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Machine Learning for Compact Model Development () i,

» Traditional compact model development (CMD) takes multi-years and multi-institutional efforts.

= Data-driven machine learning (ML) is being actively explored for fast CMD [1-2].

v Fast CMD (a functional black box)
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New opportunity: combine TCAD physics and data-driven ML for rapid and
physics-based circuit compact model development

[1] M. Li, O. irsoy, C. Cardie and H. G. Xing, IEEE J. Explor. Solid-State Computat. vol. 2, pp. 44-49, Dec. 2016.
[2] K. Aadithya, P. Kuberry et al., arXiv:2001.01699, 2020.




pigNN-CMD Methodology =

We propose the physics-informed graph neural network (pigNN) methodology for circuit CMD

Physics Priming (PP) Region Recognition (RR) Topology Tailoring (TT) Interaction Identification (Il)
(Perfunctory TCAD) (ML + TDA) (TCAD-informed ML) (seeded w/ established CMs)

.

llllllllll » Use machine learning (ML) classification and
\ topological data analysis (TDA) methods to process
TCAD physical fields

» Determine physically important regions as they
evolve through a sweep of bias/time conditions.
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\ Determine the intrinsic
S device topology using
== | TCAD-informed ML
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Loosely calibrated
TCAD simulations
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I — R v » Populate graph edges with components
" Mapper & scikit-tda based on local responses from TCAD

Loosely_ calibr.ated » Enforce Kirchhoff's current law at each
TCAD simulations node during ML learning
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We propose the physics-informed graph neural network (pigNN) methodology for circuit CMD

Physics Priming (PP) Region Recognition (RR) Topology Tailoring (TT) Interaction Identification (Il)
(Perfunctory TCAD) (ML + TDA) (TCAD-informed ML) (seeded w/ established CMs)
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Loosely calibrated

TCAD simulations Train and Adapt
(using available experimental data)
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Diode Compact Model for a pigNN-Graph Edge "

What is a good compact model for a diode located at an edge?
= Apply TDA method with physical fields to isolate a localized diode

» Process TCAD physical fields to obtain response for the diode

= Apply data-driven neural network to develop compact model for the diode
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Voltage Independent Non-ideality Factor Nl

» Recombination effect increases the diode current in the low forward bias region
= \oltage-independent non-ideality factor partially captures the recombination effect
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NN Loss Function Design for Diode Compact Model () i,

= Recombination effect is inherently voltage dependent

= Need voltage-dependent non-ideality factor to accurately capture the recombination effect
(- 10)
ID = [1 — W(VD)]IO e"(VD)kBT — 1.0/ + VDGD(VD)

n(Vp) =1+ nyn(Vp) = Voltage-dependent non-ideality factor learned using NN

= A good NN loss function is needed to achieve accurate results due to mixture of exponential and

quasi-linear current response 34 2.0

Proposed NN
loss function:
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Voltage Dependent Non-ldeality Factor Nl
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NN-learned non-ideality factor indeed
shows a strong voltage dependence.
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Voltage-dependent non-ideality factor allows us to
accurately model the recombination effect.




Summary e e

pigNN-CMD

O Presented the pigNN methodology for compact
model development that brings together data-
driven ML, TCAD, and existing compact models.

Established CMs

1 Developed accurate compact model for a non-
ideal PN diode that represents a non-linear edge
in a pigNN graph

U Applying the pigNN methodology to other
semiconductor devices (e.g., bipolar transistor) &
other engineering areas (e.g., mechanics, EM).




