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Sandia's perspective on biofuel production
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Sandia's perspective on biofuel production

Biomass Production

What can we grow?

Conversion to
Fuel Products

High performance fuel
products can strengthen the
value proposition of biofuels

1
Co-optimization of
Fuels and Engines

What is the best fuel?
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Understanding what makes a fuel good

Evaluating a fuel is about more than just combustion

Compression
Ignition Fuels
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eatly Exceeds Barriers Exist

Cetane >50 46 to 50 40 to 45 <40

LHV (MJ/Kg) >40 31 to 40 25 to 30 <25

Flash Point (oC) >70 61 to 70 52 to 50 <52

Melting Point (oC) <-50 -50 to -26 -25 to 0 >0

Water Solubility
(mg/L)

<5 5 to 501 500 to 1000 >1000

YSI <50 50 to 151 150 to 200 >200
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High Performance Fuels (HPF)

• Fusel Alcohols- Biofuels production and
upgrading to Fatty Acid Fusel Esters (FAFE)

• Biodiesel Hydroxyalkanoates- Biochemical
production of lactic acid and upgrading to HPF

• Biodiesel Ethers- Fatty Acid Derived Alkyl Ether
Fuels

0 Sandia National bboratories



Our goal: a robust, feedstock agnostic
bioconversion process to utilize this biomass

LignocellulosiC Biomass
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Development of E. coli strains for protein
conversion and carbohydrate conversion to,

6 fusel alcohols in co-culture system
aR U Y

Ash,

Fat (crude), 
0.22%

6.12%
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Huo et al Nature Biot. 2011

Wu et al Algal Res 2016

/Fusel Alcohol
Fermentation Product Mix

Wu and Davis Algal Res 2016

Liu et al Microbial Cell Factory 2017
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Fermentation of a glucose and xylose
mixture by E. coli BLF2.
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- The volumetric productivity for the total fuel alcohols from the sugar mixture was about
0.37 g/L h which was lower than that from glucose but higher than when xylose was used
as a sole carbon source

60

Liu et al Microbial Cell Factories (2017) 16 (1),192
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Fusel alcohols production from DGS

Jib 
BLF2 1:0.5 1:1 1:1.5 1:2 AY3

Inoculation ratio of BLF2 and AY3

• 2-methy1-1-butanol • 3-rnethy1-1-butanol ■ phenylethanol

• ethanol • lKklautanol IN total fusel alcohols

a

• glucose-

111 j . In :a ols bin se

DDGS elf2 10.5 115

Ndrays3t6
Noculation ratio of BLF2 a ricl AV3

- The co-culture with an inoculation ratio of 1:1.5 of E. coli BLF2 and AY3 achieved the
highest total fuel titer of up to 10.3 g/L from DGS hydrolysates.
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Fusel alcohols production from DGS

3.4%

25.3%
T 27.3% 2%26

*31.3%   

16.3%

DGS BLF2 1:0.5 1:1 1:1.5 1:2 AY3

hydrolysates
Inoculation ratio of BLF2 and AY3

- Up to 31.3% of the initial 17.5 g/L proteins in the DGS hydrolysates were converted by
the co-culture with an inoculation ratio of 1:1.5
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Fusel alcohols production from
Nannochloropsis sp. algae hydrolysates
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• phenylethanol
• ethanol
• isobutanol
• total fusel alcohols

31F2 1:0.5 1:1 1:1.5 12 1:4 1:6 1:8 1710 AV3

Inoculation ratlo of BLF2 and AY3

- The composition of the fusel alcohols products from algae hydrolysates included
isobutanol (40.3% (w/w)) and mixed isopentanols (2-methyl-1-butanol and 3-methyl-1-
butanol (37.3% (w/w)), indicating significant enrichment of the C5 alcohols compared to
the product spectrum produced from DGS, where isobutanol was the major product
(63.1% (w/w))
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Fusel alcohols production from
Nannochloropsis sp. algae hydrolysates
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Algal BLF2 1:0.5 1:1 1:1.5 1:2 1:4 1:6 1:8 1:10 AY3

hydrolysates

Inoculation ratio of BLF2 and AY3

- Up to 32.4% of the initial 38.7 g/L proteins in the algae hydrolysates were converted by
the co-culture with an inoculation ratio of 1:4

0 Sandia National bboratories



Growth dynamics of individual populations in
the co-culture
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- In both of the hydrolysates, the cell number of the two strains continuously increased until
reaching plateau, which indicated that despite the growth rate difference between the two
strains, the co-culturing didn't adversely affect the growth of each strain.

- The final cell numbers of AY3 in the co-cultures at proper inoculation ratios of BLF2/AY3
were no less than the cell number of AY3 monoculture in the hydrolysates.



livA Fusel Alcohols as a platform for a
diverse suite of high performance fuels

Fatty Acid
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Our goal: a robust, feedstock agnostic
bioconversion process to utilize this biomass
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Fatty Acid Fusel Esters (FAFE)
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FAFEs as high performance compression
ignition fuels

•

•

FAFE 50/25/25 having a 4.8 higher DCN than FAME, while FAFE

75/12.5/12.5 was not significantly different than FAME.

FAFE 50/25/25 and FAFE 75/12.5/12.5 demonstrating a 4 °C and

6 °C lower no-flow point respectively when compared to FAME.
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Hydroxyalkanoates: Biological production
and upgrading to high performance fuels
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Batch fermentation studies of D- lactate
production on DMR corn stover hydrolysate

D-lactic acid production from DMR hydrolysate
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The Lactate and Fusel Alcohol Platform
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livA Fusel Alcohols as a platform for a
diverse suite of high performance fuels
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P The Lactate and Fusel Alcohols platform for a
diverse suite of high performance fuels
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II Hydroxyalkanoates as high performance fuels

Trend Chemical Structure
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Fatty Alkyl Ether (FAE) biodiesel
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• All FAEs show a significant improvement as compared to a FAME control

L-51 
• Increasing carbon chain length improved DCN and LHV while increased branching lowered
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DCN
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Fatty Alkyl Ether (FAE) biodiesel
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• Increasing carbon chain length improved DCN, LHV, and CP, while increased
branching lowered DCN, but improved LHV and CP.
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44

biofuel molecules that each have slightly unique value
z

- 51L 
propositions as industrial fuels.

ccs
= 

Open for Collaboration:
Ci) Please reach me at sashind@sandia.gov or Ryan Davis at rwdavis@sandia.gov

Conclusions

• We have developed a proof of concept "one-pot bioconversion" with engineered
E. coli and C. glutamicum for efficient production of mixed fusel alcohols and D-
lactate from a wide variety of biomass sources, respectively.

• These fusel alcohols show promise as drop in fuels or as blending agents with
gasoline for SI engines with properties comparable or better than ethanol.

• Fusel alcohols, lactic acid and fatty acids can further be upgraded to other high
performance fuel compounds or reacted with residual lipids to utilize all major
biochemical components of the biomass and "close the loop" allow for tunablity to
different engine architectures.

• Fusel alcohols, lactic acid and fatty alkyl ethers represent a few
example of this, but the co-optima effort has identified a variety of
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