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Machine Learning for Compact Model Development
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• Traditional compact model development (CMD) takes multi-years and multi-institutional efforts.

• Data-driven machine learning (ML) is being actively explored for fast CMD [1-2].
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New opportunity: combine TCAD physics and data-driven ML for rapid and
physics-based circuit compact model development

[1] M. Li, O. Irsoy, C. Cardie and H. G. Xing, IEEE J. Explor. Solid-State Computat. vol. 2, pp. 44-49, Dec. 2016.

[2] K. Aadithya, P. Kuberry et al., arXiv:2001.01699, 2020.

2



pigNN-CMD Methodology

We propose the physics-informed graph neural network (pigNN) methodology for circuit CMD
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• Use machine learning (ML) classification and
topological data analysis (TDA) methods to process
TCAD physical fields

• Determine physically important regions as they
evolve through a sweep of bias/time conditions.
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•

Mapper & scikit-tda

Determine the intrinsic
device topology using
TCAD-informed ML
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• Populate graph edges with components
based on local responses from TCAD

• Enforce Kirchhoffs current law at each
node during ML learning
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Diode Compact Model for a pigNN-Graph Edge
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What is a good compact model for a diode located at an edge?

• Apply TDA method with physical fields to isolate a localized diode

• Process TCAD physical fields to obtain response for the diode

• Apply data-driven neural network to develop compact model for the diode
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Voltage Independent Non-ideality Factor

• Recombination effect increases the diode current in the low forward bias region

• Voltage-independent non-ideality factor partially captures the recombination effect
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NN-learned
Variables

Voltage independent non-ideality factor cannot accurately
model the voltage dependent recombination effect.



NN Loss Function Design for Diode Compact Model

• Recombination effect is inherently voltage dependent

• Need voltage-dependent non-ideality factor to accurately capture the recombination effect
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• A good NN loss function is needed to achieve accurate results due to mixture of exponential and
quasi-linear current response

Proposed NN
loss function:

L= [v(INN)-vutA2/[v(1M2

v(I) = (ctI)b x tanh(d/ — e) + f I

✓ Map the logarithmically separated current
range to a linearly separated voltage range

✓ Use regression to determine a, b, d, e, f
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Voltage Dependent Non-Ideality Factor
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Voltage-dependent non-ideality factor allows us to
accurately model the recombination effect.
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Summary

CI Presented the pigNN methodology for compact
model development that brings together data-
driven ML, TCAD, and existing compact models.

CI Developed accurate compact model for a non-
ideal PN diode that represents a non-linear edge
in a pigNN graph

CI Applying the pigNN methodology to other
semiconductor devices (e.g., bipolar transistor) &
other engineering areas (e.g., mechanics, EM).
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