change, however, if a
situation evolves outside of the intial training set.

A Learning techniques B Interpretable models
Techniques to learn more
R structured, interpretable,
skt Graphical causal models
Deep models

learning

Bayesian
belief nets
SRL
| CRFs HBNs
AOGs MLNs

Statistical

models Deep learning

Improved deep learning
techniques to learn
explainable features

SVMs

g
2 ® e _,1 | i
£ - g e e %zgﬁliqaljg:sotsgliﬁfer an
=4 Y @ 2
& ) explainable model from
_‘;? @ Experiment ) any model as a black box
Explainability l

Performance vs. explainability

Figure 3 Trade-offs between performance and explainability (from Gunning et al 2019). Reprinted with permission.
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We hypothesize that these issues will affect deterrence effectiveness, as conceptualized in Figure
1, in the following ways:

Hypothesis 1: All else being equal, Al systems with higher performance metrics for correctly
identifying, classifying and responding to a threat in space in a timely manner, will increase
deterrence credibility.

The performance of Al methods (e.g., accuracy, precision, recall, sensitivity, latency, confusion,
rate of learning) is evaluated by a user-defined procedure and a set of metrics that ultimately should
assess the Al's ability to solve a posed problem (Sunasra, 2017). Ultimately, the credibility of an
Al’s response to a given attack is dependent on how well the Al performs a given task,
(identification, categorization, planning).

Hypothesis 2: All else being equal, Al systems with higher explainability will reinforce
deterrence credibility and communications for deterrence signaling. Al systems with lower
explainability increase risk of escalation, and loss of external perceptions of legitimacy.

Al explainability, as defined by Montavon (2018), is the ability to present a collection of features
that an Al algorithm has used to produce output, in terms understandable to humans. Moreover,
we adopt the convention that explainability is an active characteristic of a model (e.g., action or
procedure), distinct from the passive characteristics of interpretability or transparency, and
depends on the audience (Arrieta, 2019). For example, explainability provides a decision-maker
with information necessary to understand why the Al has classified certain situations as hostile or
neutral, and why the Al recommends a specific action (or series of actions) in a particular context.
This enables the decision maker to understand, and potentially trust, an Al system overall, and to
communicate rationale for the decisions to others, thereby enabling transparency. Without
explainability and transparency, there may be misinterpretation of signals, and increased risk of
inadvertent or disproportional engagement.

Hypothesis 3: Higher Al vulnerability will decrease deterrence credibility and confidence

Vulnerabilities in Al may lead to malfunctions that occur naturally in the course of program
execution, or intentionally introduced by an adversary in an algorithm (or model) that otherwise
performs well (Hamon et al, 2020). Typical vulnerabilities of Al systems include data poisoning,
the crafting of patterns for classifying adversarial behaviors, and exploitation of known
weaknesses in the learning process (e.g., sensitivity to noise).

Contrary to traditional cyberattacks that exploit gaps or mistakes in the underlying code, Al attacks
are enabled by the limitations to the underlying machine learning techniques powering the system.
Al systems utilize these algorithms to extract information and generalize patterns from data; the
patterns are stored within the model and continuously updated as new datasets are input. Over
time, robust patterns are learned that allow the Al to outperform humans on many tasks; however,
the complete dependence of Al methods on the dataset exposes the vulnerability of Al methods to
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attack or tampering. If the dataset is the Al model’s only source of knowledge, the data itself can
be attacked through the purposeful introduction of aberrations in the data.

Adversarial attacks and/or deception through these means may result in misperception of a
situation as hostile, misattribution, and/or miscalculation of appropriate response.

Hypothesis 4: Stable equilibrium (e.g., balance between deterrence and escalation) depends on
the trade-off between performance, vulnerability, and explainability.

Table 4 Hypotheses for Effects of Performance, Vulnerability, and Explainability Trade-offs on Deterrence and Escalation

Performance | Vulnerability | Explainability | Deterrence Impact| Escalation Impact
i High High Low Decrease Increase
ii Low High High Decrease Decrease
iii High Low Low Increase Increase
iv High Low High Increase Decrease

Due to the inherent tradeoffs between performance (P), vulnerability (V), and explainability (E),
it is not possible for optimize all three at once. Moreover, different traits support different goals;
high explainability may serve to build trust of the decision makers who rely on them, but more
explainable models may be less capable of handling complexity and therefore performance may
suffer (Gunning, 2019). A high performing model (e.g., one that rapidly incorporates new data into
current models), may also have high vulnerability to spoofing. Making decisions based on patterns
found in anomalies in the input data could lead to high consequence actions, potentially increasing
escalation (Hamon, 2020). Conversely, a high performing model that has lower vulnerability could
adversely affect escalation if the inputs and decisions made by the Al are not explainable and
transparent. In only one case do the combination of characteristics both increase deterrence (e.g.,
reduce threats) while decreasing escalation. However, this combination of Al characteristics is not
technically feasible at this point in time.

The inherent trade-offs of these characteristics create challenges for deterrence, which include
building confidence in decision-making, and effective communications for signaling. Confidence
can increase the speed at which decisions can be made. However, war games have demonstrated
that the speed of Al systems can lead to inadvertent escalation, due to incorrectly classifying
observed events and interpreting signals, leading to disproportionate response (Wong, 2020).
Table 4 summarizes our qualitative estimations for how combinations of PV&E affect deterrence
and escalation.

Analytic Approach: System Dynamics Model

The dynamic deterrence concepts, modeling approaches and Al characteristics described in the
previous sections are combined into the system dynamics model in Figure 5. The model is a Causal
Loop Diagram (CLD) for exploring the research question, how might trade-offs between
explainability, performance, and vulnerability in AI methods applied to space control and SDA
scenarios affect deterrence signaling and escalation control in space? This CLD was constructed
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to be representative of dynamics in both exemplars in Table 1, from the perspective of Country B,
and demonstrate and test the four hypotheses above.

CLD Model Structure and Dynamics

There are two dominant feedback loops in the CLD model: deterrence and escalation. The relative
strength of these loops depends on the levels of the four primary stocks (e.g., variables that
accumulate over time): DETERRENCE CREDIBLITY, HOSTILE THREAT PERCEPTIONS,
SPACE CONTROL CAPABILITIES, and EXTERNAL PERCEPTIONS OF LEGITIMACY.
The levels of these stocks are determined, in turn, by feedback between the dynamic variables,
hostile threat rate, and effectiveness of communications, where communications may include
both signaling and explanations. The system is in stable equilibrium when DETERRENCE
CREDIBIILTY and EXTERNAL PERCEPTIONS OF LEGITIMACY work together to balance
hostile threat rate.

Potential Escalation
Feedback Loops due
Deterrence Feedback Loops Al trade-offs
Vulnerability of
Al methods
\ Escalation
Ef]}::gs::zss ‘-\ @ Trade-offs in AI
+ 7 \\ Method Design
%{Zﬁﬁ,’; + i Performance of - = Explainability of
Learn AI methods AI methods
Deterrence / N o
N - } Response —\\ ) \\/
— ) ) communicat/ + +
Al function: predict ions 0 1

and plan

erfeCTiveness of
communications

Al function: /’ gap in hostile
identify and : intent goal + Tdecrease in
classify impact of hostile intgnt

/ disruptive event C)

observations
deemed hostile

33
T - .
vents
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Deviation ¥
from Norms

natural and
Norms initial hostile
intent

Figure 4: Causal Loop Diagram (CLD) of Al used in space operations and deterrence.

SPACE CONTROL CAPABILITIES is a stock with an initial value that increases proportionally
to the rate of new capabilities. The rate of increase in new capabilities is proportional to the level
of HOSTILE THREAT PERCEPTIONS, and inversely proportional to Response Effectiveness.
In the exemplars for this paper, SPACE CONTROL CAPABILITES affects Response
Effectiveness based on what capabilities exist on or near the targeted satellite (Exemplar 1) or the
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resilience of the constellation (Exemplar 2). A secondary feedback loop of Learning from
Response effectiveness creates new capabilities. As new capabilities increase, the benefit an
actor could receive by attacking is diminished (e.g., deterrence by denial), thereby decreasing the
number of hostile actions that are “worth” attempting.

Effectiveness of Communications—between defender (Country B) and aggressor (Country A),
between the Al and decision makers, and between Country B and the international community—
increases the EXTERNAL PERCEPTIONS OF RESPONSE LEGITIMACY and improves
Country B’s ability to deter and respond to events. Confidence is a function of response
effectiveness and explainability of AI methods. Confidence increases EXTERNAL
PERCEPTIONS OF RESPONSE LEGITIMACY and decreases the hostile threat rate by
decreasing the potential payoff to would-be aggressors. DETRRENCE CREDIBILTY is an
endogenous stock which is dependent on response effectiveness and explainability of Al
methods, and which influences the rate of hostile threats. Response effectiveness depends on
the response type chosen (e.g., denial or punishment), and the SPACE CAPABILITIES for
carrying it out. Each time the Response Effectiveness is high, then the defender (Country B) adds
to a track record of being well-equipped to repel attacks and be resilient, thereby increasing the
stock of DETERRENCE CREDIBLITY. This, in turn, reduces hostile intent by influencing the
calculus of the aggressor (Country A) about whether or not to engage in an attack on a space asset
or system.

The Intriligator and Brito deterrence landscape provides insights into the dynamic behaviors that
could emerge from this model. In equilibrium (e.g., when hostile threat rate is low) two
adversarial nations are in either the cone of mutual deterrence (a situation in which both nations
have sufficient capabilities and resiliency as to mutually deter action against space assets) or the
Region of Forced Initiation (a situation in which both nations lack hostile intent to make a
challenge in space or both lack capabilities to cause disruption to space systems). However, when
country A initiates a hostile action in space (e.g., disruptive event the model), both countries enter
the unilateral unstable deterrence region. From there, Country B can either choose if, when, and
how to respond.

Whether or not Country B responds will be determined in part by HOSTILE THREAT
PERCEPTION and SPACE CONTROL CAPABILITIES. No response would put the two
countries into the Compellence region of Figure 5, where Country A would receive a benefit and
elevated status while country B would lose deterrence credibility. If country B chooses to respond,
then the region the countries would find themselves in would be dependent on the proportionality
of B’s actions. A weak response from Country B (low operational responses effectiveness in
Figure2) would shift the countries into the unstable mutual deterrence region; an overly harsh
response (low EXTERNAL PERCEPTION OF LEGITIMACY) would shift the countries into the
region of unstable unilateral deterrence favoring country B, which would be considered an
escalation and may cause Country A to increase hostile threat rate; a proportional response from
Country B (high EXTERNAL PERCEPTION OF LEGITIMACY and HIGH DETERRENCE
CREDIBILITY) would shift the two countries into the cone of mutual deterrence and increase the
likelihood that deterrence will hold in the future.
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Additional dynamics within the CLD model that might reduce deterrence are:

e Operational response effectiveness is low, leading hostile actors to conclude that they
can “get away” with more and therefore hostile threat rate increases.

e Limited SPACE CONTROL CAPABILITES constrain operational response
effectiveness and new capabilities rates are low, weakening deterrence feedback loop
and resulting in an increase in hostile threat rate.

o Effectiveness of communications is low, reducing EXTERNAL PERCEPTION OF
LEGITIMACY and possibly leading to an increase in hostile threat rate.

The dynamic processes represented in the CLD model in Figure 5 are analogous to the OODA
Loop decision making model. The OODA Loop - Observe, Orient, Decide, Act - is a tool that
enables rapid, adaptable decision making. It is used by military strategists to conduct combat
operations by enabling decision makers to take limited information, make the best decision
possible (operational or strategic), and adjust the plan when further issues arise (Osinga, 2005).
When a disruptive event is observed, Al enables three critical functions for the OODA loop: (1)
supports Observing and Orienting by identifying and classifying disruptive events (e.g., as
hostile, natural or accidental); (2) supports Deciding and Acting by predicting short and long-term
effects of the event, generating options for response, and recommending actions to meet pre-
determined goals; and (3) supports OODA loop speed by assessing the response effectiveness and
learning how to improve performance for future situations, both operationally and strategically.

Hypothesis Testing and Implications

As an initial test of our hypotheses for how different PV&E characteristics of Al systems lead to
different outcomes of deterrence and escalation, we demonstrate how the dynamics of one of the
Use Cases in Table 1 play out in our model (Figure 5), assuming different values for PV&E. We
examine Use Case B of Exemplar 1, in which a satellite from Country A is tailing a national
security satellite of Country B in orbit. No immediate threat exists, but the intentions of Country
A are uncertain. Each of the following scenarios applies a different set attributes of an Al system
and traces how the outcomes change based on the design of the Al system.

Reference Scenario (High P, Low V., High E): The reference scenario demonstrates Hypothesis
(iv) in Table 4. Using supervised learning classification algorithms (e.g., Support Vector Machine,
discriminant analysis), the Al system on Country B’s satellite accurately observes the disruptive
event of the trailing satellite and its deviation from the norm with a high degree of confidence.
Using a combination of classification and regression techniques, the system classifies the identity
of the asset as Country A with high confidence. There is currently no immediate threat, but should
an attack occur, the impact of this disruptive event would be high. Using supervised neural
networks, the Al predicts that actions must be taken, and provides a recommended plan, including
response and signaling options. The decision maker decides on a response of slightly altering the
trajectory of the space asset to determine if the trailing is accidental or intentional. The Al then
enacts this change and continues to monitor path data. Country A’s asset continues on course, and
the two satellites do not interact further. Having correctly identified the disruptive event early,
the Al allowed decision makers to improve their Response Effectiveness and remove their asset
from close proximity to the trailing satellite that could have potentially approached and harmed
the space asset. Country A, having received a signal and having witnessed the Al assess the
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problem and take corrective actions, now perceives Country B’s response effectiveness as more
robust, which increases Country B’s EXTERNAL PERCEPTION OF LEGITIMACY, and
DETERRENCE CREDIBILITY.

Outcome: Deterrence and escalation decrease.

Scenario A (High P, High V, Low E): This scenario demonstrates Hypothesis (i) in Table 4. Using
unsupervised learning classification algorithms, the Al system on Country B’s satellite observes
the tailing satellite and predicts that the two satellites are on ultimately diverging orbits. The data
on which this prediction is made has been intentionally manipulated by Country A to “spoof”
classification and prediction algorithms based on known weaknesses in the learning process (e.g.,
sensitivity to noise). Commercial space operators detect and publicly report on the object trailing
the national security satellite, speculating on hostile intent. The Al system is updated with
corrected information, attributes hostile intent to Country A, and predicts what changes in orbit
would separate the two satellites while maintaining mission operations. Al enacts a defensive
response - altering the trajectory of Country B space asset, while planning ahead for how that
might be received, as this new trajectory will bring Country B’s asset into close proximity with an
asset of Country A. It is unclear whether the intention of County B is to pose a threat to the new
asset of Country A, as the explainability of the Al system is low. Country A ceases to tail Country
B asset, but raises the alert status for perceived threat level from Country B

Outcome: Country B DETERRENCE CREDIBILTY is reduced. Country A hostile intent and
escalation increases due to lack of effective communication regarding behind Country B’s
maneuvers.

Scenario B (Low P, High V, High E): This scenario demonstrates Hypothesis (ii) in Table 4.
Country A interferes with sensors aboard Country B satellite, resulting in a skewed data set for the
Al identification and classification systems of Country B. This is compounded by introduction of
sources of poisoned data regarding operations of Country A satellite. Country B’s satellite
therefore does not classify presence as a hostile threat. Commercial space operators detect and
publicly report on the object trailing the national security satellite, speculating on hostile intent,
but without attribution to Country A. The Al system is updated with corrected information and
predicts what changes in orbit would separate the two satellites while maintaining mission
operations. Al enacts a defensive response - altering the trajectory of the space asset, while
planning ahead for how that might be received, using supervised classification and regression
techniques. As this new trajectory will bring Country B’s asset into close proximity with an asset
of Country A, Al anticipates questions about the maneuver, and sends communications to explain
the maneuver. In this case, the Response Effectiveness is initially low due to performance and
vulnerability issues with data, improving only after supplemental data is received from commercial
operators, which is reported publicly. Country B’s DETERRENCE CREDIBIITY decreases as a
result. However, Country B’s EXTERNAL PERCEPTION OF LEGITIMACY increases due to
the explainability of the eventual response.

Outcome: Information loss with delayed response effectiveness. Deterrence decreases. Escalation
also decreases with explanation of defense responses.
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Scenario C (High P, Low V, Low E): This scenario demonstrates Hypothesis (iii) in Table 4. Using
supervised learning classification algorithms (e.g., SVM, discriminant analysis), the Al system on
Country B’s satellite accurately observes the disruptive event of the trailing satellite and its
deviation from the norm with a high degree of confidence. Using a combination of classification
and regression techniques, the system classifies the identity of the asset as Country A with high
confidence. There is currently no immediate threat, but should an attack occur, the impact of this
disruptive event would be high. Using Deep Neural Networks, the Al predicts that actions must
be taken, and provides and implements a plan, including response and signaling options based on
feedback from the environment. The initial response of Country B is to slightly alter the trajectory
of the space asset and observe the response of Country A. Country A’s asset changes course and
continues to trail Country B asset. The Al plan directs a secondary maneuver which puts Country
B asset in close proximity to another asset of Country A. It is unclear whether the intention of
County B is to pose a threat to the new asset of Country A. Country A ceases to tail Country B
asset, but raises the alert status for perceived threat level from Country B. In this scenario, the
explainability of the Al to both County A and Country B, and the degree to which there is a human-
in-the-loop, will be important for demonstrating and communicating adherence to principles for
rules of engagement.

Outcome: Deterrence increases; escalation increases. Country B successfully deters immediate
aggression from Country A, but Country A escalates threat level due to lack of explanation of
intent behind Country B’s maneuvers.

Insights and Future Work

This work addresses the importance and increasing usage of Al as an enabler of space systems, as
well as the potential of Al to facilitate decision making during accidental, natural, or hostile crises
in space. To better understand the impact of Al systems to either enhance the ability to deter threats
in space or increase the likelihood of conflict escalation, a CLD model of system dynamics was
constructed. This model captures hypotheses regarding Al’s impact on identifying, assessing, and
responding to threats in space, taking into account both the OODA Loop and the tradeoff
characteristics of Al systems (performance, explainability, and vulnerability). The value
proposition for Al is to improve operational and strategic planning quality in complex and
ambiguous situations, while increasing speed of decisions, thereby strengthening deterrence.
However, Al may also trigger unintended escalation. The outcome depends in part on the trade-
off in performance, explainability, and vulnerability of Al systems. Understanding how these
factors influence the overall effectiveness of operational responses—either to strengthen or impede
decision making—is an important step in designing protocols for Al use in decision making when
space assets are threatened. Robust protocols may require Al on orbit for years, learning from
feedback given by human operators.

This preliminary analysis is limited in several ways. The CLD model represents the decision-
making process of only one entity; and does not include explicit models of decision-making. Both
limitations could be overcome in future work by extending this model to include multiple decision-
making perspectives (and design choices for Al), represented through ABM and Game Theory.
This would allow us to explore how different types of Al and different levels of Al use by different
actors affect the equilibrium dynamics and ultimate deterrence and escalation outcomes.
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Future analytic work could (1) create a simulation model from the CLD for quantitative analysis
of Al design trade-offs; (2) expand the CLD to incorporate two actors represented by an Agent
Based Model to simulate how two or more entities using different Al systems (and therefore with
different values of explainability, vulnerability, and performance) might behave when interacting
with one another. Included would be different approaches to explainability, contrasting, for
example, methods based on information processing theory versus philosophy of explanations from
the social sciences (Mittlestadt et al, 2019). Game theory could also be incorporated to understand
ways that Al space systems could step through a dynamic situation when a possibly escalatory
action is taken and understand what effects Al systems would have on the overall outcome of the
skirmish. Such a simulation model can be run stochastically to explore variations of performance,
explainability and vulnerability parameters and approaches across use cases, with the ultimate goal
of developing a deterrence phase diagram similar to the conceptual model of Intrilligator and Brito.

To operationalize the utility of the CLD and our modelling concepts more broadly, we need to
step back and confirm agreement in the Al community with some of our basic assumptions. We
need to confirm with other Al users that there are both risks and benefits to deterrence and
escalation control through the very use of Al in space assets. Beyond that, we need to confirm
that performance, explainability, and vulnerability are relevant (if not the most relevant)
parameters for many of the decision to incorporate Al technologies into space systems. We can
accept that these are relevant parameters for AI method decision-making, then we also need to
confirm that these words mean the same things to different user communities. For example, what
may be deemed successful performance, or sufficient explainability (for trust-building purposes)
in a certain space faring community may not be the same in others. The Al rules of engagement
must be transparent to all nations to avoid escalation. Moreover, the comfort level with different
amounts of vulnerability may depend on the reliance on the particular space system in which the
Al is utilized. A recent National Security Commission on Artificial Intelligence (NSCAI) Report
suggested different parameters “for creating and maintaining trustworthy and robust Al
systems.” We feel that performance, explainability, and vulnerability are a subset of the NSCAI
recommended parameters, which include auditability, traceability, interpretability, and
reliability. (NSCALI, 2020).

Important outcomes of this work include stimulating dialogue among space actors about how Al
use may impact the stability of deterrence in space. Recognizing these are requirements in order
to operationalize and even explain the CLD, we suggest greater collaboration and communication
between the relevant international communities relying on Al to support their space assets. If there
was general consensus on both the challenges Al presents to deterrence and escalation control and
the advantages Al offers, the broader user community could discuss common methods and best
practices to minimize these challenges and maximize these advantages. If the meaning of
performance, explainability, and vulnerability could be universalized, then we could at least start
to establish threshold levels for each of those terms that could be worked into the Al methods in
use in space systems. In other words, there could be a base level of performance that all Al users
would meet in order to minimize accidents; a base level of explainability that the AI would have
to have in order to minimize miscommunication; and a base level of vulnerability that all Al users
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would understand, accept, and share for the purposes of transparency and greater engagement
opportunities. All of these thresholds must be interrelated and interdependent, just as stakeholders
in space are not independent. The creation of space debris by mishap or malfeasance affects all
space players. If the space faring community could agree on certain requirements for operating Al
systems in space, they may be able to minimize miscommunications, misperceptions, and
malfeasance. Through minimizing these, AI’s advantages for deterrence and escalation control
could be maximized.
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