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ABSTRACT: High-quality datasets are crucial for the performance and reliability analysis of photovoltaic (PV)
systems. With respect to data integrity, invalid data are a common problem exhibited in PV monitoring systems. A
data pipeline approach was recently introduced aiming to support reproducible results in PV performance. The
methodology is expanded in this study by examining further outlier observations in respect to detection techniques,
impact and treatment methods. The outlier detection results demonstrated that the standard boxplot rule yielded the
highest detection rate of 95.3% (by taking a moving data window) at 40% of outlying data points and the effect of
random outlying data points was mitigated by listwise deletion. The comparative analysis of outlying data treatment
demonstrated that back-filling with the Sandia Array Performance Model (SAPM) yielded more accurate degradation
rate (Rp) estimates (absolute percentage error, APE, of up to 0.36% at 40% of outlying data) compared to filtering out
the outlying data points (APE of up to 2.53% with listwise deletion).
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1 INTRODUCTION

Ensuring data quality is of utmost importance for the
performance and reliability analysis of photovoltaic (PV)
systems [1]. Actual in-field measurements commonly
exhibit invalid data (i.e. gaps, missing data, erroneous
and outlying values) caused by power outages,
equipment/component faults, communication failures or
interruption  for maintenance reasons that can
significantly bias the results of the data-based analysis.
For this reason, invalid data should be detected and
addressed appropriately before proceeding to any
analyses.

Even though it is very common to have missing and
outlying (erroneous) observations in a given PV dataset,
only few reference guidelines and reports on data quality
checks for PV monitoring studies have been reported in
the literature. The existing guidelines and reports mainly
focus on data processing requirements for PV
performance assessment [2]-[9]. The reported studies,
however, do not provide a specific data treatment
approach that would support reproducible results.

A complete methodology describing how to handle
(and ensure quality of) large high-resolution datasets
acquired from PV systems was recently presented in our
previous work [10]. The detailed methodology comprises
of a framework of sequentially structured Data Quality
Routines (DQRs) that operate on acquired PV system and
meteorological measurements. The DQRs methodology
comprises of algorithms that detect data anomalies and
reconstruct invalid PV datasets through a sequence of
data quality checks, filtering stages, data deletion and
inference techniques. This study expands on this
methodology by examining outliers in respect to
detection, impact and treatment using PV performance
and reliability metrics as criteria.

2 METHODOLOGY

The data quality assurance methodology (depicted in
Fig. 1) comprises of a data pipeline procedure that
includes the application of initial data statistics (Step 1),

consistency examination (Step 2), filtering (Step 3),
invalid data detection (Step 4), determination of missing
data mechanism and rate (Step 5), invalid data treatment
(Step 6), aggregation at different granularities (Step 7),
final data validity and statistics summary (Step 8) [10].

The initial step includes the preliminary application
of data statistics to the PV dataset in order to gain
insights of the dimensionality by identifying the
recording interval (time between two consecutive time
records) and the reporting period (i.e. the minimum of 1-
year of continuous monitoring for outdoor PV
performance evaluation) [11].

The fidelity of the dataset was then examined by
verifying the consistency of the series (timestamp gaps,
repetitive rows, duplicate timestamp records and
synchronization issues) and detecting data
inconsistencies. After removing the repetitive and
duplicate timestamp records, the dataset was checked
against a known timestamp series and was finally
synchronised and resampled (reconstructed).

A filter was then applied to the dataset in order to
restrict the measurements to daylight hours and remove
night-time effects (i.e. irradiance filter > 20 W/m?).

Subsequently, the missing values were identified by
searching for Not a Number (NaN) and Not Available
(NA) values into the dataset. Outliers (or erroneous
values) were detected by a) manual approaches; imposing
physical limitations on the recorded data [4], [9], visually
inspecting scatter plots [12], [13] and applying variation
limits between successive data points methods [4] and b)
automated approaches [14]. Automated approaches
include the use of statistical and comparative tests (e.g.
Sigma rule method and standard boxplot rule, etc.),
density-, deviation- and distance-based approaches (e.g.
the local outlier factor, rolling mean, etc.) [14], [15].
Since there is no standardised method for detecting
outliers for PV assessment analyses, a performance
comparison between different common automated
methods used in PV field applications was conducted to
identify the optimum identification technique. The
detected outlying values were then replaced by “NA”
values and treated in the same manner as missing data.

At this point, the missing data rate (portion of
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missing values to the total number of data points) was
estimated. An essential next step performed was the
identification of the missing data mechanism/pattern
(MCAR - Missing Completely At Random, MAR -
Missing At Random and NMAR - Not Missing At
Random) by applying a suitable data visualization
method (e.g. heatmaps, aggregation, scatter and spine
plots) [16]. Identifying the type of the exhibited missing
data pattern is important as it determines which treatment
method is appropriate.

In Step 6, the appropriate treatment method (data
deletion or inference) was determined based on the
missing data rate and mechanism [10]. This is a
challenging task because the application of data deletion
and inference techniques is strongly dependent on the
missing data rate and pattern and requires careful
examination of the dataset in order to avoid introducing
bias to the performed analysis.

In particular, missing values were treated by data
deletion (listwise deletion) for missing data rates lower
than 10% and by data inference techniques (application
of empirical models, multiple and univariate data
imputation) for missing data rates higher than 10%
(applicable only for the MCAR case) [10]. For the MAR
and NMAR cases, the reason of missingness was further
examined before determining an approach to handle the
invalid values.

The final step of the methodology was to aggregate
the acquired daylight measurements into daily, weekly,
monthly, or annual values (depending on the final
analytical use of the acquired PV system data) and to
provide the final statistical summary.

1. Initial data statistics
Identification of the recording interval and reporting period

!

2. Consistency examination
Dataset examination for consistency (gaps, repetitive and duplicate records)

3. Data filtering
Filter application to restrict measurements to the daylights hours

4. Identification of invalid values
Identification of missing and outlying values by: a) searching for “NA”
values into the dataset, b) applying physical limits on acquired
measurements and c) applying statistical/comparative methods.
Replacement of detected outlying values by “NA”

5. Identification of missing data rate
Identification of missing data rate and mechanism (MCAR, MAR, NMAR)

6. Handling invalid values
Invalid data treatment by: a) data deletion (listwise technique) or b) data
inference techniques (application of empirical models and data imputation)

7. Data aggregation
Aggregation of daylight series into daily, weekly, monthly or annually
values

8. Data statistics summary
Statistical summary of raw/aggregated data

Figure 1: Flowchart of data quality processing
methodology. Figure obtained from Livera ef al. [10].

To facilitate the verification process of the outlier’s
identification routines, a baseline (reference) PV dataset
was constructed by utilizing the acquired measurements
from a test PV system installed in Nicosia, Cyprus
(Koppen-Geiger-Photovoltaic climate classification CH:
Steppe climate with high irradiation) [17]. In order to

enable the comparative analysis, artificially “invalid” PV
datasets were also generated by introducing outlying
measurements at different data rates. Outlier detection
routines (ODRs) were then applied to the invalid PV
datasets in order to detect data anomalies and derive the
optimum automated identification technique.

2.1 Experimental setup

At the outdoor test facility (OTF) of the University of
Cyprus (UCY), grid-connected PV systems of different
technologies and approximately of 1 kW, capacity each,
were installed and commissioned in June 2006 (see Fig.
2). The performance of each PV system and the
prevailing irradiance and meteorological conditions are
recorded according to the requirements set by the IEC
61724 standard [2] and stored with the use of a
measurement monitoring platform. The monitoring
platform comprises of solar irradiance, wind, temperature
and electrical operation sensors and stores data at every
second. The recorded meteorological measurements
include the in-plane irradiance (Gi) measured with a
pyranometer, ambient temperature (7Zamb), module back-
surface temperature (7mod), relative humidity (RH), wind
speed (Ws) and direction (Wa). The electrical data include
the array current (/a), voltage (Va) and power (Pa) at the
DC side. Additional yields and performance parameters
such as the PV array energy yield (Ya), the final PV
system yield (Y), the reference yield (}r) and the monthly
DC PR (PR) were also calculated [18].

In order to derive the optimum outlier identification
technique, historical field measurements acquired from a
test PV system installed at the UCY OTF were utilised.
The test PV system is well maintained (at an availability
of higher 99% during the reporting period) and comprises
of a PV array of 5 poly-crystalline Silicon (poly-c Si) PV
modules, each of nominal power 205 W), as depicted by
the manufacturer’s datasheet. The PV modules are
connected in series to form one string, at the input of a
grid-connected inverter. The system is installed in an
open-field mounting arrangement and an inclination
angle of 27.5° due South.

Figure 2: OTF~0f the GC‘Em Nicosia, Cyprus.

2.2 Baseline PV datasets

In order to assess the performance of the ODRs, a 1-
and 5-year datasets (defined as the baseline PV datasets)
containing 15-minute average measurements (and
calculated performance parameters) acquired from the
test PV system at a resolution of 1 second were used. The
PV datasets were initially examined for consistency and
then filtered to restrict measurements to daylight hours of
each day.

2.3 Generation of outlying data points in the baseline PV
dataset — Artificial invalid PV datasets



An automated approach was employed, in order to
create datasets with artificial invalid data points (defined
as the invalid PV datasets). These datasets were used to
examine the impact of outlying data points on the PV
performance and reliability analyses and the robustness
of the dataset reconstruction routines.

In particular, the method introduces artificially global
outliers (randomly distributed) into the PV baseline
dataset from 1% to 40% invalid data rate (in whole
number increments) for the recorded Pa measurements.
The process was repeated 50 times for each invalid data
rate, resulting in 2000 invalid datasets with outliers. The
investigation focused on global outliers since this type of
outliers is commonly exhibited in PV monitoring systems
[19].

2.4 Detection of outliers

In order to derive the optimum identification
technique, a comparative analysis was performed
between three automated methods that are commonly
used in PV field applications for outlier’s detection; the
3-Sigma rule method, Hampel identifier and standard
boxplot rule.

The 3-Sigma rule classifies any data point above and
below the £3 standard deviation (£36) from the mean (p)
as an outlier. The normal range defined by the 3-Sigma
rule is the closed interval [t — 30, pu + 30] [20]. Similarly,
the Hampel identifier uses the sample median (x') and the
median absolute deviation (MAD) to define the data
range for normal points [14]. Data points that fall outside
the closed interval [x — 3*MAD, x + 3*MAD] are
classified as outliers. Finally, the standard boxplot rule is
based on the lower quartile (Q1, 25" percentile), the
upper quartile (Q3, 75" percentile) and the inter-quartile
distance (IQR= Q3-Q1) and its nominal data range is the
closed interval [Q1 — 1.5 * IQR, Q3 + 1.5 * IQR] [14].

The outlier detection algorithms were applied on the
whole length of the tested variable and were also applied
on a moving data window by taking 1% increments of the
length of the variable.

2.5 Treatment of invalid data points

Existing data quality assurance guidelines analyse
either the available valid measurements, excluding the
invalid periods (by listwise deletion) or replace the
missing data with estimated values (using data inference
techniques) [21]. Livera et al. [10] demonstrated that for
missing data rates lower than 10%, periods with
continuous missing measurements can be discarded from
the analysis (listwise deletion) [10]. On the other hand,
data inference techniques should be employed for
missing data rates higher than 10% [10].

2.6 PV performance and reliability metrics

The analysis of the PV performance was based on the
monthly PR time series constructed from the outdoor
field measurements [22]. The reliability of the PV
modules was evaluated based on degradation rate (Rpo)
[23] assuming linearity [24], [25]. The Ro was estimated
by applying the conventional statistical method of linear
regression with ordinary least squares (OLS) on the 5-
year baseline dataset of the test PV system [24].

In order to compare the Rp obtained using the
baseline dataset against the Ro values obtained from the
artificially invalid datasets, the absolute percentage error
(APE) metric was used [10].

In parallel, to assess the accuracy of the outlier
identification techniques, the detection rate performance
metric was used. The detection rate (units of %) is
defined as the ratio between the detected invalid data
points to the total number of invalid data points.

3  RESULTS

3.1 Outliers detection

A comparison of three different outlier identification
methods was performed and the average detection
accuracy results for different rates of outliers (inserted
randomly to the tested PV dataset) are reported in Table
I. The obtained results showed that the standard boxplot
rule was the most successful global outlier identification
technique (among the investigated algorithms) achieving
an average detection rate of 95.3% at 40% of outlying
data points. In addition, the Hampel identifier achieved a
detection rate of 94.8% at 40% of outlying data points.

Table I: Detection rate of ODRs during different invalid
data rates.

Invalid data Detection rate (%)

Rate (%) 3-Sigma  Hampel Boxplot
rule identifier
10 90.3 96.0 97.3
20 89.2 95.4 96.8
30 87.9 95.0 96.7
40 86.7 94.8 95.3

For demonstration purposes, a one-week period is
depicted in Fig. 3 when applying the ODRs on the whole
length of the tested variable, while Fig. 4 depicts the
boxplot rule application on a moving data window.
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Figure 3: ODRs application on the recorded DC power
measurements. The limits were calculated by applying
the ODRs on the whole length of the tested variable. The
upper and lower these limits for the 3-Sigma rule,
Hampel identifier and boxplot rule are depicted by red,
blue and green lines, respectively.

By comparing Fig. 3 with Fig. 4, it can be concluded
that the standard boxplot rule proved to be more effective
in detecting outliers by applying the technique on a
moving data window (i.e. by taking increments of the
length of the variable).
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Figure 4: Boxplot rule application on the recorded DC
power measurements. The boxplot rule was applied on
1% increments of the length of the tested variable and the
detected outliers are colored in green.

3.2 Impact of outliers on PV performance analysis and
outlier’s treatment

The detected outliers were replaced by “NA” values
and treated as random missing data points (i.e. the data
points were distributed randomly in the time series). The
2000 invalid PV datasets were reconstructed by listwise
deletion and the average PR results are depicted in Fig. 5.
As shown in Fig. 5, the effect of random missing data
points was mitigated by listwise deletion, even for a 40%
invalid data rate (exhibiting an APFE less than 0.7%).
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Figure 5: Boxplot of the monthly average PR of the test
PV system for random missing power measurements
reconstructed by listwise deletion. The horizontal lines
(coloured in red) indicate the +6% uncertainty on the
calculated PR [26].

3.3 Impact of outliers on the estimation of the linear Rp
of PV systems

The performed reliability investigation demonstrated
that the Ro estimates (calculated by applying the linear
OLS method to model the trend) were slightly biased in
the presence of random missing data points. In particular,
for 40% of random missingness, the maximum APE of
the linear Ro estimated by applying the listwise deletion
was 2.53% (see Fig. 6).

Data inference using the Sandia Array Performance
Model (SAPM) to back-fill the random missing data
points yielded more accurate Ro estimates compared to
the listwise deletion, since for 40% random missing data,
the APE of the annual Rp, was lower than 0.36% (see Fig.
6).
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Figure 6: Boxplot of the average Ro APE of the 2000
invalid datasets estimated with OLS for 1-40% level of
random missing data. The invalid datasets were
reconstructed by the SAPM.

4 CONCLUSIONS

DQRs that operate on acquired field measurements
were recently developed to ensure data validity. The
proposed DQRs reconstruct invalid datasets through a
sequence of data processing, quality checks, initial
filtering stages, data deletion and inference techniques.

Expanding on this line of work, this study examined
the application of ODRs and the impact of outlying data
points (that are randomly distributed in the time series)
on PV performance and reliability analyses. The ODRs
results showed that the standard boxplot rule yielded the
highest detection rate of 95.3% (by taking a moving data
window) at 40% of outlying data points. In addition, the
Hampel identifier achieved a detection rate of 94.8% at a
level of 40% outlying data points. Therefore, the boxplot
rule and Hampel identifier are recommended for
detecting global outliers in PV performance datasets.

The results of the PV performance investigation
showed that the effect of outlying data points (random
missing data points) on the PR analysis was mitigated by
listwise deletion. Furthermore, the annual Rp estimates
were slightly biased in the presence of random missing
data points. For 40% random missing data, the maximum
APE of the linear Ro estimated by applying the listwise
deletion was 2.53%.

Finally, the application of the SAPM for inferring the
missing data yielded more accurate estimates when
compared to estimates by listwise deletion, since for 40%
random missing data, the APE of the annual Rpo was less
than 0.36%.
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