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What is a Si: P 6-layer nanodevice?

Schematic model of a Si: P &-layer
nanodevice

High potential for quantum computing
and advanced microelectronic devices

The current advances to place dopants
with atomic precision using hydrogen
lithography

Atomic Precision Advanced
Manufacturing (APAM)




Conductive shallow sub-bands Natoral

J. A. Miwa, et al.,

F. Mazzola, et al., A. J. Holt, et al.,
Nano Letters 14, 1515 (2014) npj Quantum Materials 5 (2020) Phys. Rev. B 101, 121402 (2020)
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transport treatment

CBR Quantum
Transport Simulator

» Closed system approximations to
study the band structure and the

r A o02r A o020 A 02I' A 02 conductive properties
Study of the electronic structure of Si: P 8-
layer systems using DFT
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Closed systems vs. Open systems

Closed system BC Open system BC
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Open-System Quantum Transport

Our quantum transport simulator is based on Non-Equilibrium Green’s
function (NEGF) formalism with

Fully charge self-consistent solution of Poisson-open system Schrédinger

equation
Single-band (I" valley) effective mass approximation
Contact Block Reduction (CBR) method ['2] for fast numerical efficiency

Predictor-corrector approach and Anderson mixing scheme B!

Simulations were done for
the cryogenic temperature
of 4 K.

Quantum transport simulator
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[1]1 D. Mamaluy et al., J. Appl. Phys., vol. 93, no. 8, pp. 4628-4633, 2003.
[2] D. Mamaluy et al. Phys. Rev. B, vol. 71, p. 245321, 2005.
[3] X. Gao et al., J. Appl. Phys., vol. 115, no. 13, p. 133707, 2014.




Prediction of Shallow Sub-bands

Np=10"* cm-2, N,=10"" cm-3, t=0.2 nm
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*  Our open-system quantum simulations predict
shallow sub-bands

e 1[I sub-band is about 190 meV and 2" sub-band
is about 20 meV below the Fermi level
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Si: P 6-layer conduction band structure o

Local Density of States, LDOS(z,E)
Np=1.2x10"* cm=2, N,=1077 cm-3, t=0.2 nm, W= 20 nm (cm'2eV'1)
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« Space quantization of the modes: they are
separated in space and with distinct
structure
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How are these conductive sub-bands influenced by the
thickness and doping density of &-layer?
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Influence of 6-layer doping density conte
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N,=10"7 cm3, t=0.2 nm, W=40 nm
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Influence of the 6-layer thickness Nt
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Electron contribution on the current

 Dissimilar contribution of the conductive sub-bands on the electronic current

For strong confinement potentials = For weak confinement potentials =
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Elastic scattering model

» Effective electronic transmission
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mm m

linear impurity density
Trnm(E) = Electronic transmission
for mode m without scatterers
‘ « Current density (Landauer formula)
,(fz)m(E) = Defect transmission probability
due to scatterer ¢ in mode m

L,, = mean free path / Z Teff (E) — fp(E ))
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Proof that the Quantum Simulation works!

« Our simulations accurately reproduce the experimental sheet resistances at 4 K

10 x a=1.0 _
a=2.0 '
= Goh et al. (2006) :
4 Reusch et al. (2008) |1 1
= Goh et al. (2009) ' T (E) =
McKibbin ef al. (2014) 1 1+ 7meld) + ot
g The parameter a is proportional to the
=2 linear defect density in the system
o 14
X ]
O-layer thickness: 0.2-5 nm
K. E. J. Goh et al., Phys. Rev. B, vol. 73, p. 035401, 2006
0.1 . . . K. E. J. Goh and M. Y. Simmons, Appl. Phys. Lett., vol. 95, no. 14, p.
. l 14 I 14 I 14 142104, 2009
0 1x10 2x10 3x10 S. R. McKibbin et al., Appl. Phys. Lett., vol. 104, no. 12, p. 123502,
2014
ND(cm'Z) T. C. G. Reusch et al., J. Appl. Phys., vol. 104, no. 6, p. 066104,
2008
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Sheet conductance for Si: P 6-layer wires

« Our simulations predicts a quantum thickness dependence on the sheet conductance
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S u m m a ry lNaat}LOrg?cI)ries

0 Presented a fully quantum open-system transport simulations for Si: P 0-
layer systems, including a elastic scattering model

O Predicted the conductive shallow sub-bands observed experimentally,
and evaluated how these conductive sub-bands are influenced by the donor
doping density and thickness of the &-layer

U Predicted quantum thickness dependence on the conductive properties

U Excellent agreement with experimental sheet resistance data
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