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What is a Si: P 6-layer nanodevice?

source
p-type Si cap

monolayer thick P layer

p-type Si substrate

drain

■ High potential for quantum computing
and advanced microelectronic devices

■ The current advances to place dopants
with atomic precision using hydrogen
lithography

Atomic Precision Advanced
Schematic model of a Si.- P 5-layer Manufacturing (APAM)

nanodevice
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Conductive shallow sub-bands
J. A. Miwa, et al.,

Nano Letters 14, 1515 (2014)
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shallow sub-bands (1 r and 2r ) First observation of three sub-bands (1r,

2r and 3r)
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npj Quantum Materials 5 (2020)
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Study of the electronic structure of Si: P •5-
layer systems using DFT
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Open-system quantum
transport treatment

Closed system approximations to
study the band structure and the
conductive properties

CBR Quantum
Transport Simulator
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Closed systems vs. Open systems

Closed system BC Open system BC

LP = 0 Lead Device Lead LP = 0
I

• Extract the conductive properties from the
additional (semi-)classical approximations
(Drude or mobility-based)
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• Extract the conductive properties from the
quantum flux
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Open-System Quantum Transport
Our quantum transport simulator is based on Non-Equilibrium Green's
function (NEGF) formalism with

• Fully charge self-consistent solution of Poisson-open system Schrödinger

equation

• Single-band (I- valley) effective mass approximation

• Contact Block Reduction (CBR) method [1 '2] for fast numerical efficiency

• Predictor-corrector approach and Anderson mixing scheme [3]
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[WL2]
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Simulations were done for
the cryogenic temperature
of 4 K.
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Quantum transport simulator

Device Setup
(Geometry, leads, doping)

CBR method

Calculation of
Functional: F

IIFII < E 
Yes

No

Calculation of transverse
lead eigenstates (=modes)

1 
4'

Calculation of transmission,
LDOS and carrier density

for open system

Solution of
eigenvalue problem: H°

Predictor-Corrector approach

and Anderson mixing scheme
to update

the Hartree potential and
the exchange-correlation potential

LOUTPUTSI
[1] D. Mamaluy et al., J. Appl. Phys., vol. 93, no. 8, pp. 4628-4633, 2003.
[2] D. Mamaluy et al. Phys. Rev. B, vol. 71, p. 245321, 2005.
[3] X. Gao et al., J. Appl. Phys., vol. 115, no. 13, p. 133707, 2014.



N0=1014 c --m-23 NA=1 017 cm-3, t=0.2 nm

ILc
Si cap: NA 1W/2

P 6-doped Iayer :ND

Si body: NA W/2

A 
L=50nm

• Our open-system quantum simulations predict
shallow sub-bands

• 1 r sub-band is about 190 meV and 2F sub-band
is about 20 meV below the Fermi level

• Below the Fermi energy level the states are
"protected" (independent of encapsulation
depth).

Prediction of Shallow Sub-bands
Fermi level
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F. Mazzola, et al. Phys. Rev. Lett. 120, 046403, 2018



Si: P 6-layer conduction band structure

N0=1.2x1014 cm-2, NA=1 017 cm-3, t=0.2 nm, W= 20 nm

z1 x
Si cap: NA '1W/2

P 5-doped layer :ND

Si body: NA W/2

L=50nm

• Space quantization of the modes: they are
separated in space and with distinct
structure

Local Density of States, LDOS(z,E)

Fermi level, EF

How are these conductive sub-bands influenced by the
thickness and doping density of 6-layer?
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Influence of 6-layer doping density

NA=1017 cm-3, t=0.2 nm, W=40 nm

L - 50 nm

• For a fixed 6-layer thickness, the increment of the
sheet doping ND increases the number of
conducting modes, as well as the splitting energy
between them
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Influence of the 6-layer thickness

N0=1.2x1 014 cm-2, NA=1 017 cm-3, W=40nm

17

Si cap: NA

P 5-doped layer : ND

Si body: NA

1W12

W/2

L=50nm

• For a fixed sheet doping, the
increment of the delta-layer
thickness increases the number of
modes, but decreases the energy
splitting between them
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Electron contribution on the current
• Dissimilar contribution of the conductive sub-bands on the electronic current

Free
electrons

distribution

Current
spectrum

For strong confinement potentials = For weak confinement potentials =
Sharp doping profile Smooth doping profile
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source

Current leaka e

Current leakage

drain

• Sharp doping profile reduces the
current leakage

NI0=1.2x 1014 cm-2, NA=1 017 cm-3, W=40nm
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mode 1

mode 2

Elastic scattering model

• Effective electronic transmission
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Triirn(E) Electronic transmission
for mode m without scatterers

tL(E) Defect transmission probability
due to scatterer i in mode m Nr
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The parameter a is
proportional to the
linear impurity density
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Proof that the Quantum Simulation works!
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• Our simulations accurately reproduce the experimental sheet resistances at 4 K
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Goh et al. (2006)

• Reusch et al. (2008)
• Goh et al. (2009)

McKibbin et al. (2014)

6-layer thickness: 0.2-5 nm

6-layer thickness: 0.2-5 nm
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The parameter a is proportional to the
linear defect density in the system

K. E. J. Goh et al., Phys. Rev. B, vol. 73, p. 035401, 2006
K. E. J. Goh and M. Y. Simmons, Appl. Phys. Lett., vol. 95, no. 14, p.
142104, 2009
S. R. McKibbin et al., Appl. Phys. Lett., vol. 104, no. 12, p. 123502,
2014
T. C. G. Reusch et al., J. Appl. Phys., vol. 104, no. 6, p. 066104,
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Sheet conductance for Si: P 6-layer wires
Sandia
National
Laboratories

• Our simulations predicts a quantum thickness dependence on the sheet conductance
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Summary

CI Presented a fully quantum open-system transport simulations for Si: P 05-
layer systems, including a elastic scattering model

CI Predicted the conductive shallow sub-bands observed experimentally,
and evaluated how these conductive sub-bands are influenced by the donor
doping density and thickness of the 6-layer

CI Predicted quantum thickness dependence on the conductive properties

CI Excellent agreement with experimental sheet resistance data
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