SAND2021-11358

SAND2021-11358

Printed September 2021 National

Laboratories

SANDIA REPORT @ Sandia

SAGE Intrusion Detection System:
Sensitivity Analysis Guided
Explainability for Machine Learning

Michael R. Smith, Erin C.S. Acquesta, Arlo Ames, Alycia N. Carey, Christo-
pher R. Cuellar, Richard V. Field, Trevor Maxfield, Scott Mitchell, Blake
Moss, Elizabeth Morris, Megan Nyre-Yu, Ahmad Rushdi, Mallory Stites,
Charles Smutz, Xin Zhou

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering: http://www.osti.gov/scitech
Auvailable to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

NYSH

National Nyclear Security Adminisfration

ABSTRACT

This report details the results of a three-fold investigation of sensitivity analysis (SA) for machine
learning (ML) explainaiblity (MLE): (1) the mathematical assessment of the fidelity of an
explanation with respect to a learned ML model, (2) quantifying the trustworthiness of a
prediction, and (3) the impact of MLE on the efficiency of end-users through multiple users
studies. We focused on the cybersecurity domain as the data is inherently non-intuitive. As ML is
being using in an increasing number of domains, including domains where being wrong can elicit
high consequences, MLE has been proposed as a means of generating trust in a learned ML
models by end users. However, little analysis has been performed to determine if the explanations
accurately represent the target model and they themselves should be trusted beyond subjective
inspection. Current state-of-the-art MLE techniques only provide a list of important features
based on heuristic measures and/or make certain assumptions about the data and the model which
are not representative of the real-world data and models. Further, most are designed without
considering the usefulness by an end-user in a broader context. To address these issues, we
present a notion of explanation fidelity based on Shapley values from cooperative game theory.
We find that all of the investigated MLE explainability methods produce explanations that are
incongruent with the ML model that is being explained. This is because they make critical
assumptions about feature independence and linear feature interactions for computational reasons.
We also find that in deployed, explanations are rarely used due to a variety of reason including
that there are several other tools which are trusted more than the explanations and there is little
incentive to use the explanations. In the cases when the explanations are used, we found that there
is the danger that explanations persuade the end users to wrongly accept false positives and false
negatives. However, ML model developers and maintainers find the explanations more useful to
help ensure that the ML model does not have obvious biases. In light of these findings, we suggest
a number of future directions including developing MLE methods that directly model non-linear
model interactions and including design principles that take into account the usefulness of
explanations to the end user. We also augment explanations with a set of trustworthiness measures
that measure geometric aspects of the data to determine if the model output should be trusted.

CONTENTS

1. Introduction|

[I.I. Scopeof Research|.......
111 Aand MLE

[2.3.2. Multilayer Perceptron|
[2.3.3. Support Vector Machine|.........
[2.3.4. K-Nearest Neighbor|
[2.3.5. Logistic Regression|. i
[2.3.6. Gaussian Naive Bayes|.
[2.4. Feature Selection Algorithms|.

. _Correlation Preservation Sampling|

[3.1. Resmapling Approaches|. i i
[(3.1.1. Empirical Methods|
[3.1.2. Analytical Methods|.

13

17
19
19
21
21
21

23
25
25
29
33
34
34
38
39
40
41
42
42
44
45
47
47

4. Limitations of Current Machine Learning Explainability Methods| 57

i.1. Global Sensitivity Analysis Methods| 58
M1, Sobol'Indices|t e e 58
4.1.2. Shapley Values|........ 59

4.2, Trusting Learned Models| 59
“4.2.1. Black Box Explanation Methods|.............. 60
4.2.2. What Constitutes the Fidelity of an Explanation? 61

4.3. Empirical Examination of Explanation Fidelity|. 62
4.3.1. SyntheticDatal 62
4.3.2. Ensemble of experts comparison|............ 63

M4, DISCUSSIONI oot 65

.S, ConclusIonl.ot 68

. Classification Trustworthin 69

B.1. Geometric Trustworthiness| i i 69
[5.1.1. Training Proximity Metric| 70
[5.1.2. Extrapolation Metric|........ 71
[5.1.3. Class Ambiguity Metric| 72
[5.1.4. Measuring the TrustofaRegion| 72

[5.2. Identifying Important Features| i 73

[5.3. Synthetic Data Verification of the Trust Metrics| 73
[5.3.1. Synthetic Data Experimental Observations|. 74
[5.3.2. Examination of Dense Rings & Pluto8D|............................. 80

[5.4. Experimental Results on PDFrate| L 84

[5.5. Comparison with Out-of-Distribution Methods|............................... 84
[5.5.1. Maximum Softmax Probability| L. 86
[5.5.2. Outlier Exposure| 86
B.5.3. DeepMCDD).\ 86

[5.6. Implementation]........ ... 87

B2 RESUITS - - e vttt et et e e e e e e 87

D.8. Future Workl.o 88

5.9, Conclusion|.ttt 89

6. User Study Results| 90

[6.1. Sage Advice? The Impacts of Explanations for Machine LL.earning Models on Hu- |

| man Decision-Making in Spam Detection|/|.......... 90
BT Methodooi e 93
6.1.2. Procedure]...... 96
[6.1.3. Results] 96
(6. 1.4, DISCUSSION| - . .ot et ettt et e e e 100

[6.2. Lessons Learned from xAl Deployment in a Cybersecurity Operations Setting| 102

6.2.1. Methods|o 104

'Mallory C. Stites, Megan Nyre-Yu, Blake Moss, Charles Smutz, and Michael R. Smith. Sage Advice? The Impacts
of Explanations for Machine Learning Models on Human Decision-Making in Spam Detection. In International
Conference on Human-Computer Interaction, pp. 269-284. Springer, Cham, 2021.

6

[6.2.3. DISCUSSION .+« o oo vttt 110

624, Conclusions]o euet et 112

[6.3. Explainability for Model Maintainers|. i L 112
[6.3.1. Objective and Research Question| 112

6.32. Methodl 112

[6.3.3. Findings| 113

634, DISCUSSION v ettt e 116
[Z._Conclusions| 118
[References| 119
[References| 119
Append 129
IA. Machine Learning Models| 129
[A.l. Random Forest] 129
[A.1.1. Multilayer Perceptron|......... 133

[A.1.2. Support Vector Machine|.......... 136

[A.1.3. K-Nearest Neighbor| i, 139

[A.1.4. Logistic Regression|............ i, 145

[A.1.5. Gaussian Naive Bayes|. 148

[B. Closed-Form Analytical Solution to Shapley Values| 151
B.0.1." Value of v]g for Linear Models and Independent Variables. 151

IB.O.Z. Value of v|g for Linear Models and Correlated Variables|................ 151

[B.0.3. Value of v[s for Nonlinear Models and Independent Variables|. 152

[B.0.4. Value of v[s for Nonlinear Models and Correlated Variables| 152

C. Details for Classification Trust

[D. Ensemble of Experts Baseline| 155
[D.1. Ensemble of Experts Baseline|.......... 155
[D.2. Ensemble of Experts Comparison|............ i 157

[E. Interview Questions| 159

LIST OF FIGURES

[Figure 2-1. Permuting a feature of correlated variables| 24
[Figure 2-2. Histograms of individual feature data distributions|........................ 25
[Figure 2-3. Scatter plots of feature interactions|.o .. 26
IFigure 2-4. Visual description of correlation for a variety of Cp gy - oo viiiin 27
[Figure 2-5. Histograms of individual feature data distributions for a shifted feature]. 28
[Figure 2-6. Permutation feature importance charts for various Cp pyf o oo vvvevenevnnn. 32
[Figure 2-7. Violin plots of accuracy and F1 score for random forestl. 35
[Figure 2-8. Violin plots of training/test accuracy for random forest.|.................... 36
[Figure 2-9. Comparison of data distribution for Cp, p, = 1.0and 0.8 37
[Figure 2-10. Violin plots of feature importance for random forest....................... 38
[Figure 2-11. Violin plots of accuracy and F1 score for multilayer perceptron| 39
[Figure 2-12. Violin plots of accuracy and F1 score for support vector machine|. 40
[Figure 2-13. Violin plots of accuracy and F1 score for k-nearest neighbor|. 41
[Figure 2-14. Violin plots of accuracy and F1 score for logistic regression|................ 42
[Figure 2-15. Violin plots of accuracy and F1 score for naive Bayes| 43
[Figure 3-1. SAGE approach to explaining machine learning models. The black arrows |

represent current steps in MLE. The blue portions highlight the contributions |

ofusing SAGE.| 49

[Figure 3-2.

The results of sampling on the correlated petal width and petal length features |

from the 1ris data set showing a) the original dataset, b) the resampled dataset |

by perturbing only the petal width feature (bootstrapping), and c¢) the sampled |

data following the method used by LIME.| 51

[Figure 3-3.

The results of sampling on the correlated petal width and petal length features |

from the 1r1s data set showing a) the CorrPS-KDE, b) the heat map of the PDF |

from CorrPS-KDE, and c) the sampled data from CorrPS-TRV|.......... .. 52

[Figure 3-4.

a) Histogram for the eight features in the synthetic dataset. There 1s slight |

class separation 1n feature 4 (upper right) and features 1 and 2 are correlated |

(upper left). b) The change 1n classification accuracy when removing a feature |

and TetralNINg.|ottt e e e e 54

[Figure 3-5.

A comparison of the FI values using bootstrapping and classification accu-

racy (Default), Bootstrapping and model confidence (Model Confidence), and

CorrPS-KDE and model confidence (Model Conf and CorrPS). Model confi-

dence and CorrPS produce results more consistent with the established ground

[Figure 4-1.

The fidelity of model explanations per feature. Here, a value of 1 1s perfect |

fidelity. Non-linearity in the model has the greatest negative impact on fidelity| 64

[Figure 4-2.

Mapping of GSA processes to XAl and highlighting current holes.|........... 65

8

[Figure 4-3.

The results of sampling on the correlated petal width and petal length fea-

tures from the 1ris data set showing a) the original dataset, b) the resampled

dataset by perturbing only the petal width feature (bootstrapping), and c) the

randomly sampled data.|

67

[Figure 5-1.

a) Training Proximity Metric. Blue and orange training points are from

different classes; shaded regions denote their clusters. The green triangle 1s

well within the blue neighborhood; 1f the classifier assigns it blue, 1t 1s highly

trustworthy. The classification of the yellow diamond has less trust as it 1s near

both clusters. The purple square 1s not near either cluster, so its classification

1s also not trustworthy. b) Extrapolation Metric. Points outside the region

are extrapolated, are considered less trustworthy. A point inside the hull 1s

an 1nterpolation of multiple points, so its classification 1s regarded as more

trustworthy, regardless of it being assigned blue or orange. (Best viewed in

color)|

Figure 5-2.

Extrapolation Metric categorization accuracy: inside (d < 0) vs. outside (d >

0). Training points are randomly generated in a unit hypersphere, and test

points 1n the enclosing unit hypercube. For each curve we use n 3D convex

hulls. We achieve 95 percent accuracy for the 20 dimensional case, and near

100 percent accuracy for 60+ dimensions.|...........,

[Figure 5-3.

Random line search for approximating the distance to the decision boundary.

Given test point P (blue), the closest training point of a different classification

1s TP (orange). A line search between TP and P locates DP, which 1s ap-

proximately on the decision boundary. Going in random directions from DP

locates RP with a different class than P. A line search from RP locates DP’,

which 1s closer to P than DP. This 1s repeated. In practice we find a point on

the decision boundary that 1s reasonably closeto P|

72

[Figure 5-4.

Synthetic closed-geometry training (red and blue) and test (black) sets. 2D

drawing of nD data, toscale.|

73

[Figure 5-5.

Synthetic Gaussian training (red and blue) and test (black) sets. 2D drawing

of nD data, to scale. The solid circle indicates aradiusof 1o.|..............

74

[Figure 5-6.

t-SNE projection of the PDFrate data. a) Malicious vs benign. The O label

represents the benign class while | represents malicious. It can be seen that

there 1s some class separation. b) PDFrate vs Evade. The O label repre-

sents the evasion attack points and the 1 label represents the original PDFrate

data. Visually, 1t 1s easy to see that the evasion attacks occur in less populated

regions of the INPUt SPACe.|o vt e

85

[Figure 6-1.

Example stimuli used in experiment. The left panel 1s an example of the 3

feature table condition; the right panel 1s an example of the 7 feature graph

condition. The “email header info” and “email content info” were displayed

on every trial, as was a model prediction.|..............,

95

[Figure 6-2.

Mean accuracy for each of the model percent accuracy conditions, collapsing

across visual-1zation condition. Accuracy was significantly higher in the 88%

than 50% model accuracy condition.|.

9

97

[Figure 6-3. Mean RT for each visualization condition, collapsing across model percent |
| accuracy. RTs were significantly longer in the /7 feature table condition than |
I baseline. 98
[Figure 6-4. Mean accuracy by trial type and model percent accuracy, collapsing across vi- |
| sualization condition. Accuracy for false alarm trials was significantly higher |
| in the 88% than 50% model accuracy condition; no other pairwise compar- |
| 1sons reached significance. | 99
[Figure 6-5. Mean accuracy for Miss trials only, by visualization condition and model per- |
| cent accura-cy. In the 88% model accuracy condition, accuracy was signifi- |
| cantly higher 1n baseline than all other conditions (except 3-features-graph). |
I 99
[Figure 6-6. Mean RT's for trials in which people did and did not comply with the model’s |
| prediction by model trust median split. | 101
[Figure 6-7. Obscured representation of the XAl tool output when expanded by analyst,| ... 104
[Figure 6-8. Current explainability visualization with benign and malicious feature weights |
| does not allow the user to manipulate the outputs 1n any way. Giving the ana- |
| lyst some control over the analysis interface will help them filter to informa- |
| tion they think 1s relevant or better understand the context of the outputs for |
| more effective decision making and perception of usefulness................ 115
[Figure 6-9. Explainability visualization shows “pdt_text_keyword_here” as a feature con- |
| tributing to “malicious”. However, it 1s unclear whether the high value 1s due |
| to a large number of the word “here” 1n the pdf text, or due to a small number |
| of the word “here” inthe pdftext.|........... 116
[Figure A-1. Example of splits for F; and /; inadecisiontree.|......................... 130
[Figure A-2. Example split for F{ and F> inadecisiontree............................ 131
[Figure A-3. Example output from MLP over Fi, F>.| ... oo i 134
[Figure A-4. Example of MLP weights.|........ 136
[Figure A-5. SVM decision boundary over Fiand Fo.| oo, 137
[Figure A-6. SVM decision boundary over Fyand Fg.| il 137
[Figure A-7. SVM Results for various shift sizes.|.......... 138
[Figure A-8. Proportion of correlated points in K-nearest neighbors.| 141
[Figure A-9. Average proportion of correlated points in K-nearest neighbors.|............. 141
[Figure A-10. Average proportion of correlated points in €-neighborhood.| 142
[Figure A-11. Proportion of correlated points in €-neighborhoods.|....................... 143
[Figure A-12. Proportion of correlated points in €-neighborhoods.|................. 144
IFigure A-13. Average proportion of correlated points in K-nearest neighbors for various Cr, p,|144
[Figure A-T4.” Average proportion of correlated points in K-nearest neighbors, Cr, = 0.0].. 145
[Figure A-15. Logistic regression decision boundary over Fiand F>..................... 146
[Figure A-16. Logistic regression decision boundary over Fy and Fg.|..................... 147
[Figure A-17. Values for P(xg]y = 1) and P(xg[y = 2) in the shifted data] 150
[Figure E-1. Interface of the explanation integrated into the standard user interface used the |
| Inc1dent reSpONders.|ot 160

10

LIST OF TABLES

(ITable 2-1. Distribution of Fg for t = —0.25. 34

(Iable 3-1. Accuracies from the examined learning algorithms on the synthetic datasets.| ... 55

(Table 4-1. Examples explanations on prediction of malicious PDFs by an ensemble of ex- |

| perts and SHAP-Dep and TreeSHAP| 66
(Table 5-1. Training data locations.|. i 74
[Table 5-2. Training data S1Zes.| it i 75

[Table 5-3. Test data location. Far outside the training data but closer to one set, far from |
| the other. /n 1s closer to that other set in Rings. For the other sets, In points are a |
| bset of Tass's distribul Viid is bet the 1] ~Jistribut |
| A 1s from the distribution of the first class, and B is from the distribution of |
| the second class. For planes, the /n test data 1s already 1n-distribution, and the |
classes are symmetric, so no A and B distribution test sets are needed. For
Normals, the Far, In and Mid test sets are (D — 1) hyperballs in the hyperplane
with the given last coordinate. For Normals, the Indistribution test sets are |
Gaussians with the same offset and sigma as the training data. Each test data |

| set has 100 POINES. |. . ..o vt e e 75
(Table 5-4. Experimental observations on the Planes datal 77
(Table 5-5. Experimental observations on the Rings and Pluto datasets. The average Prox- |
| 1mity values include outliers as zeros.| L 79
[Table 5-6. Rings & Pluto 8D dense experimental data.|............................... 81

[Table 5-7. 3D Normals experimental data. Here we report the Proximity strength averages |
| excluding the outhers. For the SVM and RF classifiers, we report the number |

| of test points assigned to each of classAand B.| 82
(Table 5-8. 8D Normals experimental data. Here we report the Proximity strength averages |
| excludingtheouthiers.| 83

(Table 5-9. Summary of the trust metrics on the PDFrate data set. The average Training |
| Proximity Metric 1s the strength values returned by HDBscan where 1 indicates |
a strong relationship with a cluster and O represents an outlier. The Extrapola- |

|

|

I

| tion Metric indicates the distance from a convex hull around the training data.
| A value of 0 indicates that the test point 1s on the convex hull. The Class Am-
I
I

biguity Metric indicates the distances from the classification boundary.|........ 86
"Table 5-10. Contagio Dataset Results. TP: correctly predicted ood at recall=0.95|.......... 88

cature coun ACTO [1C e C catures marked with * indicate that the
| feature was as a “‘stimulus information feature,” and was presented on each trial |
| regardless of experimental condition.| L i 94

11

[Table 6-3. Mean accuracy and response times by visualization type and model accuracy |

I CONAILIONL, .« . ettt e e e 97
[Table 6-4. Likelihood of compliance with model’s prediction by model trust score and |
| overall model accuracy.|....... 100
- =LaikaBossl 107

[Table 6-6. Time to close events where explanations were viewed.|...................... 107
[Table 6-7. Analyst agreement with classifier in events where explanations were viewed.|. .. 108
[Table 6-8. Unique analysts with SCOT entries for events where explanations were viewed.| 108
[Table 6-9. Number of total SCOT views for events where explanations were viewed, 108
[Table 6-10. Survey data from one analyst (of 11 possible, response rate =9%), n =1....... 109
(Iable 6-11. Practical considerations for xAl deployment| 111
[lTable A-1. Counts of instances where a given feature was used in the parent node for a |
| decision tree (out of 10,000), for 8 features pernode.|....................... 132
(Table A-2. Counts of instances where a given feature was used 1n the parent node for a |
| decision tree (out of 10,000), for 2 features pernode.|....................... 133
(fable A-3. Example MLP weights.|. 135
(lTable A-4. Approximation to MLP intermsof Fiand Fo.|........ 135
able A-5. Mean and standard deviation of SVM test-set accuracies for various sh es.). 139
(Table D-1. Counts of analyst features by how well they are represented by the machine |
| learned feature set and how many of the machine leared features are required to |
| PIOVIAE COVETAZE] .« o vt e vttt e et et e e e et e e e e e e e e et ee e e 157

12

SUMMARY

This report summarizes the research and results of the two year LDRD: SAGE Intrusion Detection
System: Sensitivity Analysis Guided Explainability for Machine Learning. The intention of SAGE
was to examine machine learning explainability (MLE) with respect to the observation that most
MLE methods are based on heuristics and lack verifiable assessment of the value they provide to
the end user. In particular, SAGE intended to: (1) ground MLE in the mathematical principles of
uncertainty quantification and sensitivity analysis, (2) augment explanations with trust measures
based on the geometric relationship of a test point with the training data, and (3) integrate MLE
into an existing workflows for the purpose of examining the impact of MLE in real-world settings
and allowing ML practitioners to evaluate. We, therefore, had a parallel paths of investigation
focusing on the comparison of perturbation-based and game-theoretic approaches to black-box
MLE methods.

Sensitivity analysis (SA) was chosen because it is similar to many of the perturbation-based MLE
methods that lack a principled approach to provide theoretical guarantees and uncertainty bounds.
Upon close investigation of the MLE methods it was identified that they make strong assumptions
to avoid computational overhead: (1) feature independence, and (2) linear feature interactions
within the model. The independence assumption provides the convenience of avoiding the need to
compute the full joint probability distribution over the full feature set and but results in the
sampling of non-realizable inputs that are out-of-distribution from the training data. It is worth
noting that this assumption spans all applications for which sampling methods are utilized and the
consequences of misusing the independence assumption will apply to all application contexts for
which the independence assumption is simply not true. While the first assumption has critical
consequences, we found that the model linearity assumption has a larger impact on the fidelity of
the explanations to the ML model. Faithfully capturing non-linear interactions is a challenging
problem that needs further study.

To increase trust, MLE techniques provide a set of features that influence the output of an ML
model. However, they do not provide a measure of how much the output should be trusted—that
is left to the user to decide. Current practices use the confidences from the output of a model,
however, model confidences have been shown to be uninformative and often require very large
perturbations to cause noticeable changes. We, therefore, examine geometric relationship
between a test point and the training data. We explicitly seek to measure three salient properties:
(1) is the test point in a dense region of the training space, (2) is the test point an extrapolation or
an interpolation between training points, and (3) is the test point near the classification boundary?
Preliminary results suggest that these properties may be able to detect out-of-distribution data and
adversarial attacks.

We worked with Enterprise security at Sandia National Labs to investigate how MLE impacts an
end-user in real-world situations. We chose cyber-security for maximum relevance and benefit to

13

real-world practices. First, cyber data are inherently non-intuitive—as opposed to images and
text—so we hypothesized that explanations would provide more benefit, e.g., in helping to triage
cyber attacks. Second, we were able to measure impact directly without any major changes to
cyber analysts’ current workflow. Despite a desire to have explanations, we found that
explanations were often not used or consulted. In some cases, we found that explanations
persuaded the end-user to accept a false negative or false positive rather than explain the decision
process.

While our research highlights several deficiencies in MLE, we conclude and are optimistic that
MLE could have a larger impact if we framed MLE within the context of model credibility,
similar to simulation models used in other high-consequence applications. A laboratory such as
Sandia National Laboratories, which has a rich history in verifying and validating models relating
to many national security related domains provides fertile ground for developing such processes.
Our work can be leveraged within the budding scientific ML as well as classical ML paradigms.
For usability, we advocate that the MLE system be designed with the end-user in mind and
ensuring that explanations are useful to the end-user. Current processes often build MLE in
isolation of the application space and other context specific constraints.

Our research also highlights that MLE is inherently a multi-disciplinary effort. The SAGE team
comprised ML and MLE expertise, cybersecurity practitioners who also developed ML models
for the cyber workflow, mathematicians, and cognitive scientists. Additionally human-computer
interaction specialists could have also been employed to help display the explanations. Future
development of MLE techniques should take into consideration these perspectives.

14

NOMENCLATURE

Table 0-1.

Abbreviation Definition

DOE Department of Energy

DoE Design of Experiments

FI Feature Importance

GUI Graphical User Interface

ID In Distribution

ML Machine Learning

MLE Machine Learning Explainability
OOD Out-of-distribution

Qol Quantity of Interest

SA Sensitivity Analysis

SAGE Sensitivity Analysis Guided Explainability
UuQ Uncertainty Quantification

V&V Validation and Verification

XAl explainable artificial intelligence

15

1. INTRODUCTION

Machine learning (ML) algorithms are utilized in an increasing number of high-consequence and
sensitive application areas; examples include malware detection [103]], autonomous vehicles [29],
and medical diagnoses [28]]. This increase in use and ubiquity of ML in high-consequence
applications highlights the need to understand how an ML model behaves along with why a
particular output is given to ensure safety, preserve fairness, and reduce biases as much as
possible such that the model is trusted. While many of these application areas are intended to
work autonomously, there is also a need to explain decisions to a decision maker with a
human-in-the-loop. Both scenarios provide unique constraints in validating the model before
deployment, ensuring their correctness, and how to explain complex decision processes within a
learned ML model. In response, ML explainability (MLE) and explainable artificial intelligence
(XAI) have emerged as a budding research field [4]. However, the MLE and XAI methods
inherently lack rigor and formality congruent with the state-of-the-art in model credibility
assessments for computational simulation and engineering (CS&E) models. To explain this
disconnect one should be reminded that the standard use cases for which ML models are
employed are specific to the application context for which we lack known properties or equations
as is done in computational simulation. The ML model is expected to learn the properties. It is
also worth noting that core to a formal model credibility assessment, and sensitivity analysis
specifically, is the proper treatment of uncertainty quantification (UQ). Today, UQ for ML is in
the beginnings of development [[113]] and are not explored for MLE. Developing the underlying
mathematical principles is essential to allow for the proper treatment of UQ in MLE.

In this LDRD, SAGE Intrusion Detection System: Sensitivity Analysis Guided Explainability for
Machine Learning, we consider the challenges of adapting the principles from design of
experiments for sensitivity analysis (SA) to define a mathematical framework for MLE methods
(what we term SA Guided Explainability or SAGE); including the downstream effects of
explanations on the end-user. We implement MLE methods into the actual workflow of Enterprise
Security at Sandia National Labs and measure the impact of explanations in terms of decreased
response time and increased accuracy in detecting attacks. SAGE was motivated by the
observations that most black-box MLE research was: (1) similar to sensitivity analysis although
more heuristic and lacked mathematical principles—not setting up the correct pillars for UQ, (2)
success was declared by the ML developer and user studies were limited or non-existent, and (3)
the emphasis of being able to trust ML algorithms in high-consequence applications. Therefore,
SAGE sought to bridge several expertise areas across Sandia National Laboratories, namely,
sensitivity analysis (SA) used in validation and verification (V&V), ML, and cognitive
psychology to develop principled approaches to MLE in a high-consequence
application—cybersecurity.

The format of this report follows a collection of reports on specific research questions that were

17

submitted or prepared for internal and external communication. Thus, each chapter could stand
alone and there is some repeated information. This introduction serves as a high-level
conglomeration of main take points and lessons learned. We will conclude the report with future
directions. As this LDRD is highly diverse, we will provide a brief overview of what we mean by
certain terms in the following list and refer the reader to existing background material for
additional information:

o Sensitivity Analysis. Sensitivity analysis (SA) is the mathematical study of how
uncertainty in the output of a model can be apportioned to different sources of uncertainty
in the model input. There a multiple types of SA including global and local. See Saltelli et
al. [98] for more background. While we primarily leverage examine Sobol’ indices, we also
examine the recent finding of the relationship between Shapley values [[104] from
cooperative game theory and Sobol’ indices [[83]].

e Machine Learning. The field of Machine Learning (ML) comprises the study and
development of algorithms that are able to learn and adapt to training data without being
explicitly instructed to do so. Common examples are learning to classify, clustering objects,
and regression. There are several books that can referenced [335, 133, 10].

e Machine Learning Explainability. Machine learning explainability (MLE) is a subfield of
ML that examines how to explain the decision process made by a learned model and
convey that information to an end-user such that it is understandable. There are several
surveys that can be consulted [, 20, 117, 76].

e Adversarial and Out-of-Distribution Detection. Adversarial attacks and concept drift are
two common concepts in ML where the data changes intentionally or unintentionally over
time and cause an ML model to have low confidence. These are both budding research
fields and related to MLE in our desire to augment explanations with a trust measure. For
an overview of detecting these types of points in deep learning see the survey by Bulusu et
al. [15].

e Evaluation of Explanations. While most explainability methods do have some type of
evaluation, there is no established method of how to compare them. Warnekcke et al. [122]
evaluated the explanations for security application based on measurable attributes that are
assumed to correlate with usefulness to an end-user. A more end-user centric study was
conducted by Miller [74]] using insights from the social sciences in which he provides many
perspectives and findings in how humans explain concepts to each other—many of which
are lacking in MLE. Most notably, the fact that an explanation is often a conversation which
is inherently lacking in the static explanations provided by MLE methods. A glaring hole is
the fact that there is no defined and accepted definition of what constitutes a good
explanation.

This list is not intended to be exhaustive and omits work dealing with specific use cases, such as
intrusion detection and the specific nuances to that application, as well as human-computer
interfaces and many more related topics. This all highlights the difficulty in effectively
developing and deploying MLE methods.

18

1.1. Scope of Research

1.1.1. SA and MLE

Fundamental to our research efforts is the relationship between MLE and SA. As these are two
large fields of study, we establish the scope with respect to each field that our team explored.
Emphasizing the importance to establish consistent terminology and examine the objectives and
assumptions in each field, this section will establish the preliminary notion while providing a
high-level summary of their relationship and the challenges faced when applying SA for MLE.

At the foundation of our exploration into SA for MLE we focus on supervised machine learned
models. In supervised ML, the goal is to learn a mapping f from a set of n input-output pairs

d = {x;,yi}}_,, commonly referred to as the training data. The machine learned model, f : X —Y
maps input vectors X = {x;}?_, to their corresponding output vectors ¥ = {y;}"_, so that f
maximizes the likelihood of the relationship between X and Y. The ML algorithm, .%, used to
learn f will also introduce an additional collection of m hyper-parameters, ® = {6;}" ,. The
selection of the ML algorithm (e.g., random forests, support vector machine, neural networks)
and its architecture will predefine the space of hyperparameters. Once the algorithm has been
determined, the objective of the learning algorithm can further be categorized as either regression
or classification. We will address both regression and classification methods in this report; noting
that regression algorithms lend themselves more readily to SA, while classification methods
introduce more of our interesting challenges. To further determine the suitability of SA for MLE
we will need to first outline the basic definitions and assumptions of each.

We define MLE as a set of techniques for explaining the inner-workings of a learned model. As
many models are sufficiently complex, so much so that presenting the inner-working of a model is
not decipherable by an end-user, many explanation methods for an ML model present a ranked set
of important features that contribute the most to the model prediction. While there are many
approaches to explainability, identifying important features is the most commonly used. Since
determining what features are important depends on the definition of importance, we define
feature importance (F1) as weighting or ranking of the input features based on how essential each
feature is for providing the given prediction. For example, if that feature is removed (or
perturbed) and we would get the same prediction we say that this feature has low FI.
Alternatively, if a feature is removed (or perturbed) and the model provides a different prediction,
we consider this feature to have high FI. Critical to these failures of FI-based MLE will be
explained in more detail in Section 4] For now we summarize that most of the approaches assume
that input features are independent and forgo the inference needed to capture any higher-order
(order > 2) interactions in the model.

Most SA methods will also have these same limiting assumptions with regards to independence
and higher-order interactions in the model. Although there are more recent advancements in SA
methods that account for correlated inputs and there are theoretical guarantees regarding the
higher-order interactions, all of these methods are limited in practice by their computational
complexity [42]. The value that SA can still provide, that MLE lacks, is the mathematical
foundation and theory for which the numerical implementations are derived. The goal of a SA is
to verify the consistency of the model behavior or to assess the robustness of simulation results to

19

uncertain inputs or model assumptions. SA can be defined as “the study of how the uncertainty in
the output of a model can be apportioned to different sources of uncertainty in the model input"
[98]]. Critical to SA is proper treatment of Uncertainty Quantification (UQ), which fundamentally
requires formal mathematical and statistical considerations for representing random variables and
their propagation through a model to provide an appropriate estimate of the resulting output
uncertainties. The extension to SA, for which we determine what sources of uncertainty in the
input of the model impact the resulting output uncertainty the most is best cast into a Design of
Experiments (DoE) framework. DoE provides the assessment of a given causation hypothesis so
that the factors of influence are well-defined, sufficient replicates are run to empirically represent
the random output while simulating uncontrolled sources of additional random behaviors, and
that the target Quantity of Interest (Qol) is also well-defined and measurable. In this context, we
identify that SA will determine a ranked list of important sources of uncertainty. When we
consider the SA for MLE, we note that the sources of uncertainty most predominately come from
our feature space; implying that SA provides inference regarding the important features. But what
does important mean? Since SA will apportion the uncertainty of the input features as a ranking
of their influence on the uncertainty of the prediction, the result is a measure of importance that
more closely relates to class confusion. It is important to note that this is distinct from the
standard goals of MLE, although not entirely useless. Heuristically both SA and MLE have
similar methodology, especially when we compare perturbation-based MLE with variance-based
SA. Therefore, the comparison between the two is still worth consideration.

As we noted earlier, the opportunity to apply SA to an ML model is better suited when the
objective of the ML algorithm is to learn a regression model. For this reason, we will provide an
intuitive regression example so that we can ground the difference between MLE and SA.
Consider the following linear regression equation:

y = 10x1 +0.1x2 + 0.0001x3 (1.1

The goal of most FI-based MLE methods is to determine each features {x;,x,,x3} importance in
the outcome of y. Assuming a normalized feature space, this can easily be inferred by examining
the weights of the model. Note, a small change is x3 will only result is an infinitesimal change in
y. Alternatively, even a small change in x; can result in a substantial change in y. This is because
the weight of x; is four orders of magnitude greater than x3.

Now consider what happens we we apply SA to equation In this context, we would assume
that each one of the features can be modeled as a continuous random variable. Assuming each
feature is normally distributed with zero mean, x; ~ .4 (0, 652). The results of an SA analysis will
be consistent with the result of an FI-based MLE, if and only if, the features are independent and
identically distributed (i.e., 612 = 622 = 632). Instead, if 632 is more than four orders of magnitude
greater than (712, the results of SA will rank x3 greater than x| because the uncertainty inherent to
x3 1s sufficiently larger than x;.

The reason we focus on regression to start is because SA requires a continuous random variable
for the Qol. Alternatively, if we consider classification instead, the outcome of the ML model is
defined on the space of discrete realizations. In this case, continuous output can easily be
provided using heuristics such as the distance of a point from the hyperplane in a support vector
machine or the purity of a leaf node in a decision tree. Some methods, such as Platt’s scaling [90]

20

go even further to make the output more like a probability by using a non-linear transformation.
Both, the choice of the Qol for classification and the manner for translating the discrete class
prediction to a continuous value have ramifications on the results of the SA.

1.1.2. Trust Measures

The notion of adversarial robustness and out-of-distribution (OOD) detection have been explored
mostly in isolation, but examine the task determining if the prediction from an ML model for data
point should be trusted. The goal is to identify data points that are different from the training set
either due to naturally evolving data distribution or intentional modification. We do not attempt to
focus exclusively on OOD or adversarially perturbed data points. Our focus is on quantifying the
relationship of the test point to the training point geometrically. We are unique in the sense that
we do not explicitly try to use an ML model to quantify trust (Chapter [5).

1.1.3. User Studies

Examining user interaction with automated and ML systems is a large research field
encompassing various research questions of its own. In SAGE, we focused on quantitatively
measuring the effectiveness of MLE. While there are many different directions that could have
been pursued, we considered multiple user studies to (1) determine if explanations are useful,

(2) what methods for displaying explanations are the most effective, and (3) if explanations make
a significant impact in real-world deployments. Ultimately, we implemented MLE as part of the
Enterprise Security workflow and measured how much explanations affect the performance of the
cybersecurity experts. To fill gaps in understanding perceived usefulness and usability of the
explanations in the Enterprise Security context, we also conducted a qualitative study with experts
in different roles that interface with the ML model. The results revealed insights around how ML
explanations might be used (or not) as well as information requirements for iterating design of the
explainability tool. Results are presented in Chapter [6]

1.2. Lessons Learned

Through our research as part of SAGE, we found that while MLE is sorely needed, the current
state-of-the-art techniques are severely lacking in terms of providing high fidelity to the model
that is being explained and in terms of their usefulness to the end user. Our intention was to
develop new methods that integrated principles from SA and to significantly improve the
effectiveness of the end users. However, there are several open research areas that need to be
addressed to close the gap between SA and MLE in addition to making the explanations useful to
the end user.

The salient lessons learned can be summarized as:

e Despite features dependence is often ignored, correlated features can play a significant role
in classification (Chapter [2).

21

e We proposed a method for sampling that preserves correlations between features (Chapter
). We independently discovered this as Aas et al. [1]], however, we present our derivation
here as we also compare with some kernel-density estimators and we examine its effects in
higher-dimensions (Chaper). One of the key limiting factor is that modelling correlations
requires significantly more samples to properly model the interactions in higher
dimensions. In cases, where this is not met, the estimations are not as beneficial. Aas et al.
only considered up to 10 features, and, thus, did not discover this limitation.

e Mathematically, explanations have low fidelity for representing the ML models that they are
explaining (Chapter[d)). This is due to several assumptions that MLE techniques make,
including:

— Feature Independence. To minimize the computational expense, features are
assumed to be independent. This assumption, of course, does not hold in real-world
datasets and can have detrimental effects as sampled data represents
out-of-distribution data and data that is not physically realizable.

— Linear Feature Interaction. ML models are desired to model complex feature
interactions that interact in non-linear ways. However, it is unclear how to identify
these interactions by MLE algorithm and how to present them if they were found.

— Model Output as Qol. One challenge for MLE is choosing a suitable Qol. Most
models provide a confidence measure, however, many of these have been shown to be
mostly meaningless as the model is overly confident in most of the input space [44].

e We observed that many analysts use the outputs of the ML model, but do not utilize the
explanations from an MLE method. In the worst case, as observed in a study of
non-analysts (Chapter [6)), a user can be persuaded to accept a false-negative or a
false-positive.

e Geometric trust metrics show promise in identifying various types of non-training data
(Chapter [5). However, future work needs to address methods to speed up computation in
order to scale to larger input sizes.

e Explanations are more beneficial to an analyst that needs to understand the model’s
underlying logic in order to make a decision about an observation. This could include a
subset of incident handling scenarios. However, more often MLE is of primary benefit to
ML model developers and maintainers (Chapter [6).

e The current form for providing explanations can help in some cases to draw an analyst’s
attention to a particular (or subset of) feature(s) of an observation. However, the static
representation does not allow a user to understand the model itself. In our user-study
interviews, an interactive model probing would be the most beneficial and aligns with the
finds of Tim Miller [/4] that an explanation is a 2-way conversation in exchanging
information.

22

2. IMPACT OF CORRELATIONS ON CLASSIFICATION

It is commonly acknowledged that strong correlations between features provide redundant
information to machine learning models (see [57], [40], [127], and [65] to name a few). These
ideas have persisted since at least 1964, where in [34] the idea of the merit of a subset of features

was proposed:
krey

Vk+k(k—1)777
Where s is a feature subset of k features, and 7.y and 7 indicate the average feature-class
correlation and feature-feature correlation, respectively. This balances relevancy and redundancy

of a feature subset. Strong feature-class correlations (high relevancy) increase the merit of a
subset, while strong feature-feature correlations (high redundancy) decrease the merit.

Merit; =

Correlation feature selection is based on this idea of merit [41], defining the optimal subset of k
features as

k
CFS = max Zkl] el
k \/k+2(zi:1,j:1,i7éjrfi:fj)

Again, maximizing relevance while minimizing redundancy.

Work in [[127] defines a method of feature selection utilizing similar ideas of relevancy and
redundancy. The authors propose a relevance analysis and then a redundancy analysis of the
relevant subset. Their relevance analysis involves the calculation of feature-class correlation for
each feature to select a relevant subset. At that point, rather than computing nearly N2
feature-feature correlations, an approximate Markov blanket is used to determine an optimal
feature subset.

Two methods, Relief [55]], and ReliefF [S8] are implemented and analyzed on an experimental
dataset used throughout this chapter described in Section [2.4] Relief was originally proposed as a
method that selects features while being sensitive to feature interaction. This is done by noting the
distance between feature values of nearby points of the same and different target labels, a
different approach than correlation computation.

All of the above listed methods of feature selection are considered filter methods, where a subset
of features is selected before the learning process is even started. Thus, they are applicable to
nearly any learning scenario. Two other methods of feature selection include wrapper methods,
where feature subset selection is included in a validation process, and embedded methods, where
the model chooses the feature subset as a part of training (i.e. lasso regression).

Even though some feature selection algorithms are sensitive to correlations and other feature
interactions, this long-standing bias against correlated features has lead to a relatively standard

23

assumption in machine learning and data science: that our features should remain relatively
uncorrelated. We argue that not only does this remove information from the model, this is
especially problematic from the perspective of machine learning explainability.

In permutation feature importance [32], for example, a feature is randomly permuted among the
data points, as to break any relationship between that feature and the target output. This permuted
data is used in a model and any decrease in accuracy is attributed as the "importance" of that
feature. However, as seen in Figure [2-1] this can cause a significant number of permuted points to
lie outside the training distribution of the data. These are regions where it is difficult, if not
impossible, to make any guarantees of the model’s performance. In [S0] the author discusses the
extrapolative nature of these out of bag sample points and how they lead to misleading feature
importance measures.

F1vs Fz with Cr r, = 0.95
Normal Feature 2 Permutated

-4 -2 0 2 -4 -2) 2
F A

Figure 2-1. Permutation of a feature belonging to a correlated pair (¢ = 0.95).

Similar issues arise in many other explainability methods, such as partial dependence plots (PDP),
Shapley additive explanations (SHAP), and local interpretable model-agnostic explanations
(LIME) [76] (See Chapter [3).

From several angles we see that correlations can be difficult for ML practitioners. They diminish
the abilities of black-box explainers, add complexity to feature selection, and increase the
computational cost of learning (although this is increasingly less of an issue, thanks to Moore’s
law). However, we hypothesize that correlated variables provide discriminative power for
classification when using certain machine learning algorithms. Through rigorous design of
experiments (DoE) we propose a situation in which correlation exists as the single defining means
of separability between two classes, and see that several machine learning algorithms are able to
pick up on this. Thus, we advocate for a better understanding of the effects of interacting features.
We examine correlations in feature selection algorithms and ML classification algorithms. We
first describe the synthetic data and our experimental set up. We then present results on feature
selection algorithms and classification algorithms.

24

2.1. Experimental Design

2.1.1. Data

To test the given hypothesis, a synthetic data set was designed in order to isolate the effects of
correlation on a machine learning model’s ability to classify data. This data consists of eight
features, F; for i = 1,2,...8, which are initially all sampled from a normal distribution centered
around O with a standard deviation of 1. Thus as the number of samples increases, the two-sample
Kolmogorov-Smirnov test will converge towards zero for all combinations of features.

To utilize correlation as a means of distinguishing between the two classes, correlation is applied
to one class. Features F and F; are correlated at various intensities, measured through the Pearson
correlation coefficient Cr, f, of the two features. Note that when Cr, , = 1 we have that F| = F>
for every instance in the correlated class. However, when analyzed individually, each feature still
originates from the same distribution, even with complete correlation. See Figure [2-2]

Analyzed pairwise, every combination of features except F1, F, will look uncorrelated. See
Figure [2-3 on the next pagel

The idea of all of this is that when analyzed from the perspective of any particular feature the data
looks identical for both classes. However when a higher-order interaction is taken into account,
the data becomes separable.

Distribution of Feature 1 Distribution of Feature 2 Distribution of Feature 3 Distribution of Feature 4

60 - 50
40 40
20 20
0- E 0
-4 -2 0 2 -2 0 2 -2 0 2 4 -2 0 2 4
Distribution of Feature 5 Distribution of Feature 6 Distribution of Feature 7 Distribution of Feature 8

120 120 120
100 100 100
80 - 80 80
60 - 60 80

-2 0

3 Correlated
3 Not Correlated

Figure 2-2. Histograms of the distribution of data in each feature, for Cr, , = 1
for the correlated class. Note that the blue distributions for F/; and F, are
identical.

.

Correlated
Not Correlated

FivsFy

Fa V5 F5

Fs s Fg

Fg vs Fy

Figure 2-3. Scatter plot of each pair of features, for Cr, », =1 for the correlated

class.

26

To visually describe the effects of correlation on two features, Figure [2-4] gives a scatter of F} vs
F, for various correlation coefficients Cr, r,. As well, a matrix of Pearson correlation coefficients
between features is given to show how randomly generating identical distributions for each
feature yields relatively little correlation amongst other feature pairs.

F1 vs Fyfor Cr, r, =0.20 F1 vs F; for Cr, r, =0.50

10 10
Correlation coeffients 31 « Correlated . Correlation coeffients 3{ « Correlated .
Mot Correlated «° Mot Correlated | -
o 08 o 08 .
1 1
2 s 1 2, 2 os 1!
3 _— * : 3)
4 0.4 4 a4
5 1 5 -1
6 02 _, & 0z
7 7
0 2 q B po -3 0 2 4 6 0o 3 "
-2 0 2 -2 0 2
3 3
(@) Visual description of correlation, Cr, r, = 0.2 (b) Visual description of correlation, Cr, , = 0.5
10 F1 vs F; for Cr, p, =0.80 10 F1 vs F; for Cr, r, =1.00
Correlation coeffients 3{ =« Correlated = L Correlation coeffients 3{| ¢ Correlated
Mot Correlated - Not Correlated Vs
] 08 ;e 0 08 *
2 2
1 1
2 06 1 2 0 1
3 3
) £o0
a 04 1 04
5 a1 5 -1
6 02 6 02
-2 -2
7 § 7 R
0 2 a 6 00 3 0 2 1 3 00 -31,
2 0 2) 0 2
51 [
(c) Visual description of correlation, Cr, r, = 0.8 (d) Visual description of correlation, Cr, r, = 1.0

Figure 2-4. F; vs F, for a variety of Cr, r, alongside the Pearson correlation
coefficients for the data.

Note that a secondary experiment utilizes a feature with a shifted mean to give some notion of
one-dimensional class separability. This is implemented as a shift to the mean of a feature (£3) by
a positive value for one class and a negative value for the other. Figure |[2-5 on the next page| gives
the distributions of the values for each feature for Cr, r, = 1 and a gap of 0.5 on the means of the
two classes in Fg.

To summarize the data consists of two classes, one of which contains a correlation between
Fi and F,. The other contains no intentional correlations. With respect to a single feature at a
time, the classes have no separability. All features are sampled from a normal distribution with
mean 0 and standard deviation of 1. Since there is absolutely no correlation between any single
feature and class membership, every feature could be considered irrelevant, if we define
irrelevancy without regard to higher-order interactions between features. As for redundancy, in
the correlated class we could consider F| and F, to provide redundant information to the degree
provided by their correlation coefficient. Even in the case where one of F; and F; is not dropped
due to redundancy (it is apparent that there is information contained in the lack of correlation of

27

Distribution of Feature 1 Distribution of Feature 2 Distribution of Feature 3 Distribution of Feature 4
120 120

100 A 100 A

401 401
20 20
0- o-
-z o 2 -z o 2 -2 o 2 -2 o 2
Distribution of Feature 5 Distribution of Feature & Distribution of Feature 7 Distribution of Feature 8
120 120
100 100
60+ 60
40 40

-2 o

[0 Correlated
O Not Correlated

Figure 2-5. Histograms of the distribution of data in each feature, for Cr, r, = 1
with Fg shifted by 0.5.

F| and F in the non correlated class), it could be argued that Fy, F>, or any of the other six
features should be dropped due to being irrelevant, as there is no correlation between any single
feature and it’s class label.

The only exception to this is in a secondary experiment where Fg is sampled from a mean of 0.25
in the non-correlated class and -0.25 in the correlated class. This is done to analyze how a model
might leverage correlation in the presence of a (slightly) separable feature.

21.11. Implementation

In terms of actual implementation, we utilize a multivariate normal with a specified covariance
matrix (a matrix indicating which feature sets are correlated and how strong the correlation is).

The covariance matrix allows us to generate data correlated amongst as many feature subsets as
we like.

Listing 2.1 Code to generate a sample dataset for desired correlations
def synthetic_data (N,F,U, Shift_U, Shift_I , Pairs , Corrs):

"o

Generate synthetic data based on correlations pairs/coeffs
N : Number of data points to generate.

F : Number of features in these data points

U : Mean of distributions

Shift_U : Total shift of index Shift_1I

Shift_I : Index to shift +— Shift_U/2, note Shift_I < F
Pairs : List of list of features to correlate (Feat 1 — F)
Corrs : Correlation coefficient for each set of pairs.

"noen

Not correlated
m_0 = np.ones(8)«U; m_O[Shift_I] += Shift_U/2

28

c_0 = np.eye(F)

Correlated

m_1 = m_0O.copy(); m_I[Shift_I] —= Shift_U
c_1 = np.eye(F)
for s,p in enumerate(Pairs):

for i in range(len(p)):

for j in range(i+1,len(p)):
c_l[plil—=1]1[pl[jl—11 = Corrs[s]
c_L[pl[jl—=11[p[il—1] = Corrs[s]

X0,X1 are N by F, X is 2N by F
X0 = np.random.multivariate_normal (m_0, c_0, N)

X1 = np.random.multivariate_normal (m_1, c_1, N)
X = np.concatenate ([X0,X1])

Y = np.concatenate ([np.zeros(N), np.ones(N)])
return X,Y

2.1.2. Training and Testing

The goal of the experiment is to determine if a model can leverage correlations, and if it can, how
it does so. To test this a series of models were use. In depth explorations to the models’
mathematical abilities or failures to utilize correlations are given in Appendix [Machine Learning |
We examine correlations with respect to feature selection (in which correlated features
are commonly removed) and in classification algorithms. Six different models were examined:

e Random Forest
Multilayer Perceptron
Support Vector Machine
K-Nearest Neighbors
Logistic Regression
Gaussian Naive Bayes

Both logistic regression and naive Bayes were considered as baseline algorithms, as they should
be unaffected by correlations, due to assumptions of independence among features.

To test each algorithm’s use of correlations, data was generated with F| and F; correlated with
Crr, =0,0.1,0.2,...,0.9,1.0 for a total of 11 values. At first no shift was applied to the means
of any feature, making the data completely inseparable with respect to any single feature.

The following process was repeated for each Cr, r,, Algorithm I} Note that MODELS refers to a
list model objects inheriting methods fit and score from a parent. The two parameters R and /
control the outer loop (number of train/testing splits) and the inner loop (repeats of each
algorithm). The inner loop parameter is specified due to some algorithms (notably the multilayer
perceptron and random forest) having random aspects to their training process. This is discussed
more in the Design of Experiments, Section [2.2]

29

Algorithm 1 Training/Testing Loop
1: forr:=1toRdo
2 Xirain, Xtests Yirain Yiest =train_test_split(X,Y)
3 for m in MODELS do
4: fori:=1toI[m] do
5
6
7

m.fit (Xtraina Ytrain)
accuracy[m][r][i] = m.score(Xiest, Viest)
f1[m][r][i] = f1_score(Yiest, m.predict(Xiest))

It is quite apparent that this training/testing paradigm is embarrassingly parallel. Even creating
workers to distribute the inner runs for the multilayer perceptron and random forest provided a
significant speed up for moderate I ~ 40. Workers could also be created for the entire process,
parallelizing over each Cr, , value. This is especially efficient if the number of processors
available exceeds the number of correlation values to test.

2.1.2.1. Experiment Output

As seen in the psuedocode, the output from each training/test iteration is the classification
accuracy on the test set and the F1 score. These values are recorded and grouped by the
correlation value Cr, f, for the dataset they came from. This allows a comparison of the two
variables amongst all correlation values for each model.

2.1.2.2. Implementation

Using SKLearn’s models the training/testing implementation is relatively simple. Two functions
print_header and pfi are not defined here, but they print the header seen Listing and
display the permutation feature importance bar chart as seen in Figure [2-6 on page 32| The class
Results is a data structure to store results by algorithm, with a few helper methods. The code is

given in Listing [2.3]

The output from Listing [2.3[is given in Listing The inner and outer loop parameters are R = 1
for a single training/test split of the data, and / = 10 for the random forest and multilayer
perceptron and I = 1 for the remaining (non-random) models. Examples of the permutation
feature importance plots are given in Figure 2-6 on page 32} for Cg, i, = 0.2,0.5,0.8,1.0.

30

Listing 2.2 Output from Listing [2.3|for a single correlation value.

Data Set 0

Correlations :

[1, 2] : 1.000000

Shifted U: 0.000 Standard Deviations
Shifted Feature(1—-8): 8

Outer: 1

Model: RF (10) Train: 0.891 Test: 0.696 F1: 0.702 Time: 1.790
Model : MLP (10) Train: 0.972 Test: 0.958 Fl1: 0.961 Time: 21.889
Model: SVM (1) Train: 0.823 Test: 0.715 F1: 0.748 Time: 0.254
Model: K-NN (1) Train: 0.849 Test: 0.655 Fl: 0.683 Time: 0.086
Model: LR (1) Train: 0.549 Test: 0.502 F1: 0.492 Time: 0.003
Model: NB (1) Train: 0.545 Test: 0.468 F1: 0.471 Time: 0.002

Permutation Feature Importance:

0 1 2 3 4 5 6 7

RF 0.26510 0.26635 0.03690 0.02835 0.03640 0.02740 .03160 0.03035
MLP 0.46935 0.46685 0.00080 0.00010 —-0.00060 —0.00030 .00055 —0.00095
SVM 0.24495 0.24535 0.03325 0.02215 0.02420 0.02905 .02980 0.02730
NN 0.18600 0.17440 0.04585 0.04490 0.04405 0.04660 .04820 0.03615
LR 0.00765 0.00495 0.02945 —-0.00065 0.00700 0.00700 .00830 0.00110
NB —-0.00845 —-0.00515 0.00715 0.00070 —-0.00170 —0.00250 .00165 0.00665

[=NeoNeoBoNeNel

Listing 2.3 Code to run the training/test loop as outlined in Algorithm m

ALGS = [’Random_Forest’, >Multilayer_Perceptron’, ’Support_Vector Machine’,
"K—Nearest_Neighbor’, "Logistic_Regression’, ’Naive_Bayes’]
REPS = [10, 10, 1, 1, 1, 1]

rf = RandomForestClassifier (max_depth=5)

mlp = MLPClassifier (hidden_layer_sizes=(5), max_iter=2000)
svm = SVC(gamma="auto’, probability=True)

nn = KNeighborsClassifier (n_neighbors=3)

Ir = LogisticRegression ()

nb = GaussianNB ()

models = [rf ,mlp,svm,nn,lr ,nb]
RES = []
for ¢ in range(C):
output = Results (C_Pairs,C_Corrs[:,c],ALGS)
print_header (c,C_Pairs ,C_Corrs, Shift_U , Shift_I)
for r in range(R):
print ("Outer: _{:d}\n{:}".format(r+1,"="*(9+int(np.logl0O(r+1)))))
Generate random 70/30 split
X _train, X_test, y_train, y_test =
train_test_split (XList[c],Y, test_size=0.3)
Test split on each model
tot t = []
for i,model in enumerate(models):
Repeat testing for random algs
sub_res = []
tot_t.append(time.time ())

31

0.05 4

0.04 4

0.02 4
0.01 4

0.00 4

(a) Permutation feature importance for Cr, p, = 0.2

0.175 A
0.150 A
0.125 A
0.100 A
0.075 A
0.050 A
0.025 A

0.000 A

(c) Permutation feature importance for Cr, r, = 0.8

Permutation Feature Importance (Dataset 8) Permutation Feature Importance (Dataset 5)

. RF . RF
. MLP 0.08 - - MLP
. SVM . SVM
. NN . NN
LR 0.06 4 LR
mm NB mm NB
0.04
002 A
0.00 1
T T T T T T T T T T T T T T T T
= — ™ ™ =t i e} -~ = —) ™ 3 I [t} =

Permutation Feature Importance (Dataset 2) Permutation Feature Importance (Dataset 0)

(b) Permutation feature importance for Cr, , = 0.5

RF
MLP
VM
NN

NB

i'id}idi ml‘ltl"tlll

Figure 2-6. Permutation feature importance values for a variety of Cr, r,. Note
this is from a single experiment, results are subject to variation.

for in_r in range(REPS[i]):
model . fit (X_train, y_train)

train_score = model.score(X_train,y_train)
test_score = model.score(X_test,y_test)
fl = sklearn.metrics.

fl_score(y_test ,model. predict(X_test))
sub_res.append ((train_score ,test_score ,fl))
tot_t[i] = time.time ()—tot_t[i]
output.record_alg (ALGS[i],sub_res)
stats = reduce ((lambda x,y: np.array(x)+y),
sub_res)

print ("Model: {:<24}({:d})\tTrain:_{:.3f}_ Test: {:.3f} Fl:

tooTime: [{:.3f}"
.format (ALGS[i],REPS[i],stats [O]/REPS[i],stats [1]/REPS[i],
stats [2]/REPS[i],tot_t[i]))
RES . append (output)
print("="%81)
pfi(models , XList[c],Y,c)

T
=

(d) Permutation feature importance for Cr, r, = 1.0

N

3f

32

2.2, Design of Experiments

In order to determine whether or not a machine learning model has the ability to leverage the
information found in higher-order interactions among features (such as correlations), several
sources of variance need to be accounted for. This minimizes the likelihood that evidence of the
use of correlations comes from random variance instead of actual correlations in the data.

For the first experiment our variable of interest is the strength of the correlation between F| and
F,. This has been systematically varied from O to 1 by 0.1, inclusive. This gives eleven sets of
results that can be compared, to show how the accuracy and F1 score of a machine learning model
vary under different strengths of correlation. Note that in this experiment correlation is the only
metric of separation between the classes.

The second experiment adds a second variable of interest, whether a slight degree of separation
between the classes in a single feature changes the ability of a model to leverage correlation.
Following an identical procedure as the first experiment, a single feature (Fg) is given a mean of
—0.25 for the correlated class and 0.25 for the non-correlated class. The correlation between Fj
and F; is still varied from O to 1 by the same increments. Thus we can compare this second set of
results with the first to draw conclusions about the effects of slight separability on the usage of
correlations as a method of separation.

The variables in the model that are controlled include:

e Feature distributions: All are drawn from a normal distribution with y; = 0 and o; = 1 for
i=1,2,...,8. In the second experiment pg is deliberately modified.
e Training/Test proportion: A 70/30 split is always used.

The variables in the model that cannot be controlled:

e Training/Test split: data is randomly assigned to each category.
e Random algorithms: Notably random forests and multilayer perceptrons have random
aspects to their training.

To control for the variance that may arise from the training/test split and the randomness of some
of the algorithms we introduce a number of outer repeats (R) and inner repeats (I[m] for each
model m).

e R: The number of times to generate a training/test split.
e I[m]: The number of times to train/test each model m for each training test split.

Thus for each correlation value Cr, r,, each model m is run R x I[m] times. We fix I[m]| = 1 for the
support vector machine, k-nearest neighbor, logistic regression, and naive Bayes models, as they
have no random nature to their training (i.e. with the same training/test set the model will get the
same score every time). This is slightly unfortunate, as the random forest and multilayer
perceptron are two of the slower models to train/test.

We increase R and I[m] to decrease the variance in the mean accuracy and F1 score of each
model/correlation value. As well, this provides smoother distributions of results, painting a better
picture of what the actual realizations of these experiments are.

33

2.3. Results

Two experiments were run. The first utilized correlations for F; and F; such that
Cr.p,=1.0,009,...,0.1,0.0 with y; = 0 fori = 1,2,...,8 for both classes. This compares the
accuracy and F1 score of a model to various levels of correlation.

A second experiment was run, identical to the first in every way, except for ug = £0.250, with a
negative mean for the correlated class and a positive mean for the non-correlated class. This
allowed for comparing the accuracy and F1 score of a model as the correlation decreased, but a
single-feature degree of separability remained the same.

Now, since these experiments control for almost all of the same variables it is apparent that each
is interesting in the context of the other. Thus we present their results together as a means of
comparing the trends over various Cr, , with and without a shifted feature.

The design of experiments for this problem consisted of R = 1000 for twenty training/test splits.
The inner repeats for the random forest and multilayer perceptron were I[m] = 10. This yielded
10,000 runs for each of those algorithms with 1000 runs for the deterministic ones. Note that
these runs are for each Cr, f, value and for each shifted/non-shifted data set.

With respect to the feature shift, the mean of one class is 0.5 standard deviations from the other
(both have identical standard deviations). Since a normal distribution was used to generate these
samples, approximately 20% of the data for each distribution should be drawn from this area.
Using properties of this distribution we can get an idea of how separable this data is, with respect
to just Fg.

From the perspective of the data drawn from yu = —0.25 we summarize how much data should lie
in various ranges in Table 2-1] If we draw a line at O and attribute anything less to the class with
1 = —0.25 and anything more to the class with u = 0.25, we should end up correctly identifying
the class of approximately 60% of the data.

Table 2-1. Distribution of F3 for u = —0.25.

Range Proportion of Data Class attributed to
[—e0,—0.25] 0.50 -
[—0.25,0] 0.099 -
[0,0.25] 0.093 +
[0.25, 0] 0.308 +

2.3.1. Random Forest

In the scope of the first experiment we see a well defined curve of decreasing accuracy and F1
score as the correlation between Fj and F;, drops. This supports our hypothesis, as we can plainly
see there is some information in the correlation that is being leveraged to separate the classes.
This degree of separation is connected to the strength of the correlation.

34

Test-set Accuracy for Random Forest (10000 runs) Test-set Accuracy for Random Forest (10000 runs)

4 ;
: AAFYTTYTY
: ¢?¢¢¢¢¢¢§¢ SARAAARAAREY

Accuracy
o

=

0.45

10 0.9 08 o7 0.6 05 0.4 03 02 10 09 08 07 06 05 04 0.3 0.2 01 0.0
Correlation Coefficient Correlation Coefficient

(a) Accuracy for random forest, no feature shift. (b) Accuracy for random forest, with a feature shift.

Test-set F1 Score for Random Forest (10000 runs) Test-set F1 Score for Random Forest (10000 runs)

ATTTITEXY

10 09 08 07 06 05 0.4 03 0z 01 o0 10 03 08 07 06 05 04 0.3 0z 01 00
Correlation Coefficient Correlation Coefficient

0.8 08

e
v}

07

{
ALY

0.4

F1 Score
o

F1 Score
= o
Il @

=
=

(c¢) F1 score for random forest, no feature shift. (d) F1 score for random forest, with a feature shift.

Figure 2-7. Violin plots of accuracy and F1 score for random forests over
each Cy, r, value (10,000 runs per C value).

In the scope of the second experiment we note a few interesting points. Most notably, the
accuracy for Cr, r, = 1.0 was actually lower than in the non-shifted data. In Appendix
we discuss the properties of a random forest that allow it to recognize correlations at
length, but put succintly, this is likely due to node splits on Fg taking priority over shifts on both
correlated features. As with the first experiment’s results, we see a decrease in accuracy/F1 score
as the strength of the correlation decreases. However, this seems to be baselined by an
approximate accuracy of 0.6 provided by the separation in Fg.

This baseline of 0.6 lines up with the results from Table [2-1 on the preceding pagel where a
simple plus/minus classifier on Fg would correctly attribute approximately 60% of the data. This
type of simple classifier makes sense in the context of how a random forest works, as Fg would be
best split near 0 and the remaining features are just noise.

2.3.1.1. Training/Test Analysis

In a secondary experiment, we analyze an interesting pattern found in the training and testing
accuracies of the random forest. This experiment follows all the same parameters as the original
experiments, except for only random forests were studied and a different number of runs were
used. Data at each respective correlation was generated 10 times, each of those data sets having

35

10 training/test splits, each with 10 random forests generated for a total of 1000 runs per
correlation value.

With the results from this experiment in Figure [2-8 we see that although the non-shifted data has a
higher training set accuracy than the shifted, at Cr, r, < 0.8 we see that the relative position of the
two datasets change under the test set accuracy. In the test set, the accuracy score of the
non-shifted data drops much faster than that of the shifted data.

Train-set Accuracy for Random Forest (1000 Runs) Test-set Accuracy for Random Forest (1000 Runs)

= shifted == shifted

B No shift = No shift
08
@ o

NI NI @
Mg T

(a) Train-set accuracy for random forest. (b) Test-set accuracy for random forest.

Figure 2-8. Violin plots of training/test accuracy for random forests over each
Cr, r, value (1000 runs per C value).

This rapid drop in test-set accuracy for the non-shifted data comes from how the random forest
"sees" correlations. Rather than understanding that F; ~ F, for high correlation, it understands
that the areas away from F| = F, are likely to belong to the non-correlated class. The areas that a
single decision tree assigns are hyper-rectangles parallel to the axis. This means that in training
they establish vertices near F| ~ F, to partition off non-correlated areas. As the correlation
decreases, and F] and F, vary more and more from each other, it is likely that over-fitting occurs
on the correlated points furthest from F; = F3, leading to a decrease in accuracy. We can visualize
this, using a rectangle to indicate an area in the training data consisting of entirely non-correlated
points. In Figure [2-9 on the next page| we see that in the case of Cr, p, = 1 (left) that it would be
impossible for a test point to exist in the shaded area. However, on the right, with Cr, s, = 0.8, it
is entirely possible, that test point(s) exist in the shaded area, leading to a lower test set accuracy.
Since random forests use decision trees that have boundaries of this form, it is likely that this
explains the over-fitting seen in the results.

36

Fvs Fp with Cr, p, =10 F1 vs F; with Cr, r, =08

« Mot Correlated . « Mot Correlated
3 Correlated 3 Correlated

=3

Figure 2-9. Comparison of data distribution for C, r, = 1.0 and Cr, 5, = 0.8 with
hypothetical decision tree shading on the training set.

2.3.1.2. Random Forest Feature Importance

Random forests have a built-in measure of feature importance. In sk1learn these are
implemented as impurity based, as the normalized total reduction of the GINI Impurity by a given
feature. There are many caveats to using these types of importance measures, especially when it
comes to correlations, but if they are analyzed under the context in which they are designed they
can provide faithful insight.

In the same experiment as the previous section, the feature importance was tracked over the 1,000
runs per correlation value. The results are given in Figure [2-10 on the following pagel for features
F1,F>, F3, and Fg, which are the two correlated features, a noise feature, and the shifted feature,
respectively.

From this we see that F and F, are of relatively equal importance. This makes sense, as these
features need to be used in tandom to provide separability.

For F3 we see a growing importance as correlation decreases, though noting the scale it is not a
large increase. This is due to the distribution of the decrease in importance of F; and F, (as
correlation decreases) amongst the remaining features (this is a normalized value). Note that even
though only F3 is displayed, F4 to F7 will have similar results (they are all noise features).

Finally in Fg we see similar results for the non-shifted data, and a very high importance for the
shifted data. The increase in importance as the correlation decreases has the same explanation as
that for F3.

37

Feature 1 Importance for Random Forest (1000 Runs) Feature 2 Importance for Random Forest (1000 Runs)

= Shifted = shifted
B No Shift = No shift

aa

(a) Random forest feature importance, Fj (b) Random forest feature importance, F»

Feature 3 Importance for Random Forest (1000 Runs) Feature 8 Importance for Random Forest (1000 Runs)

= shifted = shifted
== No shift = No Shift

nn

(c) Random forest feature importance, F3 (d) Random forest feature importance, Fg

Figure 2-10. Violin plots of feature importance for F|, F>, F;, Fg (left to right, top
to bottom) for all Cr, , values (1,000 runs per C value).

2.3.2. Multilayer Perceptron

It should be noted that the long tails seen on these plots indicate an instance in which the
multilayer perceptron completely diverged during training. What is interesting about this
breakdown of the network is that it seems to be in the neighborhood of 0.5 for the first experiment
(data without a shifted feature). This makes sense, as if the model is "randomly" assigning output
without respect to the correlation, or always assigning one class, it should have an accuracy of
near 0.5. In the second experiment, with the shifted feature, the lower tail seems to stop in the
neighborhood of 0.55-0.60. This higher-accuracy lower tail indicates that the network has failed
to read a correlation in the data, and is simply separating the data on Fg, which has a basic
separability accuracy of 0.6, as seen in our results in Table[2-1 on page 34|

With regards to the first experiment, we see very clear exponential growth of the accuracy of the
model as the strength of the correlation between F; and F; increases. This is repeated in the F1
score for the first experiment, where we also see a growing variance in the F1 score as the
correlation decreases. This is extremely strong evidence for the ability of a neural network to
utilize the presence of a correlation in the lack of any individual feature separability.

With the second experiment we see a result similar to the random forest. There exists a baseline,

38

Test-set Accuracy for Multilayer Perceptron (10000 runs) Test-set Accuracy for Multilayer Perceptron (10000 runs)

¢

09 09
0.8 08

07 07

Accuracy
Accuracy

0.6 0.

. ??¢¢¢?f .

kS

T?*?¢¢¢¢¢¢

10 09 08 07 06 05 04 03 02 10 09 08 07 06 05 04 03 0z 01 0o
Correlation Coefficient Correlation Coefficient

0.4

04

(a) Accuracy for multilayer perceptron, (b) Accuracy for multilayer perceptron,
no feature shift. with a feature shift.
1o Test-set F1 Score for Multilayer Perceptren (10000 runs) 10 Test-set F1 Score for Multilayer Perceptren (10000 runs)

09 09

0.8 08

07 0.

F1 Score
F1 Score
1

0.6 0.

kS

05 0.

n

ARETRY

10 09 08 07 06 D‘S 04 03 02 01 0o 10 09 08 07 06 05 04 03
Correlation Coefficient Correlation Coefficient

0.4

(c) F1 score for multilayer perceptron, (d) F1 score for multilayer perceptron,
no feature shift. with a feature shift.

Figure 2-11. Violin plots of accuracy and F1 score for multilayer perceptrons
over each Cr, r, value (10,000 runs per C value).

similar to the one previously mentioned, which stops the network from decreasing to "random
predictions" (accuracy of 0.5). This comes from the slight separability of Fg and falls in line with
the discussion of a basic classifier scoring ~ 60% on that data.

2.3.3. Support Vector Machine

With these results we see a relatively smooth decrease as the correlation drops. Similarly to the
previous models, we notice that the non-shifted data decreases down to an accuracy to 0.5 as
expected, while the shifted decreases to somewhere between 0.55 and 0.60. Again, this is due to
the natural separability of around 0.6 in the shifted data (Table [2-1 on page 34]).

It is interesting to note that results for the shifted and non-shifted data have a similar accuracy for
Cr,.», = 1.0. This indicates that the algorithm might only be able to rely on one of the two means
of separability at a time. Alternatively, it may be that in either case of shifted or non-shifted that
the data is only separable to 0.75 accuracy with a support vector machine. In Appendix
[Vector Machine] this is explored and it is found that the shift does increase the accuracy for

Cr,.», = 1, it is just not very noticeable in these results.

39

Test-set Accuracy for Suppert Vector Machine (1000 runs) Test-set Accuracy for Support Vector Machine {1000 runs)

¢ ¢

i I

R M §
¢°¢¢¢¢?§ : AALTY

10 0.9 08 o7 0.6 05 0.4 03 02 10 09 08 07 06 05 04 0.3 0.2 01 0.0
Correlation Coefficient Correlation Coefficient

Accuracy
Accuracy

=

(a) Accuracy for support vector machine, (b) Accuracy for support vector machine,
no feature shift. with a feature shift.
Test-set F1 Score for Suppert Vector Machine (1000 runs) Test-set F1 Score for Suppoert Vector Machine (1000 runs)

m?¢§¢
The

10 09 08 [06 05 04 03 a 10 09 08 o7 06 05 04 03 0z 01 00
Correlation Coefficient Correlation Coefficient

=
=
=

F1 Score
F1 Score

vl

¢¢?¢09¢

°e
- ??9§§*

(c) F1 score for support vector machine, (d) F1 score for support vector machine,
no feature shift. with a feature shift.

Figure 2-12. Violin plots of accuracy and F1 score for support vector ma-
chines over each Cy, ¢, value (1,000 runs per C value).

2.34. K-Nearest Neighbor

With these results we see a significant drop off in accuracy and F1 score as the correlation
decreases. For the non-shifted data, this comes between Cr, , = 0.9 and Cr, r, = 0.8, where the
decrease in accuracy holds relatively constant until Cr, g, = 0.5. We see the accuracy bottom out
near 50%, indicating that there is no information that the model can leverage to separate the
classes.

For the shifted data, we see the results for Cr, r, = 1.0 and Cf, p, = 0.9 are nearly identical to that
of the non-shifted. The major difference comes at the lower limit, where for little or no
correlation we see accuracy near 55%. This can most likely be attributed to the factors given
previously in the discussion about the purely statistical separability of the slight feature shift.

From these results it is apparent that the K-Nearest Neighbor algorithm has the ability to leverage
correlations in the data. However, it seems that this ability stems from the higher-order
distribution of the data rather than the workings of the algorithm itself. This is discussed at length
in Appendix [K-Nearest Neighbor]

40

Test-set Accuracy for K-Nearest Neighbor {1000 runs) Test-set Accuracy for K-Nearest Neighbor (1000 runs)
070 070
065 9 065 ?
>
¢ E
055 ° ’ 5 oss &
050 4 0 ? é 6 050 ¢
01 0.0

10 09 08 07 06 05 04 0.3 0.2 01 0.0
Correlation Coefficient

Accuracy

10 0.9 08 o7 0.6 05 0.4 03 02
Correlation Coefficient

(a) Accuracy for k-nearest neighbor, no feature shift. (b) Accuracy for k-nearest neighbor, with a feature shift.

Test-set F1 Score for K-Nearest Neighbor (1000 runs) Test-set F1 Score for K-Nearest Neighbor (1000 runs)

i LT

SRAMLTWYNE RRLLTTTY

10 03 08 o7 06 05 04 03 0z 01 00 10 03 08 07 06 05 04 03 0.2 o1 0.0
Correlation Coefficient Correlation Coefficient

F1 Score
F1 Score

(c) F1 score for k-nearest neighbor, no feature shift. (d) F1 score for k-nearest neighbor, with a feature shift.

Figure 2-13. Violin plots of accuracy and F1 score for k-nearest neighbors
over each Cr, , value (1,000 runs per C value).

2.3.5. Logistic Regression

With logistic regression we see results that line up with the discussion of separability on Fg. The
non-shifted data has average accuracies that fluctuate around 0.5, regardless of the correlation
strength, indicating that the algorithm is assigning classes randomly. In the case of the shifted
data, this fluctuation is approximately 0.6, which goes back to the theoretical separability of
shifted Fg as discussed in Table [2-1 on page 34|

As for how the correlation strength affects the results, both the shifted and non-shifted results are
independent of the correlation. This comes from the assumption that the features are independent
that is a part of logistic regression.

In terms of the actual mathematically machinery that might see correlation, logistic regression
essentially uses a linear separator with a "wave" of probability that increases/decreases away from
P(x) = 0.5 as you move away from the separator. The rate of this change is determined by the
magnitude of the linear separator. Since the non-shifted data has no separation with respect to any
single feature, there is not anywhere that one can "draw" a linear separator and achieve any
meaningful accuracy. In the case of the shifted data, the separator lies near Fg = 0, to separate on
Fg, while the separation with respect to the rest of the features is meaningless. This is further
explored in Appendix [Logistic Regression|

41

Test-set Accuracy for Logistic Regression (1000 runs) Test-set Accuracy for Logistic Regression {1000 runs)

boobdddgtey

0.65 0.65

o
=

0.60 0.

055

IR

045

Accuracy
@
o
o
Accuracy

=
in
=

10 0.9 08 o7 0.6 05 0.4 03 0. 0l [10 09 08 07 06 05 04 0.3 0.2 01 0.0
Correlation Coefficient Correlation Coefficient

(a) Accuracy for logistic regression, no feature shift. (b) Accuracy for logistic regression, with a feature shift.

07 Test-set F1 Score for Logistic Regression (1000 runs) 07 Test-set F1 Score for Logistic Regression (1000 runs)

a8 y?

02 0z
10 09 08 07 06 05 0.4 03 10 03 08 07 06 05 04 0.3 0z 01 00

Correlation Coefficient Correlation Coefficient

=

@
=
S

=

o
=
o

F1 Score
=
=

F1 Score
=
=

=

w
=
w

(c) F1 score for logistic regression, no feature shift. (d) F1 score for logistic regression, with a feature shift.

Figure 2-14. Violin plots of accuracy and F1 score for logistic regression over
each Cy, r, value (1,000 runs per C value).

2.3.6. Gaussian Naive Bayes

With Gaussian Naive Bayes we see results similar to that of logistic regression. In the case of the
non-shifted data the classifications are essentially random. In the shifted data we see the results
hovering near 0.6, which is the theoretical separability of Fg, from the discussion around
Table|2-1 on page 34|

In terms of change with respect to correlation value, there is none. This is due to the glaring
assumption of Naive Bayes that all features are independent (this is given in the derivation of the
method using Bayes’ theorem). Thus there is no mechanics for the algorithm to understand
separability based on a joint distribution of F; and F;.

24. Feature Selection Algorithms

Dimension reduction proposes an increase in learning performance, computational efficiency, and
model generalization while offering a decrease in memory storage [65]]. This can be achieved
through feature extraction (combining features) or feature selection (choosing a subset). We focus
our discussion around feature selection as most MLE methods choose a subset of the most
influential features on a prediction.

42

Test-set Accuracy for Naive Bayes (1000 runs) Test-set Accuracy for Naive Bayes (1000 runs)

070 070
0.65 065
0.60 0.60 ¢ é 6 ’ ¢ §
§ 055 § 055 #
g 8
050 é * ‘ 050
045 ¢ 045
040 040
10 09 08 07 06 05 04 03 02 01 00 10 09 08 07 06 05 04 03 02 01 0.0
Correlation Coefficient Correlation Coefficient
(a) Accuracy for naive Bayes, no feature shift. (b) Accuracy for naive Bayes, with a feature shift.
070 Test-set F1 Score for Naive Bayes (1000 runs) 070 Test-set F1 Score for Naive Bayes (1000 runs)

n

F1 Score
=
¥
S

: ELIXSIXITRIY
LTI *

10 03 08 o7 06 05 04 03 00 10 03 08 07 06 05 04 03 0.2 o1 0.0
Correlation Coefficient Correlation Coefficient

(c) F1 score for naive Bayes, no feature shift. (d) F1 score for naive Bayes, with a feature shift.

Figure 2-15. Violin plots of accuracy and F1 score for naive Bayes over each
Cr, r, value (1,000 runs per C value).

There is a wealth of information surrounding feature selection. A review by the authors in
divides feature selection algorithms into four categories:

1. Similarity-Based Methods: These methods assess a feature’s importance as its ability to
preserve data similarity, either by label information or distance measures in the data.

2. Information-Theoretical-Based Methods: These methods attempt to maximize feature
relevance (feature-class correlation) and minimize redundancy (feature-feature correlation).

3. Sparse-Learning-Based Methods: These methods attempt to minimize the fitting errors
while regularizing towards smaller or zero values in features which can then be eliminated
(i.e. Lasso regression).

4. Statistical-Based Methods: These methods rely on statistical measures to to determine
feature relevance (typically filter based).

We implement a few feature selection algorithms and analyze their performance on our
overlapping, correlated data set [2.1.1]

43

2.4.1. Relief

Relief selects only statistically relevant features, with respect to a binary classification problem
[S5]]. Tt employs a "filter-method approach to feature selection that is notably sensitive to feature
interactions". In general, it accomplishes this by the idea of a near-miss and near-hit in the
neighborhood of a given instance, and then updating relative feature weights based on a distance
measure to these respective points.

More specifically, the algorithm selects a random instance x; in the data and then randomly picks
a nearby positive (same class) instance x,, and negative (different class) instance x;¢, from k of
the nearest neighbors. If x; is positive, then x,, is a near-hit, and x;,¢, 18 a near-miss. A weight
vector W over the features 1s then updated so that:

w=w—(x; —xpos)2 + (x; —xneg)2 2.1

This process repeats m times and then the weight vector w is averaged. Features that are above
some threshold 7 are considered important.

Essentially, feature values that are close between x; and a near-hit x,,, and distant between x; and
a near miss x,¢, have strong weights. Features that have a large distance between x; and a near-hit
or a small gap between x; and a near-miss are weighted less. A practical implementation is given

in Listing

Running the algorithm with m = 500 and k = 40 on a dataset consisting of eight features, all
drawn from a normal distribution with 4 = 0 and o = 1, where a binary classification is given by
a correlation of Cr, r, = 1 for features one and two yields a weight vector

W:[—0.075 —0.068 0.010 —0.005 0.053 -0.100 —-0.212 0.021] (2.2)

No single feature stands out as important, noting that the sign of the feature weight is important.
However, this changes under a modified version of the algorithm, ReliefF, discussed in the next
section.

Listing 2.4 Relief algorithm implementation.

def Relief(X,Y,m,tau ,nn):

"o

X: np.array: instances by features

Y: np.array: instances labels

m: int . number of repeats

tau: float : threshold for "important" features

k: int : number of nearest neighbors to consider for near selection
X_pos = X[Y ==

1,:]
X_neg = X[Y == 0,:]
n,p = X.shape
w = np.zeros(p)
for j in range(m):
inst = np.random.randint(0,n)

44

Find a nearby positive instance Z+
pos_list = np.argsort(np.sum((X_pos — X[inst])**x2, axis=1))

pos_inst = np.random.randint (0,k)
if pos_inst == 0 and (X[inst ,:] == X_pos[pos_list[0],:]).all ():
pos_inst = np.random.randint(1,k)

Find a nearby negative instance Z—
neg_list = np.argsort(np.sum((X_neg — X[inst])*%x2, axis=1))

neg_inst = np.random.randint (0,k)

if neg_inst == 0 and (X[inst ,:] == X_neg[neg_list[0],:]).all():
neg_inst = np.random.randint(1,k)

Update W

if Y[inst] == 1:

w = w — np.square (X[inst ,:] —X_pos[pos_inst ,:]) +
np.square (X[inst ,:] —X_neg[neg_inst ,:])
else:
w = w — np.square (X[inst ,:] —X_neg[neg_inst ,:]) +
np.square (X[inst ,:] —X_pos[pos_inst ,:])

return (1/m)*xw >= tau

2.4.2. ReliefF

A modified version of Relief, ReliefF, is proposed in [38]], however it is better put in [96]. ReliefF
operates almost identically to Relief; rather than randomly selecting a single near-miss and
near-hit from k nearest neighbors, all of the k nearest neighbors are used. The update step for the
weight matrix W is also different. The following is looped over each feature f:

P(C) :
1 — P(class(x;)) 4

k
wp=wy— Y diff(xip hjp)/(m-k)+) diff(xi.r,q;./(C))| /(m-k)
j=1 C#class(x;) 1

(2.3)
where x; 7 is the value of feature f for the x;, h; 7 is the value of f for the 7' instance from the set
of near-hits and g ¢ is value of f for the 7" instance from the set of near-misses. The
probabilities P(C) are determined by class frequency for class C, however for a binary class case
with equal distribution we have that P(C)/(1 — P(class(x;))) = 1. As before, m is the number of

repeats. The diff function:

e i xyl
diff(xi .0 p) = — e 2.4)

Where the max and min of f are the maximum and minimum values that feature f takes over the
dataset.

In terms of vector math, Equation [2.3| can be rewritten as:

_LZI;':I |j — xil +LZ§=1 g — xil (2.5)
mk d mk d .

45

where d = max(xy € X) —min(xy € X) for each f in the set of features. Note the division by
vector d is point-wise.

The ideas of penalizing far distances in features among near-hits and short distances in features
among near-misses while rewarding short distances in features among near-hits and far distances
among features in near-misses remains. A practical implementation is given in Listing [2.5]

Running the algorithm with m = 500 and k = 20 on the same data as in Relief (eight features all
drawn from a normal distribution with 4 = 0 and o = 1 where binary class labels are assigned by
a correlation of Cr, r, = 1 for features one and two) yields a weight vector

W:[0.020 0.020 —0.0004 —-0.002 —-0.002 —0.001 —0.002 —0.0001} (2.6)

Although the scores for F| and F, are not large, they are enough to stand out from the remaining
scores (all less than zero and extremely small in magnitude). It is likely this "importance" of these
two features comes from the increased density among F; and F, for the correlated class. This is
discussed at length in Appendix[A.1.3]

As a point of comparison, when the same parameters are used in ReliefF and the correlation for
features one and two is set to zero, the weights for F| and F, drop to magnitudes near 0.001, while
the magnitudes of the other features do not change.

Listing 2.5 ReliefF algorithm implementation.

def ReliefF(X,Y,m,nn):

"o

X: np.array: instances by features

Y: np.array: instances labels

m: int : number of repeats

nn: int : number of nearest neighbors to consider
"

X_pos = X[Y == oo

1,:
X_neg = X[Y == 0,:
n,p = X.shape
w = np.zeros(p)
for i in range(m):
inst = np.random.randint(0,n)

]

Find a nearby positive and negative instances
pos_list = np.argsort(np.sum((X_pos — X[inst ,:])*%x2, axis=1))
neg_list = np.argsort(np.sum((X_neg — X[inst ,:])*%x2, axis=1))

Select nn nearest hits and misses
if Y[inst] == 1:

h = X_pos[pos_list[l:nn+1]]

q = X_neg[neg_list[0:nn]]
else:

h = X_neg[neg_list[l:nn+1]]

q = X_pos[pos_list[0:nn]]

denum = np.max(X, axis=0) — np.min(X, axis=0)
Update w, note the P(C)/(l —P(class(X[inst]))) = 1 in binary case
w =w — (1/(mxk))*np.divide (np.sum(np.abs(h—X[inst ,:]), axis=0),denum)

46

+ (1/(mxk))*np.divide (np.sum(np.abs(q—X[inst ,:]), axis=0),denum)
return w

2.5. Conclusion

Using a principled design of experiments, we can be fairly certain of these results and the trends
encountered therein. Thus we can confidentally say that class-specific correlations provide vital
information for the tested machine learning algorithms, and should therefore not be removed
during feature selection. Even in the case of a separable feature to rely on, the algorithms
performed better under the precense of strong correlations.

These results show that not only do random forests, multilayer perceptrons, support vector
machines, and K-nearest neighbors leverage correlations, they do so quite well for strong
correlations. Had either F; or F; been removed through standard feature selection the resulting
feature subset would have been entirely inseparable in the non-shifted data, and for the shifted
data the accuracy would have been restricted to approximately 60%. This provides good evidence
for the power of correlations in machine learning algorithms.

Secondary to these results, rapid increases in computing and data storage capability further the
argument against common ideas in feature selection. Machine learning is significantly less
restricted by computational complexity than it was during the beginnings of feature selection, and
thus there is even less of a reason to restrict ourselves to non-correlated features.

Further, some feature selection algorithms can provide conflicting results in the presence of of
correlations. Care should be taken to not inadvertently remove discriminative features be
removing correlations which superficially appear to be redundant.

2.5.1. Future Work

As mentioned in the introduction, it is common for black-box explainability methods to break
feature correlations when they generate new sample points to test for feature importance.
Although this provides results, it is commonly acknowledged that they can be misleading due to
the exptrapolative nature of the generated sample points. These points exist in regions not
represented by the training data, and thus no guarantees of the accuracy of the machine learning
model can be made for those regions. This work’s emphasis on the abilities of machine learning
models to leverage correlation underscores the need for developments in correlation, or other
higher order interaction, to enhance explainability.

47

3. CORRELATION PRESERVATION SAMPLING

Machine learning (ML) algorithms are utilized in an increasing number of high-consequence
application areas; examples include malware detection [103]], autonomous vehicles [29], and
medical diagnoses [28]. ML models are often a single component in a larger system that must be
assessed by a human analyst in order to make decisions with possible high-consequences for false
positives or false negatives and can be time sensitive. With this increased usage, the need to
understand how a ML model behaves, why a particular output is given, and that the model
preserves fairness, is safe, etc. has escalated. As a response, explainability in ML and artificial
intelligence (AI) has emerged as a budding research field [4]. However, current explainability
methods lack rigor and formality congruent with the consequences that exist in other fields to
validate models. In this chapter, we use principles from design of experiments for sensitivity
analysis (SA) to define a mathematical framework for ML explainability (MLE) methods (SA
Guided Explainability or SAGE) and focus the discussion on capturing and explaining
higher-order interactions in models.

We define MLE as a set of techniques for explaining the inner-workings of a learned model. As
many models are sufficiently complex that presenting the inner-working of a model is not
decipherable by an end user, many explanation methods for a model or individual predictions
present a set of important features that contribute to the model output. While there are other
approaches to explainability, feature importance is commonly used. We define feature importance
(FI) as weighting or ranking of the input features based on the impact that a feature has on the
output of a model. Most of the approaches assume that input features are independent and are
therefore unable to capture any higher-order interactions in the model. Yet, often, the interaction
between features is what is the most interesting and discriminative.

The goal of a SA is to verify the consistency of the model behavior or to assess the robustness of
simulation results to uncertain inputs or model assumptions. SA can be defined as “the study of
how the uncertainty in the output of a model (numerical or otherwise) can be apportioned to
different sources of uncertainty in the model input" [98]. In other words, SA seeks to learn
relationships between the inputs and outputs of a model. SA uses design of experiments which
aims at describing the variation of information under hypothesized varying conditions [77]]. There
are several SA methods, but we focus here on global, variance-based SA [[109] which varies the
input and measures how the variations in the input affects variation in the output. SA is used to
validate models used in high-consequence applications.

SAGE encompasses three design considerations and highlights gaps in current MLE methods by:

(1) managing the source of uncertainty, properly maintaining correlations and input distributions;

(2) identifying correct quantities of interest to measure the uncertainty of the output relevant to an
explanation; and (3) proportioning the influence of sources of input uncertainty on output

48

»-——— - - - - - - - - - - - - —-—== 1
input X; : Machine Learning Model f{X) |
- > |
input > g | | RF MLP | SVM | | NN | | LR | | NB | | output ¥
[ea—
»! [
imputX, [| | T T T T T T T T T T ; ________________
fm—————————————— — Y
| |
i 4] , L FI
Correlation Preservin; SA Analysis for
—_[[Il—:—> ¢ FI
Sampling > Explainability [b Pl
s | (CortPS) o > b
e o I Sobol l I Shapley l I e
|
|:| I > CorrPS- CorrPS- A\ > l Lin/Quad Regression l ,,,,,, Loy FI;
. . KDE TRV I i
input correlation . | ‘ I | > Fl,
|
| ol | Accurac ‘ Confidence !
I SAGE Approach to MLE < i |

Figure 3-1. SAGE approach to explaining machine learning models. The
black arrows represent current steps in MLE. The blue portions highlight the
contributions of using SAGE.

uncertainty that accounts for higher-order interactions in the ML model. These considerations are
often overlooked. We focus here on the sampling process.

Our contributions include: (1) proposing SAGE as a mathematical framework for improving the
rigor in MLE, summarized in Figure and (2) proposing two correlation preservation
resampling (CorrPS) methods that preserve correlations between input features, their input
distributions, and produce data samples that are in distribution with the training distribution that
can also be used for out-of-distribution detection [63]. We recognize that there is a large body of
research that is still lacking and hope that SAGE helps other researchers to frame work to further
improve the rigor of MLE.

3.1. Resmapling Approaches

Let f(-) operating on input X with labels Y such that Y = f(X) represent a black box model
where X is a vector of d input features {X,X>,...,X;}. In the context of ML, f(-) represents a
learned ML model, however, for SA f(-) can represent any black box model. There are three
interdependent principles that affect the results of variance-based SA: 1) the resampling method
that produces the variance in the input; 2) the quantity of interest (Qol) or the output quantity that
is measured from f(-); and 3) how variance in the output proportioned from input variance. The
resampling process needs to have enough variation to produce variations in the output of f(-)
which is dependent on the Qol. Further, how the output variance is proportioned to the input
variance determines what kind of dependencies are discoverable. If the method assumes all of the
features are independent, then higher-interactions in the model will not be discoverable.

Resampling methods refer to techniques that reuse the sampled observations to to reason about a
population based on observed sample data and model the population distribution in some form. In
ML, typically the problem of sampling is completed (e.g. the use of benchmark datasets).
Resampling is used extensively, for example, under the specific techniques of cross-validation and

49

bootstrapping. The most widely used cases of resampling is in class-imbalance where the data is
either over- or under-sampled to train models with more balanced class distributions. There are
two broad resampling categories: empirical and analytical.

3.1.1. Empirical Methods

Empirical methods are commonly used by the ML community and refer to techniques that
randomly draw values from the observed training set. These methods are simple to implement and
often have low computational complexity. However, these methods in general ignore dependence
among the features and other relationships among the observed features and examples. Some
extensions are used to mitigate these issues such as block bootstrap (blocking certain features or
samples to be selected together) or stratified cross-validation to preserve the class distribution.

Bootstrapping is a commonly used method that randomly resamples the observed samples with
replacement. Perturbation importance [13]] uses feature-level bootstrapping for determining FI at
the model level. Bootstrapping ensures that each feature will have realistic values as they can only
take on observed values. However, feature-level bootstrapping assumes that all the features are
independent and does not preserve correlations between features. This will produce samples that
are not realistic, but ensures that valid features are used.

3.1.2. Analytical Methods

Analytical methods create a probabilistic model of the features consistent with the observed
training data and can also incorporates constraints of the system being model such as known
physical properties. There are two steps to resampling using the analytical methods: 1) train a
model on the observed data and 2) draw random samples from the trained model. For these
methods, correlations and higher-order relationships between features can better be preserved but
at the expense of computational complexity. One distinct advantage is that non-observed values
can be used rather than being strictly limited to the value present in the observed samples.

There is a rich field of generative Bayesian and deep learning methods []. These methods seek to
model the full joint probability rather than just the class likelihood. Generative models can be
computationally expensive, require large amounts of data, are difficult to tune, and are domain
specific, but they should be able to capture these higher-order interactions between features.
Recent successes have been demonstrated in the image [] and text domains []. We focus on the
more generic problem of sampling as opposed to a specific domain.

The simplest analytical methods model each feature independently and fit a distribution to each
feature based on a quantity such as maximum likelihood, fit a univariate KDE to each feature, or
simply use the empirical distribution for each feature. Other analytic approaches account for the
dependencies in the data and model the data using techniques such as multivariate KDEs, copulas,
or using a translation model where each feature is represented as a mapping of correlated
Gaussian variables. Given a model of the population based on the sampled observations, random
samples are drawn using techniques including Monte Carlo simulation, Latin hypercube
sampling, and stochastic reduced order models.

50

tmdoo % . o
$. 8
B Foewos ¢ | e A TT NN - . Pl
£ ° £ & o8 oo goo %09 !
a & L] o
. Syt o O
J
-.ﬂ: R 8 qofetelapm o EAd
e
a b c

Figure 3-2. The results of sampling on the correlated petal width and petal
length features from the iris data set showing a) the original dataset, b) the
resampled dataset by perturbing only the petal width feature (bootstrapping),
and c) the sampled data following the method used by LIME.

3.1.3. Comparison of Methods

Using the well known iris dataset, we visualize the results from feature-level bootstrapping and a
simple analytical method used by Local Interpretable Model-agnostic Explanations (LIME) [93]]
(a black box MLE method for individual predictions). LIME resamples from a dataset by
modeling the training data as a set of independent Gaussian distributions—storing the means and
standard deviations of each feature in the training data. Resampled data points are drawn from a
normal distribution with the recorded mean and standard deviation. Like bootstrapping, each
feature is assumed to be independent and correlations are not maintained.

In the iris dataset, we focus specifically on the third and forth features (petal length and width)
which are highly correlated to each other and with the class label. Figure [3-2]shows the original
data points (Figure[3-2j) the bootstrapped sampled data points (Figure [3-2b) and the sampling
from LIME (Figure [3-2f). Visually, it is clear that 1) the original features are correlated and that
2) the sampled data points are out-of-distribution from the training data and 3) do preserve the
correlation between the data points.

3.2. Correlation Preservation Sampling

Recognizing the many sampling methods do not preserve correlations, we propose two
correlation preservation sampling (CorrPS) methods that preserve correlations between input
features, their input distributions, and produce data samples that are in distribution with the
training distribution. The first method models the input space using multivariate kernel density
estimation to estimate the probability density function of the training data (CorrPS-KDE). The
second method inspired by stochastic mechanics uses translation random variables [31]]
(CorrPS-TRYV).

3.2.1. CorrPS-KDE

CorrPS-KDE models the training data using multivariate kernel density estimation [102]]. We use
Gaussian kernels and use Scott’s rule [[102]] to select the bandwidth of the kernel: nﬁ. Examples
can be obtained by either sampling directly from the multivariate KDE or employing a separate

51

® % we

e o | X wid e’
pupEn) e 'fi'.?-ﬁ! i . “qﬁ‘

Petal lengh Petal lengih Pedal length Pedal length

Figure 3-3. The results of sampling on the correlated petal width and petal
length features from the iris data set showing a) the CorrPS-KDE, b) the heat
map of the PDF from CorrPS-KDE, and c) the sampled data from CorrPS-TRV.

resampling method and using the multivariate KDE to reject examples with low estimated
probability densities.

We find that modeling each class with its own multivariate KDE produces better PDF estimates.
Figure shows resampled data points from a multivariate KDE modeling all of the classes,
[3-3b shows resampled data points from a multiple multivariate KDEs fit to each class. The
separation between the ’Setosa’ class and the other two classes is preserved when using multiple
KDEs and is averaged out using only one KDE. This effect could be lessened using different
kernels.

The learned KDE could also be used for rejection sampling in conjunction with another
resampling technique. For example, candidate examples are chosen using bootstrapping or
random sampling between the minimum and maximum values. Examples that with low
probability densities according to the KDE are rejected. This approach has the advantage that
certain properties of the other resampling techniques are preserved. In Figure [3-3k, a single KDE
is used to reject samples from bootstrapped samples. Since bootstrapping will preserve the gap
between spaces, the KDE helps preserve the correlations (compare with Figure 4-3b). Also,
rejection sampling allows for permutations to be isolated to single variables which is convenient
in certain FI methods without loosing correlations.

3.2.2. CorrPS-TRV

Recall that X1, ..., X, represent arbitrary features / inputs to the ML model. We can interpret the
available data on these features as samples from some unknown probability distribution. In this
section, we propose a model for this distribution that, once properly trained, can be used to create
random samples of the X; that preserve both the marginal distribution of each feature, as well as
the correlation among features; these samples can then be used for MLE. The approach is based
on the translation random vector model [5, 138]].

We model each feature as X = h(G), a function & of a Gaussian random variable G that has zero
mean and unit variance. If X is a continuous random variable, then / takes the form

h(G) =F 'o®(G), (3.1)

52

where @ is the cdf of G and F 1s an arbitrary cdf. This particular /4 is used because
Pr(X <x) =Pr(F lo®(G) <x) =Pr(G<® 'oF(x)) = F(x)

so that X has cdf F. If, instead, X is a discrete random variable that takes values in {xi,...,x,}
with probabilities py,..., p,, then h takes a different form, that is,

h(G) =) x1(G € By), (3.2)
i=1
where i = (—o0,ay], fo = (a1,az2],...,Br = (a,—1,°0) are intervals on the real line, each

a;=® '(p;+---+ pi), and 1(-) is the indicator function, equal to one when its argument is true
and equal to zero otherwise. Then, by Eq. (3.2),

Pr(X =)C,') = Pr(h(G) = x,-) = PF(G c ﬂl) = <I>(a,~) — CD(CI,‘,I) = p;.
We can use this approach to express two features X; and X as 1;(G;) and ;(G;), where G; and G|

are two standard Gaussian variables with correlation p;; = E[G; G;]. The correlation between the
features is then given by

E[X,X,] = /R i)y (v) 6 (o0 pij) duly (3.3)

where

1 u? —2uvp;; +v?
¢(u,v;pij) = ——F—=exp | — .
" om fi-p? 2(1-p})

is the joint pdf of G; and G}; Eq. (3.3) provides the connection between the correlation of G; and
G| and the correlation of X; and X ;.

To create random samples of features X, ...,X,, we follow four steps. First, given samples of
feature X;, we determine the mapping function 4;. If X; is a continuous variable, we choose the cdf
F using, for example, the empirical cdf or a KDE. If X; is a discrete variable, we estimate the
probabilities {p;} from the data. Second, for each pair of features X; and X, we estimate the
correlation between the variables using a standard estimator. We then utilize Eq. (3.3)) to
determine the value for p;; that produces this correlation E[X; X;]; this will require an iterative
method such as the bisection method. Third, we create random samples of Gaussian vector
(G1,...,G4) with zero mean and correlation matrix {p;;,i,j =1,...,d} where p; = 1; there are
standard algorithms to do this. Finally, we map each sample of G; to the corresponding value for
the feature as X; = h;(G;).

3.3. Experiments

In this section demonstrate the effects f each aspect in SAGE and their downstream ramifications.
Quantifying ground truth explanations or quantifying the goodness of an explanation is an

53

- 0.30 4
100 . 100 - RF
% T N MLP
r L N L 0.25 1 —— T
0 -2 0 2 0 -2 0 2 4 I
190 .if- o | 020 (R
o = L © li . NB
-"'- 1- -
v 5 3 ol 0.15 -
100 F B q 100 i H
4 . L]
% r L J] 0.10
074 '-72 0 2 0 -2 0 2
0 -‘1 100 FIH 0.05
=0 \r B o .II -Hq
] - i 0.00 -
R — 0 2 ! 2 0 2 = — ~ ™ = [T [¥=] [
a b

Figure 3-4. a) Histogram for the eight features in the synthetic dataset. There
is slight class separation in feature 4 (upper right) and features 1 and 2 are
correlated (upper left). b) The change in classification accuracy when remov-
ing a feature and retraining.

unanswered research topic. Complicating the issue further, the explanation depends on both the
data and the ML model. Therefore, in this work limit our analyses to relatively simple datasets
that we can reason about and specifically examine correlation and class separation in the features.
Here, we highlight the results on a synthetic dataset composed of eight features that are modeled
by Gaussian distributions and class overlap is controlled by adjusting the mean. All of the features
have the same mean and standard deviation, thus there is no easily separable feature for
discrimination except for feature 4 which has slight class separation (the means for each class are
off-set) (Figure [3-4). We set the first two inputs to be correlated with each other. The other
features are meant to be noise features and to establish a baseline for irrelevant features.

To establish a notion of ground truth, we remove one feature at a time and retrain the ML model
to measure which feature has the greatest impact on the classification accuracy. We also compare
the performance of each algorithm without the feature with class separation, thus, we are able to
control for higher-order correlations and class separation. In practical problems it is not feasible
to retrain the model for removing every individual or control characteristics of the data. Our
intention here is to show the dependence of each component in SAGE and how some minor
modifications allow for high-order relationships to be discovered. We examined six learning
algorithms on the datasets: 1) Random Forest (RF), 2) Multilayer-Perceptron with 5 hidden nodes
(MLP), 3) Support Vector Machine with an RBF kernel (SVM), 4) k-NN (NN), 5) Logistic
Regression (LR), and 6) Naive Bayes (NB). The LR and NB algorithms establish a baseline of
considering each feature independently.

The results for removing a feature and retraining for both datasets are shown in Figure [3-4p and
Table [3-1] shows the accuracies from the examined MI algorithms. With the exception of LR and
NB, all of the algorithms decrease significantly in classification accuracy when either one of the
correlated features are removed in both datasets. The feature with class separation causes some

interesting results. First, removing the feature with class separation causes a significant increase

54

Table 3-1. Accuracies from the examined learning algorithms on the synthetic

datasets.
RF MLP SVM NN LR NB
Correlated 86.6% 883% 7T8.6% 83.5% 52.8% 53.6%
Correlated and Class Separation 70.7% 90.3% 81.8% 84.5% 62.2% 63.0%
Default Model Confidence Model Conf and CorrPS
a4 {H aq 84 ¢
o 11 i o o
n
8 61 otk 61 | 61 |
£ 51 ofe 544 541
E 4 — 11— 4 HH 4 o
5 b 31 d
'g 2 [2 i 2 i
< 1 I 1 I 1 [l
M 0.00 0.02 0.04 0.06 0.08 010 012 014 5 50 7= 100 125 150 175 200 50 100 150 200 250 300
84 ofo 8 do 8 d
74 fh ’ b o
64 HH 6 3] 6 0
s1 D 51 511
a o HH a ko 4 Ll
3{ 3] 3 q
> o [he 2 T 2 Hh
5} 1 HCIH 1 +h 1 inf

Figure 3-5. A comparison of the Fl values using bootstrapping and classifi-
cation accuracy (Default), Bootstrapping and model confidence (Model Con-
fidence), and CorrPS-KDE and model confidence (Model Conf and CorrPS).
Model confidence and CorrPS produce results more consistent with the es-

tablished ground truth.

in accuracy for the RF. For MLP and SVM, removing feature 3 has moderate impact compared to
the correlated features noting that MLP and SVM key on higher-order interactions. We should
expect similar results for FI measures.

3.4.

Conclusion

Identifying the most influential features for a ML model globally, for each class, and for
individual predictions provides transparency and model interpretability that helps ensure model
correctness and builds trust. Most model-agnostic methods rely on measuring how variations in
the feature space and affect the output of the model. The specific method used for sampling (or
equivalently, perturbing) the input feature values has significant ramifications. Most current
sampling methods do not preserve correlations between input features, breaking higher order
interactions in the model and are inconsistent with the training set data distribution. In this paper,
we presented two sampling methods that maintain feature correlations and produce samples that
are consistent with the training set distribution. Our methods show more consistent results on

55

simpler datasets that we are able to understand and verify. Additionally, the model used for
sampling can be used to provide information about if a data point is out-of-distribution from the
training set and should be rejected by a learning algorithm.

56

4. LIMITATIONS OF CURRENT MACHINE LEARNING
EXPLAINABILITY METHODS

Artificial intelligence (AI) and Machine learning (ML) techniques are being used in increasingly
more applications including high-consequence applications such as malware detection [[103]],
autonomous vehicles [29]], and medical diagnoses [28]. Wide-spread adoption, though, is limited
due to a recognized need to trust the models before they are deployed and integrated into larger
systems. In response, several explainable Al (xAl) techniques have emerged [4]. However,
current XAl methods often lack verifiable foundations and uncertainty quantification—leaving the
end user or ML practitioner to decide if the explanation is valid and what to do with the provided
information. Many XAl methods have justified their approaches by examining how similar they
are to how an end-user would explain a decision [93] [125] with accompanying frameworks that
define explainability in the context of user-based explanations [27,59]. While these have laid the
foundation, reliance on human evaluation of fidelity may bias explanations towards persuasive
explanations rather than accurately describing the learned model [45]. Computational-based
explanation fidelity remains an open research question, with most work on XAl fidelity focusing
on modified backpropagation and saliency-based methods [2, 81, [105]]. Therefore, we propose to
define explanation fidelity as a relative accuracy to an analytical solution of feature importance
describing how well the explanation describes a model. We examine here the fidelity of post-hoc,
model agnostic explainability methods using non-intuitive domains where the meaning is not
obvious through visual inspection.

We look to the validation and verification (V&V) principles that ensure the correctness of
computational modeling and simulation in many science and engineering disciplines [82,[107]].
Uncertainty quantification (UQ) and sensitivity analysis (SA) are fundamental elements of most
V&V practices and are often applied in tandem. It is our intent to examine global SA (GSA) [98]
methods that are well suited for data-driven UQ analysis with the goal of developing credible
explanations of an ML model. We examine GSA methods due to their shared objective with XAl
of determining the most influential input on the model output and similar implementations.

In certain cases, closed form analytical solutions are possible providing a ground truth—which
we exploit in our analysis of explanation fidelity. We find that current XAl methods should only
be used in very low risk applications because they fail to capture prediction uncertainty and make
several simplifying assumptions that have significant ramifications on the resulting explanations.
xAl methods: (1) fail to capture nonlinear interactions in the model and (2) misrepresent the
importance of correlated features. The second point, assuming feature independence, has been
observed to create incorrect explanations previously [, [118]. However, demonstrating that
nonlinear feature interactions in the model cause incorrect explanations and comparing the two
has not been demonstrated in previous literature to the best of our knowledge. This finding is
particularly important as most learned models have nonlinear feature interactions.

57

Our primary contributions include: (1) developing a definition of explanation fidelity relative to a
ground truth explanation found by a closed-form analytical solution using GSA, (2) exposing
limitations of post-hoc xAl methods using this definition of fidelity—specifically that nonlinear
interactions in a model have larger ramifications on the fidelity of an explanations than input
correlations, and (3) identifying research gaps that, if addressed, would result in higher-fidelity
explanations. We also compare xAl explanations with expert derived solutions demonstrating low
fidelity beyond our synthetic dataset. Highlighting these deficiencies helps channel research
efforts to address these gaps and improve the credibility of ML models and their usage in
high-consequence applications.

The rest of the paper is organized as follows. We first present preliminary background on GSA.
Section [4.2] discusses the trust of black box learned models and presents our definition of
explanation fidelity. We then use this definition of fidelity to empirically examine the fidelity of
several XAl methods in Section[4.3] We provide a discussion of the current gaps of xAI couched
in the GSA framework in Section 4.4 before concluding.

4.1, Global Sensitivity Analysis Methods

GSA apportions the influence that input or model parameter uncertainties have on the uncertainty
in model output [98]]. GSA has a history of application to black box models in the science and
engineering disciples and is gaining more traction for systems modelling and policy support [92].
Let x € R? represent an input vector, y € R represent an output (label) and f : X — y represent a
function that maps x to y. If we assume that the model parameters do not change, such as
inference for an ML model, GSA proportions the uncertainty in each of the d input variables on
the output uncertainty measured by a quantity of interest (Qol). We examine two common
methods: (1) variance-based Sobol’ indices [109] and (2) game theoretic Shapley values [104]].
Here, the output GSA is a set of feature importance values @ := { (P.i}?:l for each variable x;.

4.1.1. Sobol’ Indices

Assuming that x is composed of d mutually independent random variables, and that the output y
is a scalar, the high-dimensional model representation expands a multivariate function y = f(x)
as:

d d
y=fo+ Y, Fi)+ Y, Finlejx) ++ finalxxa, .. x0) (4.1)
= k=741

where x; represents the 7 input variable, E denotes expectation, and
Jo= E[y]?

fi(xj) = Elylx;] — fo,
fik(xj,xe) = Elylxj, xi] — fo—fi — fe,

58

Further, using variance to measure uncertainty, and assuming that f(x) is square-integrable and
that each variable has finite variance, the variance of y from Equation [4.1| can be decomposed
as:

Var ZVarx, X 1y|x] Z Varxjk X jk y|x]7xk]) Vj_vk +oe 4.2)
J=1 k=j+1

where V; := Var,, (I, _,[y|x;]) represents the variance contribution to y from input x; alone. Thus,
Sobol’ indices provides a decomposition of the variance in y for each input variable as well as

combinations of the input variables. First order Sobol’ indices are computed as S; = %’(y) and
. o Vi
can be extended to higher order indices as S .. Var(“) Due to computational overhead of

examining all possible sets of features, Sobol’ indices are not generally examined beyond the first,
second, and total order indices; where total order indices quantify how much inputs or parameters
contribute to the total variance on its own and through interactions with other inputs or
parameters.

Practically, the sensitivity of y with respect to an input variable x; is measured by varying the
input either by sampling directly from a analytical distribution or from a dataset. Key to GSA are
a proper sampling technique and a proper Qol which measures the uncertainty of the model’s
output. In xAl, this becomes challenging when classification is the Qol as large amount of
variances are sometimes needed to change the classification while model confidence measures
have been shown to be difficult to calibrate [39]], often meaningless [44], and easily

manipulated [80].

4.1.2. Shapley Values

Recently, a connection was made between the variance-based Sobol indices and Shapley values
from cooperative game theory [104]]. Let S be a subset of all input variables M := {x j}?:l’ and
v|g be a value function that approximates the Qol on the given subset of variables. Shapley values
proportion a global reward according to individual contributions in a team effort, defined

as [124]:

R [S[H(IM] —[S])! — 1
M

0; = (Vsugey —vls) - ¥S C M (4.3)

M sy
In terms of feature importance, the impact each variable x; is evaluated over all possible subsets
S. It is assumed that f is sufficiently complex that a simpler, surrogate model v is needed for
computational efficiency. Shapley values have been used in GSA as a measure of variable
importance [83,166]] and are theoretically bound by the first and total order Sobol’ indices [52]].
Similar to integrated gradients [115], Shapley values calculate the difference between the average
and the actual output.

4.2, Trusting Learned Models

The need to trust learned models has been explored broadly in ML [36] and reinforcement
learning [119]], as well as for specific applications such as computer vision [87,|14] and

59

automotive software engineering [[11]. However, most of these studies focus primarily on how
robust ML models are to adversarial attacks or out-of-distribution data points. Additionally, with
the increased usage of Al in many businesses, several maturity models have been put forward to
assess if a learned model is ready to be deployed. Most of these focus on Al operations from a
strategic and principled development point of view rather than on an examination of a learned
model [99, 72, 3]. For example, guidelines from Ethical AI point out the need to provide
explanations and transparency, but do not examine if the explanation reflects the underlying
model [116]. As XAl methods have been proposed as a means of providing trust and verifying
model behavior, we examine explanation fidelity from the perspective of GSA which have been
used in V&V to ensure safety and increase trust in model.

4.2.1. Black Box Explanation Methods

There are several connections between GSA, specifically Sobol’ indices and Shapely values, and
xAl LIME [93]] was one of the first methods to gain traction in explaining the predictions from an
ML model as a means for building trust and examining that a model functions properly. The
explanation is derived from a locally weighted linear regression model. To create this linear
model, in its simplest form, the input space is randomly sampled and the sampled data points are
passed through the model that is to be explained. Each sampled data point and its classification is
weighted based on its distance from the data point to be explained. The linear model is then
learned using a weighted linear regression algorithm. Explanations are then derived using the
input values of the data point to be explained and the weights in the linear model.

SHAP [69] builds on cooperative game theory computing Shapley values (Equation 4.3)), and
appears to be the strongest theoretically grounded xAI method. SHAP calculates Shapley values
using bootstrapping methods to replace a feature with noise to effectively remove it. To deal with
high-dimensional data, SHAP is extended to Kernel SHAP where the subsets are weighted based
on the weights of their contributions and also has several model specific implementations (e.g.
TreeSHAP [68])).

To make computation feasible, most XAl methods, including LIME and SHAP, make the
following limiting assumptions: (1) mutual independence of input variables—ignoring all
dependencies; and (2) a linear relationship between the output Qol and all input
features—enabling the computation of expectations directly rather than from sampling [69].
Follow up work has proposed extending SHAP to model input dependencies (SHAP-Dep) [1]]
incurring an increase in computational complexity.

We denote the importance values estimated using xAI methods as @i := {(ﬁ j ?:1 estimated by an
explainability value function v. For consistency in notation, we denote the dependence of v and f
on both x and the restriction to the subset of features S with the expressions v|g(x) and f|s(x).
The validity of the explanation depends on how well v|g approximates f| for all S C M. In
practice, having a closed-form solution to ® is not available or is restricted due to computational
constraints, therefore ® is a numerical approximation of the analytical solution, .

60

4.2.2. What Constitutes the Fidelity of an Explanation?

There are several measures that can be used to evaluate an explanation [75]]. Here, we study
fidelity which we define as the accuracy of the explanation to the underlying model. An
explanation that has complete fidelity would describe the model in detail. Therefore, to be useful
to an end-user a trade-off exists between fidelity and completeness of an explanation to convey
enough information to describe the decision process. As noted earlier, reliance on human
evaluation of fidelity may bias explanations towards persuasive explanations rather than
accurately describing the learned model [45]]. Here, we suggest definitions for an explanation and
a mathematical notion of fidelity based on Shapley values.

Definition 4.2.1. An explanation is a subset S* of n < d features with corresponding importance
values Ogx 1= {¢; }xjeg* from the set of all features M that have the greatest contributions to f(x):

S* = argmax) ¢; 4.4)
SQMJS‘:’ZXJES

where the ¢; correspond to 4.3} such that the nominal feature values are defined by the realization
of a data point x.

Definition 4.2.2. The fidelity IF; of an explanation, S*, of X for the j' feature is the complement
to the absolute difference between the actual ¢; values and the estimated o ; values:

Fi(x,v) =1—|9;— ¢]. 4.5)

This definition assumes that the ¢; values are in the range of [0,1] which can easily be done by
normalizing the values ®. We subtract this quantity from one so that IF; near zero/one correspond
to low/high fidelity. An aggregate score can also be obtained by summing the individual IF;
scores, while care should be taken as the score could vary based on the number of features
considered. This definition is defined with respect to a feature as well as a particular data point.
The fidelity of an explanation may vary per feature and in different areas of the input space.
Therefore, the fidelity IF; is dependent on how well v|s(x) approximates f|¢(x). Equation 4.5|is
equivalently expressed as:

Fj(x,v,) = 1= lg(x) = fls(x)] (4.6)

As defined in Equation @ an explanation is a ranked feature list, therefore, v does not
necessarily have to be equivalent to f to produce useful explanations, but it should be close
enough to produce the same ordering and give an idea of the magnitude of each feature’s
importance. Therefore, while absolute difference can serve as an appropriate loss function, a
metric such as the Kendall Tau metric could also measure the difference in the feature rankings.
Practically, calculating S* would require relearning f| for all S C M making it computationally
infeasible for all but the most trivial problems, hence the need for and importance of v to
accurately and efficiently approximate f. It should be understood how v differs from f and what
uncertainty comes from the model-form error.

61

4.3. Empirical Examination of Explanation Fidelity

This section examines the fidelity of explanations for models with various properties. To establish
ground truth explanations, we examine: (1) using closed-form analytical solution to Shapley
values (Equation 4.3)) on a synthetic model where we can manipulate the properties of the features
and the model and (2) using an ensemble of expert explanations in a subjective domain
(cybersecurity). In this case, cybersecurity experts are required to not only make a diagnosis of
maliciousness but also provide indicators that support their claims. Thus, the explanations are part
of the triage process and a natural fit for XAl methods. We compare the global measures of

LIME [93], SHAP [69], and SHAP-Dep [1] aggregating over the entire training set with: (1)
permutation feature importance [[13]] on a random forest trained on data generated by the model
using sklearrﬂ (2) the GINI values from the same random forest model, (3-4) empirical and
analytical Sobol indices (implemented in OpenTurnfl), and (5-6) empirical Shapley values.

4.3.1. Synthetic Data

We use simple regression models with four input variables, with and without correlation, and with
and without non-linear feature interactions:

y=2x1+3x2 +x3+x4 4.7)
y =2x1 + 3xp + x3X4 (4.8)
x1~ A (0,1),x0 ~ A(0,2),x3 ~ A(0,3),x4 ~ A (0,4) 4.9)

For correlation, we set x| and x; to be perfectly correlated as a worst-case scenario. We build on
the traditional notion that greater weights and variance equate to a larger importance factor (in
this case normalizing the data would negate this, but for demonstrative purposes we keep the
different variances and variance is important for the GSA methods). Given the actual models and
low number of features, we can calculate the Shapley values considering all of the feature
combinations (see Appendix [B|for details). The explanation fidelity for each feature (Equation

is computed using the Shapley value ¢; and the value from each XAl method as o -

We create a dataset from each model with and without correlated features by sampling 1000
samples for each x; and recording the resulting y from Equations and[4.8] We then train a
random regression forest on the data as our black box model (we tested several ML algorithms;
the most important factor was the ability to model higher-order interactions, so models that make
strong independence assumptions such as naive Bayes had significantly different results). The
fidelity of the explanations showing the differences between the Shapley values and the calculated
importance for each feature are shown in Figure 4-Th-d for each combination of input
independence/correlation and model linearity/non-linearity. It is clear that while correlations have
an impact on the fidelity, non-linear feature interactions produce even lower fidelity values. We
make the following observations:

Thttps://scikit-learn.org/
Zhttps://pypi.org/project/openturns/

62

1. When the model meets the correct assumptions of feature independence and linearity
(Figure [d-Th), the explanations best match the ground truth, although x; is consistently
underestimated by LIME, SHAP and SHAP-Dep.

2. When only correlation is introduced (Figure -1p), the fidelity of each method degrades as
expected.

3. Once non-linear feature interactions are introduced (Figures -1k and d), the fidelity
significantly decreases compared with just correlation. The features with a non-linear
interaction are under-valued and the features with a linear interaction are over-valued.
Black box xAlI and Sobol” methods do exceptionally poor in capturing non-linear
interactions in the model—LIME performing noticeably worse than SHAP and SHAP-Dep.

4. While SHAP-Dep is designed to work specifically with correlated features, we find that it
shows lower model fidelity than SHAP in the presence of non-linearity—this is probably
partially due to the fact that we used treeSHAP as the underlying version of SHAP which is
not available in SHAP-Dep. Additionally, the sampling complexity requirements are larger
to model dependencies as demonstrated in the following section.

5. The tree-based importance methods consistently show high model fidelity and do
exceptionally well in the case of correlated input features and non-linear model interactions.

With these results, we strongly caution the use of SHAP, SHAP-Dep, and LIME when the ML
models include correlated features or non-linear interactions. Of course, it should be noted that
SHAP, SHAP-Dep and LIME are are designed for local explanations for a specific data point.
While the importance features from the random forest methods show the highest model fidelity,
they only provide global feature importance—but do show robustness and high fidelity
explanations.

4.3.2. Ensemble of experts comparison

We examined the explanations from a random forest consisting of 500 trees trained on data from
PDFrate [[108] to detect malicious PDFs. Considering that SHAP performed better than LIME,
we examined SHAP-Dep and TreeSHAP. We compare the generated explanations with an
ensemble of expert explanations from five cybersecurity experts who analyzed a PDF from
PDFrate and provided the features for why they classified it either as malicious or benign—which
is consistent with their daily tasks in determining maliciousness and why by pointing out specific
indicators. We compared the xAl explanations with expert explanations on 20 samples (more
details can be found in Appendix [D)). The class labels for malicious PDFs are often difficult to
obtain and the features are wide ranging such that it is often easier to detect maliciousness rather
than the lack of maliciousness. It is also a very non-intuitive domain—visual inspection of a PDF
does not immediately determine what the classification should be.

The explanations for the predictions of four PDFs are shown in Table §-1] The weights for the
“Expert” are the number of experts who used a particular feature as an indicator for maliciousness
or being benign. The first three examples are confidently classified as malicious PDFs by cyber
experts. The last PDF represents one that looks to be benign but with lower confidence. The first

63

’DDX]DDX2DDX3I|X4‘

- sooueodw] wrdg

- sooueyrodwir Iy

- HINI'T [BqOTD

- do@-dvVHS T1eqo1D

- dVHS [eq0[D

- [0qog [edtnduryg

- 10O Tednkeuy

- Kordeyg reondwyg

0.8 |

0.6 |

’DDX1DDX2DDX3I|X4‘

- sooueyrodw wieg

- sooueyrodwir Y

- HINI'T [BqOTD

- do@-dvHS 1’01

- dVHS [e9q0[D

- 10qog Tedtndwg

- 10qOS TeonATRUy

- Kordeys reolndug

0.8 |-

0.6

b) Correlated Features; Linear Model

a) Independent Features; Linear Model

’DDX1DDXQDDX3I|X4‘

- sooueodw wIdg

- sooueyrodwir Yy

- HINI'T [eqO1D

- do@-dVHS 18q0[D

- dVHS [®q01D

- [0qog Tedtniduyg

' [0qOS [eonNA[RUY

- Kordeyg eoudwyg

0.8

0.6 |

(D01 Dy Dxs Doxy |

- sooueodw wWIdg

- sooueyrodwir Iy

= HINI'T [BqO[D

- do@-dvHS 12901

-~ dVHS 901D

- 10qos Tedtnduyg

- 10qOS [eonATeUy

- Kordeyg [eoundwyg

0.8

0.6

d) Correlated Features; Non-linear Model

c¢) Independent Features; Non-linear Model

Figure 4-1. The fidelity of model explanations per feature. Here, a value of 1

is perfect fidelity. Non-linearity in the model has the greatest negative impact

on fidelity

64

Inputs: Process: Outcome:
Uncertainty in Features Machine Learned Model Uncertain Model Predictions

Controlled/Uncontrolled

B o Beh oo Quantity of Interest (Qol)

Sampling

Running sufficient replicates for
the random behavior of
stochastic machine learned
models.

What is the appropriate Qol for
which a sensitivity analysis will
provide insight for ML
explainability?

Preserving the statistical
properties of the training data:
non-Gaussian, discrete,
correlated, and sparse

Methods to apportion the influence of sources of input uncertainty across output
uncertainty, accounting for higher-order interactions in a model and input correlations.

Figure 4-2. Mapping of GSA processes to xAl and highlighting current holes.

five features for each PDF are indicators or explanations for a malicious classification. The
bottom five are features that indicate a benign classification with their associated weights. The
values in bold correspond to the features that are consistent with the expert explanations. The
experts were very consistent in their explanations, very frequently providing overlapping
attributes in their individual explanations for a given observation. About half of the experts
identified attributes were more abstract than can be captured by a single conventional numeric
feature and about half were directly represented by a feature in the machine learning model. We
found that overall the explanations from TreeSHAP are better aligned with expert explanations,
although often only highlighting the presence of JavaScript. Other explanations did not match the
expert explanation in any attribute.

SHAP-Dep often provided irrelevant features as explanations. SHAP-Dep models the feature
correlations whereas SHAP treats all features independently and can sample each feature
separately. Because of this, SHAP-Dep requires significantly more samples to cover a more
complex space and to reduce the statistical error from sampling. In the original paper for
SHAP-Dep [1], only up to 10 features were considered and this problem was not noted—PDFrate
has 135 features.

4.4. Discussion

The overall process of GSA is mapped to the ML paradigm in Figure and composes four
major components: (1) how to sample the data to represent uncertainty in the inputs, (2) running
sufficient replicates or trials to understand the behavior of the model (in GSA, this is often a
complex model that is expensive to execute—different from the inference stage in most ML
models), (3) measuring an appropriate Qol—particularly for explainability purposes and
capturing appropriate uncertainties, and (4) methods to apportion the source of input uncertainty
to the output uncertainty. Examining xAl techniques through the lens of GSA, we have identified
three primary areas where improvement could significantly improve the fidelity of the
explanations:

Sampling Most XAl and GSA methods assume that the inputs are independent. As has been
previously discussed here and in other works [[118]], independence assumptions about the input

65

Table 4-1. Examples explanations on prediction of malicious PDFs by an en-
semble of experts and SHAP-D%P and TreeSHAP.
SHAP-D

66

Expert ep TreeSHAP
cnt_javascript 5 cnt_page 0.27 cnt_javascript 0.16
« cnt_Encrypt 1 cnt_action 0.23 cnt_js 0.05
§ - — pos_page_avg 0.23 creator_oth 0.04
= - — pos_page_max 0.23 producer_oth 0.02
% - — cnttrailer 0.19 author_oth 0.01
S - — cnt_image_total 0.12 pos_image_max (.01
E) cnt_Encrypt 1 cnt_endstream 0.12 cnt_endstream 0.02
é page_size_Letter 1 title_oth 0.13 pdfidl_len 0.02
cnt_Metadata 1 producer_oth 0.13 pdfidl_num 0.02
cnt_obj 3 cnt_font 0.14 cnt_font 0.050
value_timezone 5 cnt_page 0.22 cnt_javascript 0.09
o cnt_javascript 5 cnt_box_other 0.20 cnt_js 0.08
% Creator_WPS_Office 3 pos_box_max 0.19 createdate_tz 0.05
A cnt_0x0_boxes 3 pos_box_avg 0.18 moddate tz 0.04
% Normal_Metadata 2 pos_page_avg 0.18 producer_lc 0.02
Q- — pdfidl_len 0.14 cnt_eof 0.01
T - — pdfid0_len 0.14 cnt_startxref 0.01
é cnt_Metadata 1 producer_oth 0.15 pdfidl_num 0.01
cnt_obj 1 producer_mismatch 0.15 creator_len 0.02
value_file_size 1 pdfidl_num 0.16 cnt_font 0.05
cnt_javascript 5 moddate_tz 0.18 cnt_font 0.07
E cnt_javascript_obs 4 cnt_js 0.15 pos_eof max 0.04
S cnt_FlateDecode_obs 4 cnt_javascript 0.13 cnt_obj 0.03
& cnt_OpenAction_obs 4 createdate_tz 0.13 pos_eof_avg 0.03
% cnt_OpenAction 4 title_mismatch 0.13 cnt_box_other 0.03
T — cnt_action 0.13 - —
2 — — ratio_size_page 0.14 - -
T cnt_obj 1 cnt_js 0.18 - —
value_file_size 1 cnt_javascript 0.18 cnt_javascript 0.02
cnt_Autoaction 3 pos_page_avg 0.17 - —
w cnt_Acroform 2 pos_page_max 0.17 - —
% cnt_JBIG2Decode 1 cnt_page 0.14 - —
= cnt_FlateDecode 1 createdate_mismatch 0.10 - —
E cnt_startxref 1 createdate_ts 0.10 - -
= Normal_Metadata 2 pdfid0_len 0.14 cnt_obj 0.02
a Producer_Adobe 2 cnt_stream 0.15 pos_box_max 0.03
é value_timezone 2 cnt_startxref 0.15 cnt_js 0.04
cnt_Javascript 2 cnt_eof 0.15 cnt_font 0.05
cnt_obj 3 cnt_endstream 0.15 cnt_javascript 0.06

oo % o o .
. 553““:%&5% . ‘.:E.: Wi - - "”.': © e
& & °
.,ﬂ: .‘" TR ™ ’..:t' .o' o
. .
e
a b c

Figure 4-3. The results of sampling on the correlated petal width and petal
length features from the iris data set showing a) the original dataset, b) the
resampled dataset by perturbing only the petal width feature (bootstrapping),
and c) the randomly sampled data.

cause incorrect feature importance values when correlations are present. The appeal of such a
limiting assumption is motivated by avoiding the computational cost in modeling the full-joint
probability distribution. There also exists a plethora of readily available expedient sampling
techniques such as bootstrapping and independent random sampling that are commonly used.
Although, proper care is rarely taking into consideration with regards to the unrealizable data
points they create data which are clearly out of distribution. For example, consider the third and
forth features (petal length and width) of the Iris dataset which are highly correlated to each other
and with the class label. Figure shows the original data points (Figure d-3j) the bootstrapped
sampled data points (Figure 4-3p) and random sampling (Figure [4-3f). Visually, it is clear that:
(1) the original features are correlated, (2) the sampled data do not preserve the correlation
between the data points and (3) therefore, the sampled data points are out-of-distribution from the
training data. What does an explanation generated from these types of data points tell us about the
model?

Quantity of Interest For XAl the output of the classifier or a confidence metric is often used, but
is that really what is most important for explaining a prediction? As pointed out by Rudin [97],
often just knowing where a model “looks” is not always sufficient for why a prediction was made.
Future work should investigate other possibilities in Qols that correlate with explanations.

Non-linear Uncertainty Apportionment We have found that the lack of ability to apportion the
influences of input uncertainty across output uncertainty accounting for higher-order, nonlinear
interaction in a model is the greatest challenge. This poses a significant hurdle to overcome as
most state-of-the-art ML models are highly non-linear and have high-order feature interactions
within the model.

These issues are not isolated to XxAl, but are also challenges in the GSA and V&V communities.
There are several promising research lines that could be leveraged including work from Sobol’
indices that specifically address correlations [42,70]] in certain situations and may be applicable
for non-linear interactions. To our knowledge, addressing non-linear uncertainty apportionment
and appropriate Qols for explainaiblity have not been explored in much depth. See Razavi et

al. [92] for a good overview of current research directions in GSA include perspectives from the
GSA community on its use in ML. Appropriate Qols could leverage recent advances in model
output calibration [78]] or leverage some other metric which provides insights into the actual
decision making process of the learned model, perhaps along the same lines as anchors [94]. Our

67

primary goal is that by exposing these issues they can be addressed more directly to improve the
credibility of learned models enabling their confident use in high-consequence applications.

4.5. Conclusion

While xAI has helped to provide insights into the learned models and offers some means of trust,
we have shown that strong assumptions that have been made for computational feasibility need to
be considered when using xAl—especially in high-consequence applications and in models with
nonlinear feature interactions. By casting XAl within the framework of GSA, we identified
several holes and demonstrated that correlated input features and, more significantly, non-linear
model interactions have strong ramifications on the fidelity of XAl methods. Random forest
models are surprisingly robust to these and may offer some paths for future work. New
explainability methods are needed that are able to capture higher-order model interactions and can
provide estimates of uncertainty. We only examined a small set of XAl methods, future work
could expand this notion given the ability to calculate a ground truth explanation value. This is
difficult moving into image spaces where the definition of features is less-well defined due to the
deep structure of neural networks. Our motivation is that this analysis motivate others to pursue
solutions to the gaps in xAL

68

5. CLASSIFICATION TRUSTWORTHINESS

As Artificial Intelligence (Al) and Machine Learning (ML) become more ubiquitous in high
consequence applications, corresponding laws and regulation are established that mandate
explanations for the decisions made by learned models [120]. Therefore, many interpretablity and
explainability methods have been proposed [4]. Most of the approaches have assumed that frust
will increase by explaining the prediction, e.g., through identifying the most important features,
and counter-examples. Instead, we examine how much we should trust the output of a learned
model based on the geometry of the data and the geometry of the data’s clusterings and
classifications. ML models are trained under the assumption that training and testing data are
independent and identically distributed. However, a learned model will make a prediction
regardless of whether the test point is drawn from the training distribution. This causes at least
four problems: (1) sample-selection bias where the sampled training data is not representative of
the real-world data [130], (2) concept drift as the data distribution changes over time [67], (3)
introduction of novel classes [71], and (4) adversarial attacks that exploit these

vulnerabilities [85]].

The concept of model confidences seeks to address these problems but has limitations.
Out-Of-Distribution (OOD) detection techniques have shown that some model confidences, e.g.
softmax, are overly confident and in many cases they are uninformative in determining if a data
point is out of distribution [44]. Adversarial attacks, by simple modifications to a data point, can
easily fool a learned classifier into confidently predicting the wrong class [85]. Robustness
defenses work against some types of attacks, but are easily defeated by others [19].

We examine metrics, based on the geometric relationship of the training data and the
classification boundary rather than model confidences. Our geometrically-inspired metrics allow
for visualizations that are intuitive and we demonstrate their effectiveness in identifying evasion
attacks in detecting malicious PDFs.

5.1. Geometric Trustworthiness

We propose the following set of geometric trust metrics for a test point P. Each trust metic
provides a different aspect of the trustworthiness of a prediction.

1. Training Proximity Metric. Model output is trustworthy if P is close to a high density
region of training points. See Section[5.1.1}

2. Extrapolation Metric. If P is within the space of training points, regardless of class, the
classification is an interpolation, which can be trusted more than an extrapolation. See

Section[3.1.2]
69

3. Class Ambiguity Metric. Classification is less certain the closer P is to a classifier
decision boundary. See Section[5.1.3]

5.1.1. Training Proximity Metric

We consider the prediction for a point P to be trustworthy if P is near a cluster of training points
with the same class as the prediction for P. Figure [5-Th illustrates several possible cases. We
employ the HDBSCAN [18] clustering algorithm in our prototype implementation, although any
clustering algorithm could be used. HDBScan provides a measure of strengths of membership of
a point belonging to its closest cluster (if any is sufficiently close) as well as if it is an outlier
which we use as a measure of trust—stronger membership equates to higher trust. Default
HDBSCAN parameters were employed, except a minimum cluster size of 10 was employed. We
assume that smaller groups of points should be treated as outliers, and not especially trustworthy.
The HDBSCAN measure of strength is a value in the range [0,1], where O means the point is not
part of any cluster, and 1 means it belongs in the cluster.

0 0.5 1 15 2 25 3

Figure 5-1. a) Training Proximity Metric. Blue and orange training points are
from different classes; shaded regions denote their clusters. The green tri-
angle is well within the blue neighborhood; if the classifier assigns it blue, it
is highly trustworthy. The classification of the yellow diamond has less trust
as it is near both clusters. The purple square is not near either cluster, so its
classification is also not trustworthy. b) Extrapolation Metric. Points outside
the region are extrapolated, are considered less trustworthy. A point inside
the hull is an interpolation of multiple points, so its classification is regarded
as more trustworthy, regardless of it being assigned blue or orange. (Best
viewed in color)

70

5.1.2. Extrapolation Metric

We deem that classification from interpolation is more trustworthy than extrapolation. If the
classification is extrapolated, the user is trusting that the decision boundary is correctly extended
beyond the immediate influence of the training set. We distinguish interpolation from
extrapolation by whether the point lies in the convex hull of the training points. Our metric is an
approximation of the signed distance from the point to the convex hull boundary illustrated in
Figure [5-1b. By signed distance, we mean that points inside the hull report a negative distance.
Interpolated point values are in [—0.5,0], and extrapolated point values are in (0,c), because of
the normalization of the training data to the unit hypercube.

Computing convex hulls in high dimensions is computationally intractable [8]]. Fortunately, an
approximate distance is sufficient. Testing a point P against an n-dimensional convex hull can be
approximated by testing P against the hulls of multiple projections to lower dimensional

spaces [21]. For each projection, we compute the signed distance d from the projected test point
to the 3D hull of the projected training points. We report the maximum d over all projections.

If the point is outside the hull of any projection, the point is outside the n-dimensional hull. In
general, the signed distance in a projection is a lower bound on the true distance from the test
point to the n-dimensional hull. It is possible that the true distance is larger, and we might
misclassify outside points as inside, but the expected inaccuracy decreases the more projections
we use. We found multiple 3D projections is efficient and accurate; see Figure Here, we do
not examine all possible combinations of features, but consider the 1%-3" d features, then the
2d_4th features until the n', 1% and 2"? features are considered. The total calculation time is
linear in n. In this example, all “in” data points are correctly identified.

Percentage of Out Points Correctly Identified with N 3-D
Projections

30

40
—50
—60
—70
—80
—90

10 50 6 70 80 % w —100

Number of 3D Hulls Classified Against

Percentage of Correctly
Labaled "Out" Points

Figure 5-2. Extrapolation Metric categorization accuracy: inside (d < 0) vs.
outside (4 > 0). Training points are randomly generated in a unit hypersphere,
and test points in the enclosing unit hypercube. For each curve we use n 3D
convex hulls. We achieve 95 percent accuracy for the 20 dimensional case,
and near 100 percent accuracy for 60+ dimensions.

71

5.1.3. Class Ambiguity Metric

Intuitively, the area around a decision boundary exhibits higher uncertainty due to issues such as
underspecification [24]. As such, small changes in the feature values of the point can change its
classification. Given a point to be classified, P, and it classification C, we start by finding the
closest training point TP whose class is not C. A binary search between TP and P locates the
decision point, DP, where the classification changes from C to not C.

Inspired from foundational path planning in robotics that exploration of the space leads to better
solutions than direct optimization [61], we search near DP for a closer decision boundary point.
We choose a vector V with a random direction, and magnitude at most the distance from DP to P.
We add V to DP and then scale to ensure that the distance is at most the distance between DP and
P to produce a random point RP. If RP’s class is C, repeat until it is not C. We repeat searching
until the search budget is exhausted. The closest DP found during the search defines the
approximate decision boundary distance as illustrated in Figure [5-3]

@

Figure 5-3. Random line search for approximating the distance to the deci-
sion boundary. Given test point P (blue), the closest training point of a dif-
ferent classification is TP (orange). A line search between TP and P locates
DP, which is approximately on the decision boundary. Going in random di-
rections from DP locates RP with a different class than P. A line search from
RP locates DP/, which is closer to P than DP. This is repeated. In practice we
find a point on the decision boundary that is reasonably close to P.

5.1.4. Measuring the Trust of a Region

The above metrics for measuring the trust of the classification of a single point can be repeated to
measure trust over a region. There are many possible regions of interest and ways to define them.
One could consider the hypercube of the training points, or some subset or superset. If the test
points come from a known distribution, that could be used. Sample points can be randomly
located within a region, or on its boundary. The average, min, max, and other statistics of the
samples’ trust would define the trust over the region, with the understanding that this is an
approximation limited by discrete sampling.

72

5.2. Identifying Important Features

We provide a geometry-inspired measure of the importance of features (dimensions) depending
on point locations. The algorithm computes a vector from a point to the nearest point on the
decision boundary, as in the Class Ambiguity Metric in Section It ranks features according
to their relative magnitudes, with shortest vectors being most important.

This metric is well-defined for data consisting solely of continuum features, or solely of binary
and categorical features. Mixing continuum and non-continuum features require further study,
because it is unclear how to scale them for comparison. In particular, |P; — TP;| =1 for a
non-continuum feature j. We experimented with ranking features using the Training Proximity
Metric and Extrapolation Metric, but the results were not useful.

5.3. Synthetic Data Verification of the Trust Metrics

For verification of the metrics, we consider various synthetic data sets. The first type of data are
from geometric shapes, hyperboxes and hyperspheres. The second type are normal distributions,
with varying overlap. For every type we consider both 3D and 8D datasets, i.e. 3 features and 8
features. The training data consists of two classes. For hyperspheres, we also consider the effect
of including a third class Pluto far from the data of interest, to measure the effects of spurious
data. We test using data that consists of (1) Mid points midway between the distributions of the
two training classes; (2) In points near/in one of the classes within the training space; (3) Far
points on the far side of a class outside the training space; and (4-5) points A and B from the same
distributions as the classes in the training data. See Figures[5-4|and [5-5]and refer to them in the
following discussions about the experimental observations on the datasets. Specific details about
the training and test datasets are provided in Tables [5-1][5-2] and[5-3]

planeZ1
Mid

Pluto

planeZ0
In

Far

(a) Planes (b) Rings & Pluto

Figure 5-4. Synthetic closed-geometry training (red and blue) and test (black) sets. 2D
drawing of nD data, to scale.

Training classes nominally contain 1,000 points, depending on the dimension and type. Test sets
are all 100 points. Points on the hypersphere and hyperplane are selected uniformly at random.
The trust metrics were calculated on the data without normalization, since the data were designed
to be well-scaled already.

73

(

Far |, Mid Far

A B A B
|

n Mid

(a) Close (b) Far

Wide

Narrow

(M I
7w HlnJMicl

(c) Wide

Figure 5-5. Synthetic Gaussian training (red and blue) and test (black) sets. 2D drawing of
nD data, to scale. The solid circle indicates a radius of 1c.

Table 5-1. Training data locations.

Name Shape Dimensions Class Location
Planes hyperbox 3,8 Z0 z=0
Z1 z=1
Rings & Pluto hypersphere 3,8 Inner r=1
Outer r=2
Pluto r=05,z=12
Normals Gaussian 3,8 A z=0,0=1
Close B z=1,0=1
Far B z=2,0=1
Wide B z7=4,0=06
5.3.1. Synthetic Data Experimental Observations

This section describes the observations about the trust metrics on the synthetic datasets described
above. We expect that data from the In, Mid, and Far sets will have low trust by at least one
metric, but not necessarily by all three. We value the fact that the metrics measure different

74

Table 5-2. Training data sizes.

Name Dimensions Classes
#Points
Z0 Z1
Planes 3,8 1000 1000
Inner Outer Pluto
Rings & Pluto 3 400 1600 100
Rings & Pluto 8 20 1980 10
Rings & Pluto Dense 8 2.6k 83k 20
A B
Normals Close 3,8 1000 1000
Normals Far 3,8 1000 1000
Narrow Wide
Normals Wide 3,8 500 1500

Table 5-3. Test data location. Far outside the training data but closer to one
set, far from the other. In is closer to that other set in Rings. For the other
sets, In points are a subset of one class’s distribution. Mid is between the
two classes’ distributions. A is from the distribution of the first class, and
B is from the distribution of the second class. For planes, the In test data
is already in-distribution, and the classes are symmetric, so no A and B dis-
tribution test sets are needed. For Normals, the Far, In and Mid test sets
are (D — 1) hyperballs in the hyperplane with the given last coordinate. For
Normals, the Indistribution test sets are Gaussians with the same offset and
sigma as the training data. Each test data set has 100 points.

Name Shape Type Far In Mid Indistribution
A B
Planes hyperbox z= -05 0 05
Rings & Pluto hypersphere r= 25 05 15 1 2
Normals Close hyperball z= 05 0 05 O 1
Normals Far z= -1 0 1 0 2
Normals Wide 7= -2 0 2 0 4

things, and view this is a strength rather than a weakness. Our intention is that the synthetic data
tests would provide greater understanding of how different the metrics are from each other, and
what they are actually measuring. We discuss the experimental observations on each synthetic
dataset in the following sections. In each section we describe the data in more detail, expectations
and experimental observations.

Classifiers. We ran the experiments with two different classifiers. We used a Support Vector
Machine (SVM) classifier, with a Radial Basis Function (RBF) kernel, which we assumed would

75

be well suited for the rings and normals shapes. We also ran the experiments with a Random
Forest (RF) classifier.

Clusterer. We used the HDBScan density based classifier. We used default parameters except
a minimum cluster size of 10. When running it over the training data, we set the
prediction_data=True keyword argument so as to speed up subsequent queries over the
test data. We used the approximate_predict () function to evaluate the test points
strengths without changing the clusters.

Metrics. Recall the Training Proximity Metric is measured by the cluster membership strength
output by HDBScan. Higher strength is higher trust, assuming the cluster and the test point are of
the same class. Recall the Extrapolation Metric is the signed distance to the convex hull
boundary, calculated approximately through projections. A larger-magnitude negative distance is
farther inside and more trustworthy. Recall the Class Ambiguity Metric is the distance to the
decision boundary, approximated by the distance to the closest point we can find that is assigned a
different class by the classifier.

5.3.1.1. Planes

See Figure for a 2-dimensional representation of the datasets.

Data Description. The training points are in the [0, 1]° hyperbox. Each class is in a [0, 1]°~!
sub-hyperbox. The Z0 class has the last coordinate set to 0, and the Z1 class has the last
coordinate set to 1. The corners of the hyperbox for each class are explicitly added to the training
data. This makes the convex hull deterministically equal to the entire (D-1) dimensional
hyperbox, to avoid artifacts coming from the random point placement. The number of points in
each class is slightly higher than 1000: 1004 in 3D, and 1128 in 8D. The test data have the same
geometric shape and dimensionality as the training data. The Far test data are in the [0, 1]P~!
hyperbox with last coordinate -0.5; In has coordinate 0, and Mid has 0.5. See the Planes rows in

Tables and [5-3| for specific values.

Expectations. We expect that Mid test points are very close to the decision boundary, about
0.1 or less, and would have extrapolation distances in [-0.5, 0]. We expect that the In test points
are in the planeZ0 cluster and not outliers, and have a decision boundary score of about 0.5. We
expect the Far test points are outliers and have an extrapolation distance of 0.5 or slighty more.
We expect the 3D and 8D results to be comparable.

76

Observations. The numerical values for the trust metrics are shown in Table Generally
speaking, for the Planes with three features datasets the trust metrics matched expectations. For
the In test set, some data points had a lower proximity strength indicating that even when data is
drawn from the same distribution, there are cases where certain spaces are just not sampled very
well. The ramification of this is demonstrated when a model is trained on data in a closed set and
performs very well but performs poorly when deployed precisely because certain areas of the
input space are not well represented. For the Mid test set, half of the test points belong to one
cluster and the other half to the other and is represented with the lower proximity strength
scores.

Table 5-4. Experimental observations on the Planes data

D Metric Test Scores
Far In Mid
3 Proximity 0.13 [0.64, ~ 1] [0.13, 0.13]
Extrapol. Ave. 0.50 0 [-0.43, -0.0001]
SVM decision 0.99 0.50 ~0
RF decision 0.99 0.52 ~0
8 Proximity [0.48, 0.63] [0.65, 0.94] [0.58, 0.64]
Extrapol. Ave. 0.5 0 [-0.15, -0.001]
SVM decision 1.01 0.54 ~0
RF decision [1.01,1.04] [0.51, 0.55] ~0

It was unexpected that for the higher dimensional data, 8D vs. 3D, the training proximity strengths
are much higher for the out-of-distribution Mid and Far test data, and lower for the in-distribution
In data. Being lower for the in-distribution data is less troubling than being higher for the
out-of-distribution data. Overall, we have little insight into how to interpret the strength values,
how to compare the strengths between scenarios, or what a reasonable threshold might be.

For the case with eight features, there is a change in proximity strengths that demonstrate more
uncertainty. For the Far set of points, the values are around 0.5, all belonging to the cluster of the
plane closest to the far points. For the Mid set of points, the proximity values increase. While the
values are expected, the change in values represents a challenging problem in increasing the
feature size and requiring more data points to fully sample the space at equal density.

For both 3D and 8D, it was unexpected that the RF classifier would have such a crisp decision
boundary, and for it to be midway between the two classes, matching the location for the SVM.

The convex hull distances being closer to 0 for 8D compared to 3D makes sense, because there
are more coordinates so it is more likely at least one coordinate is close to O or 1, the convex hull
boundary.

The decision boundary distances are slightly higher in 8D than 3D. It may be because in 8D the
data are spread out so the first different-class point is farther away, and it is harder to search to
find the closest decision boundary point.

77

5.3.1.2. Rings and Pluto

See Figure [5-4b|for a 2-dimensional representation of the datasets.

Data Description. The training points are on a (D — 1) sphere, the surface of a D ball. For the
Rings datasets, the test data have the same geometric shape and dimensionality as the training
data; e.g. the rings’ test data are also from hyperspheres, with the same center, just different radii.
The Inner class has radius 1, and the Outer class radius 2; both are centered at the origin. The
Pluto class has radius 0.5 and center offset from the origin by 12 units in the last coordinate. For
the Rings and Pluto training sets, the same data points are used for the two rings; the only
difference is the inclusion of the far sphere of points making up the Pluto class. This avoids any
artifacts that might arise from changes to the random placement of the ring points. For 3D, Inner
has 400 points, Outer 1600 points, and Pluto 100 points. For 8D, the number of ring training
points remains at 2000, but Inner has 20 points, Outer 1980 points, and Pluto 10 points; the
relative density of each of the spheres is about the same. (This was done since we are using a
density-based clustering algorithm and varying densities does cause some problems as the
number of dimensions increases—a curse of dimensionality). For the 8D dense set, Inner has
2.6k points, Outer has 73k points, and Pluto has 20 points. Thus, the number of points relative to
the surface areas of the spheres is the same for the 8D Dense and 3D sets. The Far test data have
radius 2.5, Mid radius 1.5, and In radius 0.5; all are centered at the origin. See the Rings and
Pluto rows in Tables [5-2] and [5-3|for specific values.

Expectations. In, Mid and Far extrapolation distances should be about -1.5, -0.5, and 0.5.
None of the data points should belong to a cluster. Mid should have very small decision boundary
distance, close to 0, while In and Far should have distance about 1. We expect the inclusion of the
Pluto class to have little effect on the metrics, except some fraction of the Far points should
become inside the convex hull, with distance up to about -1. The 8D versions should have the
same behavior, up to the data being more sparse so there are more opportunities for randomness
to manifest.

Observations. Results are shown in Table The variance across the 100 test points for
most of the metrics was not large, so we usually only report the average values. The exception is
we report the min and max separately for the Extrapolation distances, because these varied
significantly within a test set. Unfortunately, including Pluto in the training data causes the
HDBScan clusterer to put the inner and outer training points into the same cluster. Then all the
Far-Mid-In test points belong to that cluster with strength 1. Our output being sensitivity to the
inclusion of spurious data like this is undesirable, yet insightful, shedding light on how effects of
the outlier data is not localized, but has global ramifications.

Rings 3D Mid Proximity was identical to Pluto 3D Mid Proximity: 65 points were in cluster 1
(outer) with average strength 0.66, and 35 points were in cluster O (inner) with average strength
0.61.

78

Table 5-5. Experimental observations on the Rings and Pluto datasets.
The average Proximity values include outliers as zeros.

D Train Metric Test Scores
Far In Mid Inner Outer
3 Rings Proximity 0.58 0.62 0.64 0.96 0.98
Extrapol. Ave. 0.51 -1.49 -0.49 -0.99 0.01
[min,max] [0.50,0.52] [-1.50,-1.48] [-0.50,-0.49] [-1.00,-0.98] [0.00, 0.02]
SVM decision 1.5 0.50 0.51 0.09 1.00
RF decision 1.18 0.58 0.28 0.14 0.72
3 & Pluto Proximity 0.58 0.62 0.64 0.97 0.98
Extrapol. Ave. 0.33 -1.52 -0.57 -1.09 -0.15
[min,max] [-0.68,0.52] [-1.87,-1.49] [-1.59,-0.49] [-1.75,-0.99] [-1.51,0.02]
SVM decision 1.51 0.50 0.51 0.09 1.0
RF decision 1.18 0.58 0.27 0.15 0.70
8 Rings Proximity 0 0 0.23 0 0.11
Extrapol. Ave. 0.28 -1.29 -0.50 -0.90 -0.10
[min,max] [-0.16,0.69] [-1.38,-1.21] [-0.74,-0.27] [-1.10,-0.75] [-0.40, 0.29]
SVM decision 1.96 0.79 1.17 0.85 1.55
RF decision 1.96 0.78 1.16
8 & Pluto Proximity 0 0 0 0 0.02
Extrapol. Ave. 0.26 -1.30 -0.52 -0.92 -0.13
[min,max] [-0.47,0.69] [-1.41,-1.21] [-0.79,-0.27] [-1.25,-0.75] [-0.88,0.29]
SVM decision 1.96 0.79 1.17 0.85 1.54
RF decision 1.96 0.78 1.16

For Rings 3D, and Pluto 3D, with SVM classifier, all Mid points were classified as Outer. The
data are consistent with a roughtly spherical decision boundary at radius 1.05, just beyond the
training set Inner class.

For Rings 3D and RF, of the Mid points, 95 were Outer, and 5 Inner. Of the Inner test points, 4
were classified as Outer. For Pluto, again 95 Mid and 4 Inner test points were Quter. The
decision boundary distances were slightly different when including Pluto, but not significantly.
The data are consistent with an undulating spherical decision boundary, at radius 1 to 1.5.

For Rings 8D Proximity, all Far and In points are outliers. Mid had 77 outliers, 22 in cluster 1
with strength 0.99, and 1 in cluster O with strength 1. Test points from the Inner distribution were
all outliers. For the Outer distribution test points, 89 were outliers, 10 were in cluster 1 with
strength 0.99, and 1 was in cluster 0 with strength 1.

For Pluto 8D, all Far, In, Mid, and Inner points are cluster outliers. 98 Outer points are outliers, 1
was in cluster “3” with strength 0.99 and 1 was in cluster “5” with strength 0.97.

For Rings 8D, the decision boundary metric had high variance for Mid, with the SVM having
range [0.70, 1.51] and average 1.17; and RF having range [0.67, 1.52] and average 1.16. For both

79

Rings 8D and Pluto 8D, all Far, In, Mid, Inner, and Outer test points were classified by the SVM
and the RF as Outer. Including Pluto did not significantly change the classifications or decision
boundary distances.

For a fixed classifier and dimension, the data are consistent with the decision boundary
resembling some sphere with noise. However, changing the classifier (SVM vs. RF), or using the
same classifier and changing the dimension (3D vs. 8D), often dramatically changes the decision
boundary’s apparent radius. In some cases it is very near the inner ring, sometimes near the outer
ring, and sometimes half-way between. The computed distances have high variance. In 8D the
descision boundary distances are a bit larger than 3D, as for planes as discussed in

Section[3.3.1.11

For training proximity strength, in 3D the results are at least self-consistent: high strengths near 1
for the in-distribution points, and strengths about 0.6 for the test rings radius 0.5 away from one
of the training classes. In 8D, almost all the training data and test data are outliers. The exception
is 4 of the test points in the outer-ring distribution have high strengths with the outer-ring class
cluster, and 1 of them has high strength with the inner cluster.

All the extrapolation scores make sense and are as expected. In 8D the variance is high, but the
average is about as expected for all test cases.

Including the Pluto training points had little effect, as we expected (and hoped). The only
significant difference is that in 8D, Mid test data, 22 / 100 points are considered part of a cluster if
Pluto is not present, whereas all of the Mid points are outliers if pluto is part of the training data.
It appears the HDBScan cluster is sensitive to including a cluster of outlying points.

In 8D rings, all test points were classified as Outer, perhaps because the Inner training data were
too sparse. This motivated the generation of the 8D dense Rings & Pluto.

5.3.2. Examination of Dense Rings & Pluto 8D

Here we investigate a denser version of the Rings and Pluto datasets. One of the major lessons
learned is that the dimensionality of the data dictates the amount of points that are needed to
understand the training space. If there are too few points, determining a good representation of
the space is difficult. Thus, in some of our studies we increase the number of data points to
created denser coverage of the space. Of course, this is not possible when working with
real-world datasets. That there might be too few points to describe the training space is an
important caveat to keep in mind when dealing with real-world datasets, and it may contribute to
the susceptibility to adversarial attacks of many high-dimensional models.

The Rings and Pluto 8D Dense training set has about the same number of points per unit
hyper-area as the 3D Rings and Pluto training sets, so one might hope to get similar neighborhood
trust scores. In practice it fell short of achieving this hope, but it did improved the results
compared to the 8D non-dense sets.

For Rings Proximity, Far had 3 outliers, and 97 points belonged to cluster 1; In had 100 in cluster
0; Mid had 23 in cluster O (inner) with average strength 0.73, and 77 in cluster 1 (outer) with

80

D Train Metric Test Scores

Far In Mid Inner Outer
8 Rings Proximity 0.72 0.87 0.85 0.94 0.95
Extrapol. Ave. 0.13 -1.49 -0.68 -1.08 -0.26
[min,max] [-0.17,0.48] [-1.56,-1.41] [-0.90,-0.46] [-1.23,-0.89] [-0.57,0.03]
SVM decision 0.97 1.1 0.09 0.62 0.45
RF decision 1.5 0.47 0.39 0.08 0.94
8 & Pluto Proximity 0.99 1 1 1 1
Extrapol. Ave. 0.11 -1.5 -0.7 -1.1 -0.29
[min,max] [-0.63,0.48] [-1.6,-1.41] [-0.97,-0.46] [-1.52,-0.89] [-1.08,0.03]
SVM decision 0.97 1.1 0.1 0.62 0.45
RF decision 1.5 0.47 0.39 0.08 0.94

Table 5-6. Rings & Pluto 8D dense experimental data.

average strength 0.89. For Pluto Proximity, Far, In and Mid test points were all assigned to
cluster 1 with very high strength.

For the SVM decision boundary, all Mid points were class Inner, regardless of Pluto. The other
test points were assigned the expected class by the SVM.

The RF assigned the same class to test points regardless of whether Pluto was included in the
training data, and the decision boundary distances were the same. All Far, Mid, and Outer test
points were classified as Outer. All In points were Inner. However, of the Inner test points, 26
were classified Outer, and 74 Inner; note the very small average distance to the decision
boundary, 0.08. The data are consistent with the RF decision boundary being roughly spherical
with radius undulating between 1 and 1.1.

5.3.2.1. Normals

See Figure[5-5|for a 2-dimensional representation of the datasets.

Data Description. The Normals training family consists of Close, Far, and Wide. There are
two classes. Class A is a normal (Gaussian) distribution with o = 1 centered at the origin. The
test data lie in hyberballs of one less dimension, in a hyperplane. For the Close and Far sets, class
B is the same normal distribution, ¢ = 1, offset 1 and 2 units in the z (last coordinate) direction.
For the Wide set, class B has 0 = 6 and is offset 4 units. The normals overlap significantly in the
Close and Far sets, and in the Wide set class A appears inside class B. In Close and Far there are
1000 points in class A and B; in Wide there are 500 and 1500 points.

81

Expectations. For two Normals Close and Far, the test points Far, In, and Mid should all be
interpolations with distances in [-1 , 0], depending on the random sampling. We do not know if
the clusterer will generate one or two clusters, since the normals overlap fairly strongly, especially
for Close. Mid points are close to being part of both clusters, so if there are two clusters, the
strengths should be the same. In should be part of the cluster of class A, and especially Far
should be part of cluster A (or outliers).

We expect the decision boundary trust to be small, since the distributions overlap, and the classes
are not well separated. Perhaps for class ambiguity trust Far > In > Mid. For two normals Wide,
Far, In, and Mid should be interpolations, up to random quirks. /n should be in the cluster of class
A (Narrow). Mid might be in the cluster of class B (Wide) or outliers. Far should be outliers. Mid
and Far may be close to the decision boundary. In should be farther from the decision boundary
than those other two. The 8D versions of should have roughly the same behavior as 3D, but, as
with Rings, the data are sparser so we do not expect the clusterer to work well. The decision
boundary trust might go up with the larger distances between points.

Train Metric Test Scores
Far In Mid A B
Close Proximity 0.98 0.99 1.00 0.99 0.97
outliers 75 38 23 86 82
Extrapol. Ave. -1.9 -2.3 2.4 -1.5 -1.5
[min,max] [-2.1,-1.58] [-2.6, -1.9] [-2.9,-1.9] [-2.7,0.21] [-2.9, 1.0]
SVM decision 0.20 0.19 0.04 0.29 0.34
[min,max] [0.04, 0.40] [0.05, 0.35] [1e-3, 0.10] [0.01, 1.2] [0.01, 2.6]
A,B 100, 0 100, 0 82,18 71,29 29,71
Far Proximity 0.93 0.93 0.94 091 0.94
outliers 7 20 3 69 68
Extrapol. Ave. 24 2.2 -2.5 -1.5 -1.5
[min,max] [-2.9,-1.9] [-2.6, -1.8] [-3.0,-1.9] [-2.9, 0.21] [-2.8,1.0]
SVM decision 0.78 0.32 0.05 0.52 0.5
[min,max] [0.38, 1.12] [0.16, 0.51] [0.03, 0.27] [8e-3, 1.9] [0.03, 3.1]
A,B 100, 0 100, 0 100, 0 84,16 10, 90
Wide Proximity 0.45 0.48 0.86 0.6 0.36
outliers 0 0 0 0 97
Extrapol. Ave. 9.1 -13.0 -11.0 -11.1 -8.5
[min,max] [-9.2,-8.9] [-13.8,-12.8] [-11.2,-10.8] [-13.1,-8.9] [-15.5,6.2]
SVM decision 0.9 1.1 0.7 0.8 7.4
[min,max] [0.46, 1.2] [0.69, 1.3] [0.4,1.2] [0.14, 1.4] [0.22, 25.5]
A,B 100, 0 100, 0 100, 0 100, 0 2,98

Table 5-7. 3D Normals experimental data. Here we report the Proximity strength averages
excluding the outliers. For the SVM and RF classifiers, we report the number of test points
assigned to each of class A and B.

82

Observations. Results on the normal datasets are provided in Tables and For
training set, Far test points, the RF did not separate the points well and had about half in each
class, with a very small distance to the decision boundary. This is similar to how RF behaved for
the Mid test points as well.

Train Metric Test Scores
Far In Mid A B
Close Proximity 1.0 1.0 1.0 1 1
outliers 92 52 29 99 99
Extrapol. Ave. -2.1 2.2 -2.1 -0.8 -0.8
[min,max] [-2.2, -1.7] [-2.5, -1.8] [-2.5, -1.6] [-1.9, 1.5] [-2.1, 1.2]
SVM decision 1.1 0.7 0.13 1.1 1.0
[min,max] [0.46, 1.4] [0.40, 1.3] [2e-3, 1.1] [Se-4, 2.6] [0.01, 2.1]
A, B 100, 0 100, 0 21,79 71,29 27,73
Far Proximity 1.0 1.0 1.0 1 0
outliers 35 51 37 99 100
Extrapol. Ave. -2.2 -2.2 -2.2 -0.8 -0.8
[min,max] [-2.5,-1.8] [-2.5,-1.9] [-2.5,-1.9] [-1.9, 1.5] [-2.1, 1.2]
SVM decision 1.5 1.2 0.1 1.4 1.3
[min,max] [1.0,2.0] [0.8, 1.7] [0.01, 1.1] [0.02, 3.4] [0.09, 2.8]
A, B 100, 0 100, 0 0, 100 87,13 14, 86
Wide Proximity 0 0 0 0 0
outliers 100 100 100 100 100
Extrapol. Ave. -10.2 -14.0 -12.1 -11.8 -4.0
[min,max] [-10.5,-10.0] [-14.2,-13.8] [-12.3,-11.9] [-13.6,10.0] [-11.4,7.2]
SVM decision 5.2 4.1 5.5 4.1 11
[min,max] [4.4,6.0] [3.6,4.7] [4.9, 6.0] [2.2,6.0] [1.3, 23]
A, B 100, 0 100, 0 100, 0 100, 0 0, 100

Table 5-8. 8D Normals experimental data. Here we report the Proximity strength averages
excluding the outliers.

For 8D Close Normals, Proximity metric, Far test points, the 8 non-outliers were split between 2
in cluster “0” and 6 in cluster “1.” For the In test points, the 48 non-outliers were split between 25
in cluster “0” and 23 in cluster “1.” For the Mid test points, the 71 non-outliers were split between
22 in cluster “0” and 49 in cluster “1.”

For 8D Far Normals, Proximity metric, Far test points, the 65 non-outliers were split between 36
in cluster “0” and 29 in cluster “1.” For the Mid test points, the 63 non-outliers were split between
37 in cluster “0” and 26 in cluster “1.”

For 8D Wide Normals, HDBScan formed no clusters, so all test points were automatically
outliers. For RF, all Far, In and Mid points were classified as class A (Narrow). Unfortunately,
the decision boundary distance was larger for Far and Mid, indicating more trust than for the In
points, but the In points are located within the class A (Narrow) distribution, and Far and Mid are

83

not. A possible explanation is that since the class B (Wide) normal 1-sigma ball contains the class
A (Narrow) normal 1-sigma ball, there may be many class B (Wide) test points near the Mid test
points. Thus either the classifier or the metric failed to perform as desired in this case.

5.4. Experimental Results on PDFrate

We examine the GeoTrust metrics using the task of identifying malicious PDFs where the features
are not intuitive and false negative can be very costly to an organization. We use the PDFrate
dataset [[108] following their implementation of using a random forest (RF). There are 2 datasets,
“Contagio” which is a large academic dataset that has been used in several studies and
“University” which was collected from monitoring HTTP and SMT traffic and can be considered
operational data. We also examine EvadeML which is a set of detection evasion data points: all
are malicious PDFs that are evading detection and represent a high-consequence risk if they go
undetected [26]. The RF classifier performs well on the training set (here, we use all of the data
for training) and about half of the EvadeML (53%) ans well as the University data (57%) bypass
detection, representing a serious problem for a cyber defender.

Results for the GeoTrust metrics using the RF classifier are summarized in Table and yield
interesting insights. (1) The Training Proximity Metric identifies all of the evasion attempts as
outliers. This can be seen visually in Figure[5-6| where the data is projected to 2 dimensions using
t-SNE. Visualizing the data makes it apparent that there is good class separation between the
malicious and benign data points (left) and that the evasion attacks are not near the training data
(right). (2) The Extrapolation Metric identifies all of the evasion data points as extrapolations.
This was surprising as we suspected that adversarial attacks would be designed as interpolation in
an attempt to hide but this examination indicates that the attacks are actually occurring in
dimensions and at magnitudes which make them extrapolations. This is also apparent in the
visualization. (3) All of the data points have similar distances to the decision boundary. Again,
based on our visualization, this is intuitive. However, we would have suspected that the
adversarial attacks would have appeared closer to the classification boundary but rather form their
own clusters. (4) The RF classifier does not generalize well to the operational data. This is a
common problem when deploying learned models that have been developed on hand curated data
sets. They often perform poorly when deployed to operational data. The GeoTrust metrics
indicate that they too are significantly different from the training data, and the classifier performs
poorly—achieving slightly better accuracy than EvadeML.

5.5. Comparison with Out-of-Distribution Methods

We compared our out-of-distribution detection methods against several leading publications.
Specifically, we test against baseline (maximum softmax probability) [43]], outlier exposure [44],
and DeepMCDD [62].

84

t=ne-2d-twa

tsne-2d-two

15

10

15

10

-5

labels

0 5 10
tsne-2d-one

a

i

labels
e 00
10

-15 =10 -5 0 5 10
tsne-2d-one

b

Figure 5-6. t-SNE projection of the PDFrate data. a) Malicious vs benign. The
0 label represents the benign class while 1 represents malicious. It can be
seen that there is some class separation. b) PDFrate vs Evade. The 0 label
represents the evasion attack points and the 1 label represents the original
PDFrate data. Visually, it is easy to see that the evasion attacks occur in less
populated regions of the input space.

85

15

Table 5-9. Summary of the trust metrics on the PDFrate data set. The average
Training Proximity Metric is the strength values returned by HDBscan where
1 indicates a strong relationship with a cluster and 0 represents an outlier.
The Extrapolation Metric indicates the distance from a convex hull around the
training data. A value of 0 indicates that the test point is on the convex hull.
The Class Ambiguity Metric indicates the distances from the classification

boundary.

Trust Metric Contagio | University | EvadeML
Avg Training Proximity Metric | 0.742 0.091 0
Max Extrapolation Metric 0 1.118 0.729
Min Extrapolation Metric 0 0 0.055
Avg Extrapolation Metric 0 0.002 0.084
Max Class Ambiguity Metric 0.342 0.330 0.273
Min Class Ambiguity Metric 0 0 0
Avg Class Ambiguity Metric 0.019 0.002 0.017

5.5.1. Maximum Softmax Probability

In [43] they present a simple baseline for detecting if an example is misclassified or
out-of-distribution that utilizes probabilities from softmax distributions. The basis is on the fact
that correctly classified examples tend to have greater maximum softmax probabilities than
erroneously classified and out-of-distribution examples, allowing for their detection. To get the
baseline score, they retrieve the maximum/predicted class probability from a softmax distribution
and thereby detect whether an example is erroneously classified or out-of-distribution. For “In,”
they treat the in-distribution, correctly classified test set examples as positive and use the softmax
probability for the predicted class as a score, while for “Out” they treat the out-of-distribution
examples as positive and use the negative of the aforementioned probability.

5.5.2. Outlier Exposure

The outlier exposure method uses outside datasets to make classifiers robust against bad inputs. In
[44]], they train models to detect unmodeled data (ood) by learning cues for whether an input is
unmodeled. Specifically, they found that the model can learn effective heuristics for detecting
out-of-distribution inputs by exposing the model to OOD examples that are entirely disjoint from
test-time data. Additionally, they train their model without tuning parameters to fit specific types
of anomaly test distributions, so their results are not directly comparable with other OE-based
method results.

5.5.3. DeepMCDD

DeepMCDD [62] is an effective method for OOD detection. This method aims to find a spherical
decision boundary for each class instead of focusing on the linear decision boundary that
partitioning its latent space into multiple regions. The key idea is try to make the latent

86

representations of data sample in the same class to form an independent sphere of minimum
column. That means they can model discriminative class-conditional distributions by learning
multiple Gaussian distribution instead of the hyperspheres. Based on learned distribution, they
calculate the class-conditional probabilities of input X from each class. Distance function Dy
based on k-th class conditional distribution is:

Dg(x) = —log P(x|y = k)
=—log N (f(x;#) | .Uk,szl)

~ f(xs#) — el |2
207

+log G,f

The class label of input sample is predicted based on the highest posterior probability.

5.6. Implementation

The Synapse deep learning cluster was used for the testing platform of the different methods.
After downloading the files from their respective Github repositories (DeepMClel, MSP/OEEI),
they were tested for use-ability. Specifically, we ran the given examples in the repositories and
checked that the results matched what was reported in the papers.

After verifying the methods were working as reported, we tested the methods on detecting
malicious PDFs from the PDFrate dataset [[108]]. The PDFrate datasenly had one test, with the
Contagio dataset being used as in-distribution and the EvadeML [[126] dataset as
out-of-distribution.

The outlier exposure github repository provided network architecture for the image tests. In order
to create a neural network that was able to accurately classify a PDF as malicious or not, we
completed neural architecture search on the Contagio dataset using Auto-Keraﬂ After getting the
best performing hyperparameters and model architecture, the network was built out in PyTorch
and trained on the Contagio dataset. After training, the network was able to classify the Contagio
dataset as being malicious or not with 98% accuracy.

5.7. Results

Results are shown in Table [5-10] for the compared OOD methods on PDFrate. We first note that
all of these results are preliminary. It is difficult to do a direct comparison since the GeoTrust
metrics are designed provide a measure of trust rather than a binary decision. However, for

"https://github.com/donalee/DeepMCDD
Zhttps://github.com/hendrycks/outlier-exposure
3https://github.com/csmutz/pdfrate/
“http://autokeras.com/

87

completeness, we include these results and allow extrapolation. We observe that all three methods
are able to achieve some success in detecting EvadeML.

Table 5-10. Contagio Dataset Results. TP: correctly predicted ood at re-

call=0.95
ID Method OOD FN | TN FP TP | AUROC | AUPR
Classifier MSP Evademl | 840 | 1271 | 8729 | 15937 | 79.05 86.70
Contagio OE Evademl | 840 | 2815 | 7185 | 15937 | 58.99 91.01
DeepMCDD | Evademl | 858 | 28 | 9972 | 15919 96.28 58.29

If we take the liberty to extrapolate, even just using the Training Proximity Metric, we can
conclude in this case that GeoTrust is able to identify all of the adversarial attacks. Likewise, just
using the Extrapolation Metric, all of the EvadeML data points are outside of the convex hull. Of
course, this merits additional investigation, but initial results are promising and coincide with
many bold claims in the literature the nearest-neighbor methods are robust to adversarial attacks
(84, 121} 153].

5.8. Future Work

HDBScan clustering. The 8D rings vs. pluto, cluster proximity failed to be informative
about classification trust in both the original (sparse) and the dense variation, finding no clusters
in the first, and one giant cluster containing both inner and outer classes in the other. The fact that
throwing in 20 outliers (pluto) into a pool of 85k points changed the clustering reduces our
confidence that HDBScan’s strengths can be meaningfully interpreted across scenarios.
(HDBScan’s clustering strengths can often distinguish between nearby and far-away test points
for a fixed set of training data. What is unclear is whether the strengths for one set of training data
can be compared to the strengths for another set of training data.)

Preliminary research indicates that tuning the HDBScan parameters may be helpful. Specifically,
using a minimum cluster size of 10 is clearly not the best for all data. As base-level heuristic,
adjusting the minimum cluster size to get a “reasonable” amount of outliers seems to be be a first
pass. Another possibility to examine the trust metrics is a lower-dimensional space. We find this
line of research promising as there exists a niche research line examining the robustness of
distance-based measures [84, 121, 53]]. One major hurdle is the curse of dimensionality requiring
significantly more points as the dimensionality increases.

Class-specific Clustering. We conjecture that additional information can be gained by
clustering the classes of a training set separately, and computing the neighborhood metric on each
class-clusterer. For example, if a test point is classified as A but its strength of belonging to every
class A cluster is low, but it strongly belongs to a class B cluster, then we would have lower trust
in its classification as A.

However, initial experiments were not successful. We tried the Rings 3D data, building one
HDBScan clustering based on just the Inner points, and one on just the Outer points; we call

88

these the trained clusterers. Each trained clusterer calculated all Far, In, and Mid point strengths
as outliers, not belonging to any cluster. While not informative, this is also not unreasonable.
However, even the in distribution test points were calculated as outliers, which we consider a
failure.

It appears that having two distinct distributions helps the clusterer identify them. For future work,
we could try parameter tuning. We could assume that the class-specific clusterer should cluster
the majority of the training points, and tune the parameters until this occurs.

For future work, we also wish to consider clusters trained pair-wise. E.g., train one clusterer on
Inner and Pluto, one on Outer and Pluto, and one on Inner and Outer. For each cluster, identify it
as the class of the majority of its points. (If a cluster has no clear majority, this already informs us
we should have less trust in the data, since the classes are mixed.) Then, e.g., for a test point
classified as Inner, compute its strengths on the Inner-Pluto clusterer and the Inner-Outer cluster.
We would have higher trust if the strengths are stronger for the Inner class clusters. It seems like
what we really care about it density in a space. In ML, we often are so concerned about class
imbalance, but density may be more important as shown in the 2 rings experiment with 2.6k and
83k points in the different classes.

Training Class Overlap. We had not specifically considered training class overlap in our
initial development of the trust metrics. We hypothesize that we can easily convey this measuring
class-specific convex hulls and determining if a data point is simultaneously in multiple class
specific convex hulls. A similar notion is applicable for the class-specific clustering. Of course,
for this to be effective, we would need to preprocess the data to remove outliers (possibly
mislabelled data points).

5.9. Conclusion

The GeoTrust metrics for measure the trust of machine learning classifications and encompass (1)
nearness to training points, (2) interpolation/extrapolation of training points, and (3) distance to
decision boundary. While we demonstrated the utility of such an approach, there are limitations.
As the number of dimensions increases, distances are less meaningful and more expensive to
compute; these are part of the “curse of dimensionality.” As part of future work, we are also
looking to extend these methods to more traditional image processing and text spaces, where
distances between images, for example, is difficult to calculate.

89

6. USER STUDY RESULTS

This chapter details the user studies that we conducted:

1. User Study 1: General user study to determine initial observations on the impact of
explanations and to determine the best ways to present explanations in terms of the number
of features and how to represent them.

2. User Study 2: Specific application of explanations integrated into an real-world workflow
(in this case an Enterprise Cybersecurity operation).

3. User Study 3: Follow up research comparing different types of users (model developers
and maintainers versus cyber analysts).

In user studies 2 and 3, the number of participants is low and thus qualitative analyses are used.
Our overall conclusions are relatively negative for MLE. In many cases, the explanations are not
used and do not appear to increase a user’s trust in an ML model. We propose that alternative
methods should be researched as simply providing important features as proposed in much of the
literature is insufficient.

6.1. Sage Advice? The Impacts of Explanations for Machine Learning
Models on Human Decision-Making in Spam Detection [[]

The use of machine learning (ML) algorithms to aid human decision-making is growing in
popularity and is increasingly used in high-consequence applications. As such, it is important to
have confidence that the ML model appropriately models the given task. ML explainability [[16] is
an increasingly popular topic in ML that seeks to build confidence in a ML model by providing
explanations for individual predictions in the form of additional information that indicates why
the prediction was made. An end user then uses the provided information for improved
decision-making. However, how to present the explanation and the efficacy of an explanation on
human decision-making is lacking.

There is much debate in the explainable ML community regarding what constitutes a good
explanation (e.g., [6}74]). Two possible definitions include: “the degree to which a human can
understand the cause of a decision” [[/4] or the degree to which a human can consistently predict
the model’s result [S54]. Additionally, Molnar [[76] suggests in his book that some properties of
good explanations are that they should be accurate, consistent, stable, complete, and

'Mallory C. Stites, Megan Nyre-Yu, Blake Moss, Charles Smutz, and Michael R. Smith. Sage Advice? The Impacts
of Explanations for Machine Learning Models on Human Decision-Making in Spam Detection. In International
Conference on Human-Computer Interaction, pp. 269-284. Springer, Cham, 2021.

90

“comprehensible.” Molnar [76] has posited that “human-friendly” explanations are: contrastive
(i.e., why was this output chosen instead of another), selected (i.e., not the full list of causes for a
decision), social (i.e., are designed with the target audience in mind), and focused on the
abnormal (i.e., counterfactuals, or what would need to change about the input the change the
output). However, being able to assess whether the end user of a system correctly understands the
cause of a decision depends on the creator of the model also being able to understand the cause of
those decisions, which is not often the case, especially with complex models.

A growing body of work has begun to investigate the attributes that make an explanation useful
from the end-user’s perspective. Because most ML applications are created to help a human
operator complete a task or make a decision, these studies investigate the extent to which
explanations from the ML improve the human’s ability to accurately and efficiently complete
their intended task. Although the individual tasks used differ widely, most of these studies start by
measuring how well users can perform the task without model output (as a baseline). They then
manipulate some aspect of model output shown to users (i.e., the presence of a suggested
classification or correct answer; model confidence; values on features that were important in the
model decision; feature importance) in order to measure whether the additional model
information improves performance relative to baseline. Most previous studies have found that
providing a decision from the model improves performance relative to having no model decision
[37,156, 160, 22]. Presenting information about model confidence and/or overall model accuracy
also improves performance [60]]. Providing users with more information from the model leads to
greater reliance on the model’s decisions, even when the information provided is random or
incorrect [[17,160]. There have been inconsistent findings as to whether the addition of Shapley
Additive Explanation (SHAP) values, showing the importance of each feature to the model’s
decision, affects participant performance. At least one study found that providing SHAP values in
addition to feature values and model confidence did not affect accuracy in a classification task
[[123]], whereas a different study shows that giving users feature importance values did improve
accuracy in a model judgement task [[114]. Showing users graded highlighting of important terms
(in a text-reading task) or pixels (in a visual search task) based on model confidence of
importance of those regions improved decision-making relative to single-color highlighting that
ignored model confidence [56,160]. Showing users more complex explanations may decrease their
satisfaction with the model [79], and cause a drop in task performance [51]]. Although user
satisfaction is not a direct impact on performance accuracy, it may play a role in model adoption
or trust.

However, there are a few gaps relating to these studies that make it difficult to confidently
generalize findings or draw consistent conclusions. For example, many of the previous studies do
not provide information about the experiment-wise accuracy of the model used. Many previous
studies provide users with real output from models, which tend to be highly accurate (e.g., 87%
accurate; [60]]), meaning that most of the model predictions being shown to users in these studies
are correct. This could skew results by seeming to show that presenting participants with model
in-formation always improves performance, when what the results may really show is that
providing predictions from a reliable model improves performance. Most studies also fail to
describe the nature of the errors the model made. Based on findings from the trust in automation
literature, it has been shown that if an automated system makes errors that the human analyst can
easily recognize, this will degrade their trust in the system (for reviews, see Hoff and Bashir [46];

91

Schaefer, Chen, Szalma, and Hancock, [[101]). If certain types of decision errors carry different
consequences in the operational task being performed—Ilike missing a weapon in a bag screening
at a TSA checkpoint, or a malicious email making it through a firewall—users might be more
reluctant to trust certain decisions from a model due to the high cost of an incorrect decision.
Indeed, Perkins, Miller, Hashemi, and Burns [88] have found that people rely less on an
automated system for decision-making when greater risk is involved. For many applications, the
ML explanation becomes increasingly important in cases for which the model has low
confidence. Human operator involvement is heavily biased toward the difficult (low accuracy)
cases, which are likely ambiguous in some way. For this reason, it is also important to account to
task differences, as well as individual familiarity or expertise with the task. For example, Feng
and Boyd-Graber [30] found that experts and novices in the game QuizBowl benefitted from
different types of assistance given by a ML model. In general, people are less likely to use
automation to complete a task if they are highly skilled at the task already [[100] or have high
self-confidence in their completion of the task [25]. Moreover, trust in an automated system can
depend on both individual differences in trust in automation generally [23]] as well as experience
with a specific system [128]]. Understanding how different trust levels in users may impact their
reliance on a model is critical to creating ML models that users will actually use.

The current study was motivated by the development of sensitivity analysis guided explanations
that would be generated to help users understand how the features of a single data point
contributed to the model’s decision for that data point. The intended end-user group is a
cybersecurity intrusion detection team. This team manually re-views ambiguously malicious
emails that are flagged based on several security measures to determine whether they are indeed
malicious. The goal of the explanation is to increase the efficiency and effectiveness of analysts
by providing information about which features the ML model used to classify an email as
malicious or benign.

As such, the current study investigates the decision-making impacts that different aspects of a ML
explanation have on how users understand and use the outputs from ML explanation methods in a
simulated spam detection task. We will operationalize explainability via task performance: if a
model explanation improves a user’s task performance relative to a baseline condition in which
they did not receive an explanation, we will assume that the additional information provided by
the model improved explainability. The current study examines the 1) impact of the presentation
of the explanation and 2) characteristics of the ML model and user trust.

The presentation of the explanations examines whether the number of features and the
visualization type of these feature importance values from the explanation of a machine-learned
black box model impacted human decision-making. Specifically, we predict that if showing
participants more features from the model improves performance, then we will see higher
accuracy for both the three- and seven-feature conditions relative to baseline, and potentially
higher accuracy for the seven- versus three-feature condition. We also predict that if visualizing
the feature importance values graphically rather than numerically decreases cognitive load and
makes it easier comprehend the explanations, then we will see higher accuracy in the graph versus
numerical table visualization conditions.

The characteristics of the ML model and user trust examines the types of decisions made by
the model (i.e., hit, false alarm) as well as the overall model accuracy (i.e., 50% overall accuracy

92

vs 88% overall accuracy). This will allow us to investigate the interactions between visualization
type, decision type, and model accuracy on user performance. Decision type and model accuracy
have not been systematically investigated in the previous literature; controlling for these factors
will enable us to extend our understanding of this potentially complex interplay. In conjunction,
we will measure user trust in the model using the Trust in Automation scale [49] that was created
specifically to measure trust in XAl applications. We will use this scale to assess whether
behavioral differences are ob-served among individuals reporting different levels of model trust;
for example, we would predict a higher level of compliance with model predictions for people
with high trust versus low trust in the model.

6.1.1. Method
6.1.1.1. Participants

Participants were recruited through Amazon Mechanical Turk, following protocols approved by
the Sandia Human Studies Board. Participants provided informed con-sent electronically by
entering the current date. Data was collected from 222 participants. Data from three participants
was excluded because they completed the study more than once; an additional 19 participants
were excluded for missing more than one catch trial. The final dataset contained 200 participants.
No demographic data was collected about participant’s age or sex. However, in order to have a
Mechanical Turk Account, individuals must be at least 18 years of age, and the researchers placed
an additional restriction to only recruit individuals in the United States. Participants were paid
$2.50 USD for participation in the study, based on pilot tests indicating that the task would take
approximately 15 minutes or less to complete.

6.1.1.2. Materials

Email Stimuli. Stimuli consisted of 80 emails (40 spam and 40 not spam) gathered from several
sources, including being drawn from the preexisting “Enron’ dataset [7]. Thirteen binary features
were created to describe the emails, based on similar features that appeared in other spam datasets
as well as relevance to the current stimulus set and their ease of interpretation to end users (e.g.,
email contained spelling errors, urgency was implied). Binary yes/no values for each feature were
manually assigned to each email. The full set of feature names is listed in Table[6-1] as well as the
proportion of stimuli that had a “yes” value for each feature.

An initial set of 102 emails (50 spam, 52 benign) was used to train the classifier. A Random
Forest ensemble classifier was trained on this derived dataset and the popular explainability
library SHAP (based on game theoretic Shapley values) was utilized to generate realistic
importance values for each feature in the model’s classification decision for each email [69, [86]].
The model achieved 97% accuracy, correctly classifying 48/50 spam emails and 51/52 benign
emails. From this dataset, 40 spam and 40 not spam emails were chosen as experimental stimuli,
on the condition that 1) the model accurately classified it, and 2) the sender and subject line could
not be immediately recognized as spam (i.e., from “MARK ZUCKERBURG”).

93

Table 6-1. Feature counts across the stimulus set. Features marked with *
indicate that the feature was as a “stimulus information feature,” and was
presented on each trial regardless of experimental condition.

Percentage of Stimuli with a
Positive Value on Feature

Feature Name

Spam Not Spam
Email contains Link* 0.88 0.28
Email contains Attachment* 0.05 0.18
Email contains Photo* 0.48 0.30
Email Sender + Address match 0.20 1.00
Email contains Spelling errors 0.25 0.08
Email contains Grammatical errors 0.53 0.13
Email contains Punctuation errors 0.38 0.08
Email recipient name is mentioned 0.23 0.50
Email contains Symbols (e.g., Greek letters) 0.10 0.05
Email contains high count of “!” 0.08 0.08
Email contains high count of # sign 0.03 0.03
Email contains signature 0.13 0.30
Email urgency is implied 0.60 0.05

A base stimulus was created for each email, consisting of the Sender Name, Subject Line, and
information regarding whether the email contained a Link, Attachment, and/or Photo (with a yes
or no response for each; see Figure [6-1). This was to ensure that participants saw a minimal
amount of information on each trial that could enable them to make a reasonable decision about
the email without additional information from the model. All stimuli were shown with a
prediction from the model (Spam or Not Spam), which was correct for 40/80 of trials in the 50%
model condition, and 70/80 trials in the 88% model condition. On 80% of trials, participants also
saw additional information from the model. We manipulated the number of features shown to
participants from the model (0, 3, or 7). When model features were shown, we also manipulated
the manner in which the feature importance values were visualized (graph or table). This resulted
in ten visualization conditions (for each combination of model prediction accuracy, number of
features, and visualization type). As such, ten versions of each email were created, with one level
each of model decision accuracy (Correct, Incorrect), model feature number (0, 3, or 7), and, if
features were shown, a feature importance visualization type (graph, table). Ten experimental lists
were created to allow each stimulus to rotate through each of the conditions across participants.
This ensured that idiosyncratic effects of individual stimuli were not confounded with
experimental condition.

Within an experimental list, each participant saw 80 trials: 40 spam and 40 not spam emails.
Within email type, each participant saw 8 trials per condition (i.e., 3 Features-Graph-Correct, 7
Features-Incorrect). Overall model accuracy was manipulated as a between-subjects factor. For
participants in the 50% model accuracy condition, half of the trials within each visualization
condition were shown with the correct classification and half with the incorrect classification. For
spam emails, this means that participants saw a correct classification from the model for half of

94

Spam © Mt Sgam Span @ kot Spam

Figure 6-1. Example stimuli used in experiment. The left panel is an example
of the 3 feature table condition; the right panel is an example of the 7 fea-
ture graph condition. The “email header info” and “email content info” were
displayed on every trial, as was a model prediction.

Table 6-2. Trust in Automation Scale
Question Number Question Text
I am confident in the [tool]. I feel that it works well.
The outputs of the [tool] are very predictable.
The tool is very reliable. I can count on it to be correct all the time.
I feel safe that when I rely on the [tool] I will get the right answers.
The [tool] is efficient in that it works very quickly.
I am wary of the [tool].** [Reverse scored.]
The [tool] can perform the task better than a novice human user.
I like using the system for decision making.

01NN AW

the trials (i.e., Hit), and an incorrect classification for half (i.e., Miss). For benign emails,
participants saw a correct classification form the model for half of the trials (i.e., Correct
Rejection) and an incorrect classification form the model for half of the trials (i.e., False Alarm).
In the 88% model accuracy condition, seven of the eight trials within each model visualization
condition were shown with the correct classification, and one with the incorrect classification.
Across both model accuracy conditions, incorrectly classified trials were shown with the same
features and feature importance values; only the model’s decision was reversed.

Additional Questions. The Trust in Explainable Artificial Intelligence Scale (Hoffman et al.,
2018) was also collected to allow us to measure the impact of individual differences in trust on
model reliance. This scale consists of eight questions/statements that individuals respond to with
a 5-point Likert scale ranging from 1 (Strongly Disagree) to 5 (Strongly Agree). The questions
are listed in Table[6-2] Numeric scores associated with the Likert ratings were summed (question
6 was reverse-scored) to generate a single composite score for each individual.

Each participant was also asked to answer three additional questions: 1) which visualization they
found most helpful for decision making, 2) which visualization they found least helpful for
decision making, and 3) how frequently they thought the model gave the correct prediction
(Almost Never, About 25% of the Time, About 50% of the Time, About 75% of the Time, or
Almost Always).

95

6.1.2. Procedure

Participants’ task was to decide whether an email shown to them was Spam or Not Spam by
clicking a radio button next to their preferred response (see Figure [6-1). After agreeing to the
informed consent and clicking through the instruction screens, stimuli were presented in a random
order. Each stimulus remained on the screen until the participant made a decision. Interspersed
with the 80 experimental trials were eight catch trials, to gauge participant engagement. The catch
trial overtly indicated which response the participant should choose (half required a Spam
response, and half required a Not Spam response). If any participant missed more than one catch
trial, their data was removed from analyses and they were replaced. Participants were offered a
break screen every 22 trials, which were untimed and remained on the screen until the participant
clicked a button to proceed. The average time from when the task was started to task submission
was 46 minutes (min = 4 minutes, max = 176 min, SD = 44). Task completion times vary widely
because participants were given several opportunities for untimed breaks, or could click away
during any trial; as long as they submitted the task within three hours of accepting it they would
receive credit.

6.1.3. Results

Data was cleaned in a two-step procedure. First, extremely long trials (e.g., 30 minutes) were
excluded from analysis, as the indicated that the participant was not engaging in the task during
those trials (e.g., they may have stepped away from their computer, given the online platform).
Secondly, trials with response times longer than 3 SD above or below an individual’s mean and/or
longer than 20 seconds were discarded from analyses. In total, 240 trials were removed from
analyses based on these criteria (70/200 participants had no trials excluded; 124/200 participants
had between one and three trials excluded; 6/200 participants had between 4-5 trials excluded; no
participants had more than 5 trials excluded from analyses).

6.1.3.1. Effects of Visualization

Our first question asked whether there were accuracy differences by visualization type, overall
model accuracy, or their interaction. An analysis of variance (ANOVA) was conducted with the
within-subjects factor of visualization type (5 levels: baseline, 3-graph, 3-table, 7-graph, 7-table)
and the between-subjects factor of model accuracy (2 levels: 50% vs 88%). Mean values are
listed in Table[6-3] The analysis found a significant main effect of model accuracy (F(1,198) =
82.08, p < .001). Overall participant accuracy was higher in the 88% model accuracy condition
than in the 50% model accuracy condition (Figure [6-2)). There were no effects of visualization
type nor interaction between visualization type and model accuracy (Fs < 1, ps > .53). Our
prediction that showing users additional model information would improve accuracy was not
sup-ported by the data.

Next, we asked whether there were response time differences by visualization type, overall model
accuracy, or their interaction (see Table [6-3). For this and all RT anal-yses, only trials that
participants answered correctly were included in analyses. A similar ANOVA was conducted as

96

Table 6-3. Mean accuracy and response times by visualization type and
model accuracy condition.

Model Accuracy Visualization Accuracy Response Time (ms)
Condition Condition Mean SD Mean SD
Baseline 0.57 0.11 3803 2187
3 Features - Graph 0.57 0.13 4033 2511
50% 3 Features - Table 0.57 0.12 4071 2659

7 Features - Graph 0.57 0.12 3994 2372
7 Features - Table 0.58 0.13 4193 2733

Baseline 0.73 0.18 3823 2348
3 Features - Graph 0.74 0.18 4211 3035
88% 3 Features - Table 0.74 0.18 4024 2551

7 Features - Graph 0.72 0.17 4158 3057
7 Features - Table 0.74 0.18 4217 3163

L

i

Mean Accuracy

[=]
(5]

T T
0% BE%

Model Percent Accuracy
Figure 6-2. Mean accuracy for each of the model percent accuracy condi-

tions, collapsing across visual-ization condition. Accuracy was significantly
higher in the 88% than 50% model accuracy condition.

97

r

Mean RT (ms)
[

(=]
P

T T T T T
Baseline 3 Fealures 3 Fealures 7 Fealures T Fealuras
Graph Table Graph Takde
“isualization Condition

Figure 6-3. Mean RT for each visualization condition, collapsing across
model percent accuracy. RTs were significantly longer in the 7 feature ta-
ble condition than baseline.

described above, including only RTs for correct trials. The analysis found a significant main
effect of visualization condition (F(4,792) = 2.74, p < .001), but no effect of model accuracy nor
interaction between the two (Fs < 1, ps > .84). Follow-up pairwise comparisons between the
visualization conditions, collapsing over model accuracy, found that the baseline condition was
significantly faster than the 7-feature-table condition (Figure when using the Bonferroni
correction for multiple comparisons (t(199) = 2.95, p < .05). This is perhaps unsurprising, as the
7-feature-table condition showed users the most information, and so longer re-sponse times would
indicate that they look longer to read the information. Our prediction that explanations presented
in graphical format would be easier to read, and thus take less time, was not supported by the
data.

6.1.3.2. Effects of Trial Type

Our second overall question was whether participant accuracy differed for different trial types
(e.g., hit, miss), and whether this interacted with overall model accuracy (e.g., 50% versus 88%).
Mean accuracy is shown in Figure [6-4] A repeated measures ANOVA was run with the
within-subjects factor of Trial Type (4 levels: hit, miss, false alarm, correct rejection) and the
between-subjects factor of Model Accuracy. There was a marginal effect of model accuracy
(F(1,198) = 3.24, p = .07), a significant main effect of model output type (F(3,594) = 159.76, p <
.001), and importantly, a significant interaction between the two (F(3,594) = 4.22, p < .01).
Follow-up pairwise comparisons were conducted to explicitly test how participant accuracy
within trial type differed based on the overall model accuracy. As seen in Figure accuracy
was numerically higher in the 50% model accuracy condition for the hits and correct rejections,
whereas accuracy was higher in the 88% model accuracy condition for false alarms and misses.
For false alarms, this difference in accuracy reached significance (t(198) = -3.22, p < .01). This
effect could indicate that when the model was general-ly reliable and false positives were rare,
people were better able to recognize this mod-el error and respond correctly than when this error
was common.

Next we separated the data into visualization conditions to understand the effect of visualization
type on the observed effects of trial type and overall model accuracy. We ran a mixed ANOVA,
with the within-subjects factors of Visualization Condition and Trial Type, and the

98

Ll

=1
|
h
H
Ll
B

=]
Ex

=]

]

h
e

Mean Accuracy
=™
==
"

=]
=

Miss False Gorres Hit
Jarm Bjection
A Rgject

Trial Type

Medel Percent Aceuracy [50% O Ra%

Figure 6-4. Mean accuracy by trial type and model percent accuracy, col-
lapsing across visualization condition. Accuracy for false alarm trials was
significantly higher in the 88% than 50% model accuracy condition; no other
pairwise comparisons reached significance.

o

[=]
.
—

Mean Accuracy
o
(% |
—
o

[=]
[=1

S0% BE%
Model Percent Accuracy

Wisualizalion 2 Fealures 3 Fealures ¢ Frzalures ¥ Feabures.
Cordion D Bazeing | | Graph Tabla Grapn Tabla

Figure 6-5. Mean accuracy for Miss trials only, by visualization condition
and model percent accura-cy. In the 88% model accuracy condition, accu-
racy was significantly higher in baseline than all other conditions (except
3-features-graph).

between-subjects factor of Model Accuracy. This analysis showed a 3-way interaction
(F(12,2196) = 2.20, p < .01), indicating that the effects of trial type and visualization type were
different within the different model accuracy conditions. As such, we conducted follow-up tests
to assess the effect of visualization condition within each level of model accuracy and trial type.
This enabled us to understand how the model visualization type impacted accuracy for each trial
type and accuracy level separately. One particularly interesting effect emerged, especially in light
of the cybersecurity focus of the task, for which miss trials would carry high consequences. For
miss trials in the 80% model accuracy condition (shown in Figure [6-5]), we observed the highest
accuracy in the baseline condition, with significantly lower accuracy for all other conditions (ts >
3.30, ps < .05) except the 3-table (t(84) = 2.53, p = .13). These findings suggest that when the
model was overall “good” but missed a target, people were less likely to detect this error when the
model provided more explanation information, relative to the no-explanation baseline.

6.1.3.3. Individual Differences in Model Trust

Average trust scores were calculated for each of the two model accuracy conditions, and
interestingly they were almost identical across the two conditions (50% Model Accuracy: Mean =

99

Table 6-4. Likelihood of compliance with model’s prediction by model trust
score and overall model accuracy.

Trust Score Model Percent Likelihood of compliance with

Median Split Accuracy the model’s prediction
Mean SD
. 50% Accuracy .76 .19
High Trust — gcor Accuracy .75 19
50% Accuracy .72 A7
Low Trust 88% Accuracy .76 A5

29.4, SD =2.5; 88% Model Accuracy: mean=29.2, SD=3.0). We divided participants into High
Trust and Low Trust groups based on a median split of trust scores (Median = 29) in order to
examine group-level behaviors of people who reported different levels of trust in the model.

We looked at how trust and overall model accuracy interacted with whether people complied with
the model’s decision, and how quickly they did so. First, we examined the likelihood of model
compliance for high versus low trust individuals in the 50% model accuracy versus 88% model
accuracy conditions (see Table[6-4)). Numerically, low trust individuals were more likely to
comply with the model’s prediction in the more accurate than less accurate model condition,
whereas high trust individuals did not show this pattern. However, a between-subjects ANOVA
with factors of Trust (2 levels: High Trust, Low Trust) and Model Percent Accuracy showed that
neither main effect was significant, nor was there an interaction (all Fs < 1, ps > 0.35).

We also examined response times for trials on which individuals did or did not comply with the
model’s decision, across different levels of Trust but collapsing across model accuracy (see Figure
[6-6). Thirteen individuals were removed from this analysis because they either always complied
with the model’s decision (10 participants) or never did (3 participants). A mixed ANOVA was
conducted, with the within-subjects factor of Model Compliance (2 levels: Complied with model,
Did not com-ply with model) and the between-subjects factor of Trust. Results showed a main
effect of Trust (F(1,185) = 4.66, p < .05), and a main effect of Compliance (F(1,185) = 18.65, p <
.01), but no interaction between the two (F(1,185) = 0.001, p = 0.99). These findings indicate that
all participants were slower to respond when they did not com-ply with the model’s prediction
than when they did comply, and that low-trust individuals were generally slower to respond than
high-trust individuals regardless of whether they complied with the model or not.

6.1.4. Discussion

This study investigated the impact of different types of ML explanations, the accuracy of a ML
model, and a user trust in the ML model on user performance in a simulated spam detection task.
Results showed that people performed the task with higher accuracy when they saw a more
accurate model, but there was no overall effect nor interactions with feature number or feature
importance visualization on accuracy. Response times were longer in the seven-feature table
visualization than baseline, but this was likely driven by the additional time needed to read the
extra information on the screen, as these increased response times did not correspond to an

100

BR
—~

» T
= 4000 T I
o
20600
:I T T
High Trust Low Trust
Trust in Model

. Complied with Did not comply
Maodal Compliance D madel D with model

Figure 6-6. Mean RTs for trials in which people did and did not comply with
the model’s prediction by model trust median split.

accuracy difference. In general, our prediction that showing participants additional information
regarding feature importance values would improve performance above and beyond the baseline
condition, in which a model decision as provided with no explanation, was shown to be invalid.
More interestingly, when considering different trial types (e.g., hits, false alarms), we found
effects of overall model accuracy and interactions with visualization type in participants’ ability
to identify and overcome certain model errors. Participant accuracy for false alarms was better in
the 88% accurate model condition than the 50% accurate condition. In other words, participants
were better at correctly responding “Not Spam” to a false alarm made by the model in the 88%
model accuracy condition, in which false alarms were rare. On the surface, this seems to run
counter to some findings in the psychology literature that subjects will tend to miss rare events
(Rich et al., 2008). However, it could be the case the participants implicitly learned the map-ping
between the email header info and Spam/Not Spam categories across the course of the
experiment, especially when the model was highly accurate, and thus created reliable schemas to
help them correctly categorize these emails despite the incorrect model prediction. Future work
should determine whether this effect is replicable and its cognitive underpinnings.

Moreover, within the 88% accurate model condition, participants were more likely to comply
with incorrect “Not Spam” model predictions (i.e., miss trials) when the model provided more
explanation information, compared to the no-explanation base-line. This is consistent with
previous findings that users are more likely to rely on a model when more information is provided
about its decisions [17,160], regardless of whether that information is correct or not. Because this
result was only observed in the highly accurate model condition, it raises risks regarding the
implementation of such models in high consequence workflows. Caution should be exercised
before as providing users with detailed ML explanations from accurate models, as it could
overinflate compliance with model decisions, leading to missed targets.

Finally, we observed differences in behavior based on individual differences in model trust.
Although all participants exhibited longer response times when they did not comply with the
model’s prediction, people reporting low trust in the model exhibiting longer response times than
those with high trust regardless of whether they complied with the model’s decision. This
suggests that those with low model trust may have spent this additional time viewing the model’s
explanations and factoring that into their response choice. Future work should further investigate
which aspects of ML explanations may engender higher or lower levels of trust, in order to help
users develop appropriate trust and reliance on the system. Interestingly, we did not find

101

differences in the likelihood of model compliance across users with high and low trust. This may
indicate a strong bias to comply with a model’s prediction, especially in an ambiguous task for
which the user may have low confidence or little prior experience. Future work should investigate
the factors that influence whether an individual complies with a model they believe to be
incorrect, again in the service of helping users develop appropriate levels of trust and reliance on
models deployed in high-consequence decision-making.

Our study is not without caveats. Because our data was collected online via Amazon Mechanical
Turk, individuals in our study sample were likely novices with respect to both machine learning
and cybersecurity. It is possible that findings may be different if we were to test an expert
cybersecurity team, as they would have relevant domain knowledge to draw upon regarding the
likelihood of certain email features being associated with malicious emails. There are aspects of
our task that may have increased its difficulty or limited the usefulness of explanations, such as:
limited context regarding the email (only saw features describing the email, not the actual text);
forced binary choice (instead of ability to explore more features of the email to follow-up on
model’s prediction); or lack of feedback to users regarding task accuracy. It was also the case that
our “incorrect” model decision trials used the same features and weights as in the correct
instances, but just reversing the classification decision. Future work could train a model that
actually misclassifies certain stimuli in order to produce more realistic feature weightings to use
in misclassification decisions.

Our findings suggest that the efficacy of machine learning explanations for task completion
depend, minimally, on the nature of the task, the overall model accuracy, the types of errors likely
to be made by the model, and the user’s trust in model. Future work should continue to explore
how ML explanations impact human decision-making to ensure that the information provided
does not hurt the human analysts’ ability to perform high consequence tasks.

6.2. Lessons Learned from xAl Deployment in a Cybersecurity Operations
Setting

Rapid improvements in artificial intelligence (AI) techniques have resulted in significant increases
in their usage in a diverse and expanding set of applications. While original successes were in
domains with fairly low consequences such as product and movie recommendations, Al
algorithms are being used in increasingly higher-consequence applications such as medical
diagnoses [28]]. Wide-spread use is limited, however, as there is a recognized need to trust and
understand the Al models before they are deployed and integrated into larger systems. In
response, several explainable Al (xAl) techniques have emerged [4] to build trust and ensure that
the models are fair.

Applying Al models in cybersecurity operations settings is a new and growing area, with strong
emphasis on overcoming inefficiencies and uncertainties and improving overall incident response
performance. Cyber-attacks result in loss of monetary resources and/or system resource
availability. These attacks are increasing in volume and sophistication. Al methods offer
improvement to the defense of cyber infrastructure, resulting in the preservation of significant
resources. Al has been investigated in several cyber domains including malware detection [91]]

102

and malicious PDF detection [108]. xAI has been examined systematically using deep learning
methods in cyber defense [[122]], but independent of the cybersecurity analyst.

We examined the use-case of AI models with explanations for identifying malware in a computer
network defense setting. Attacks that occur on enterprise networks are of such a large scale that
automated techniques are needed to help manage the attacks. Given the high impact of false
negatives, cybersecurity analysts are highly skeptical of automated tools. To increase the
productivity of the cybersecurity analysts, the Al model not only needs to be robust and reliable,
but also the cybersecurity analyst needs to trust the model to make effective use of its output.
However, Al and XAl methods are often deployed without evaluating how they affect the overt
decision process.

This chapter details a case study examining the usefulness of XAl techniques integrated into the
workflow of cybersecurity analysts. In this setting, the cybersecurity analysts need to not only
identify malicious artifacts, but also provide reasons why they are malicious. Hence, the goal of
providing xAI methods is two-fold: to help scale with the increasing number of malicious attacks
and to point to why the artifact is malicious as part of a cybersecurity analyst’s workflow.

To assess human decision making when presented with model explanations, a user study was
conducted with a broader population beyond cybersecurity analysts [[112]. The study revealed that
when making a decision about a potentially malicious stimulus participants often agreed with the
xAl outputs, indicating high inherent trust in the model. We also found that the number of
features presented was not a significant factor in the decision to agree with the model’s
recommendation or not.

The next step was to understand the use of XAl in a cybersecurity context with real analysts. To
evaluate the effectiveness of the model and explanations, we planned to collect objective and
subjective measures from actual end users in a live security setting. We planned to compare
decision behaviors of analysts before and after the XAl deployment to determine if, and how
much, cybersecurity analysts trusted and/or used the outputs.

When deploying these techniques in the real world, there were many decision points and limiting
or confounding factors that had to be considered to conduct an evaluation of the new tool. This
paper describes our evaluation and deployment of the XAl tool, as well as the lessons learned
along the way about how cybersecurity analysts in general interact with XAl in real time. This
paper does not focus on the visualization methods and design by which the xAI tool would
display information to the human user. Rather, we present findings related to practical
deployment of the tool. We also provide a list of considerations for Al developers and explanation
designers that will help guide decisions during this process. Here we used TreeSHAP [68]], but
any xAl tool that provides feature importance for a prediction could be used.

Research Question: What practical considerations should be considered when developing and
deploying Al and xAl tools in high-consequence, live settings?

103

v W e rane oo, Fuplanatian Toar file:
...... L e T

Thisx sample way predicied to be: Benige

Figure 6-7. Obscured representation of the xAl tool output when expanded
by analyst.

6.2.1. Methods
6.2.1.1. Evaluating Effectiveness of Al Tools

Cybersecurity analysts working in real-world incident response teams must make fast triage
decisions using multiple pieces of information often including AI model outputs. In this use case,
cybersecurity analysts triage multiple alerts to determine if flagged activity is actually malicious.
Our goal was to evaluate the efficiency and effectiveness of a single Al model output in the
context of incident handling before and after an xAl tool was introduced. We collected (1)
instrumented data throughout each of two time periods: pre-xAl tool and post-xAl tool
deployment, and (2) survey data from analysts after deploying the xAl tool. A visualization of the
current XAl tool is shown in Figure 1.

The goal of the user study is to better understand the process used by cybersecurity analysts when
promoting an alert and whether the analyst complied with Al model output. Data collection was
programmed on the backend of existing cybersecurity tools to prevent the interruption of analyst
workflow. Instrumented data collection included when/if an alert was promoted, model output,
how the cybersecurity analyst interacted with the alert, and other activities performed on each
alert. For the post time period, data indicating whether an analyst opened the xAl tool was also
collected.

To understand the trust level of and satisfaction with explanations from xAl, end user perceptions
were measured in a survey via two scales: the Trust Scale Recommended for xAl and the xAl
Explanation Satisfaction Scale [48]]. The Trust Scale measures whether end users are confident in
the XAl tool, and whether the xAl tool is predictable, reliable, efficient, and believable. The
Explanation Satisfaction Scale captures end users’ judgments about the XAl tool. The
cybersecurity analysts were invited to complete an online, 16-item questionnaire including these
two scales after at least one week of working with the xAl tool.

6.2.1.2. Al Tools in a Live Security Setting

We identified some important attributes about the operational cybersecurity environment we
studied to provide some context. First, there is a high cost of undetected malware. Intrusion
detection systems are tuned to be sensitive because the cost of undetected malware can be

104

extremely high. Second, intrusion detection systems include multiple, sometimes partially
overlapping, alerting criteria. Third, within this context there is a bias towards hard cases; easily
detectable malware is automatically mitigated with existing tools and, therefore, not triaged.
Samples triaged by analysts are harder to classify and often involve contradictory predictions
from competing (and highly accurate) mechanisms. Fourth, to automatically process files with Al
algorithms, there is a semantic gap between real-world interpretation and low-level feature space
for learning-based intrusion detection systems [106]. In other words, the interpretation of feature
space is not self-apparent (such as is the case with some image classification problems) [[110].
Notably, in the team we studied, the individuals who triage alerts are largely disjointed from
individuals who maintain the AI models.

It was very challenging to collect data in a scientific way to assess the usefulness and efficacy of
using XAl This is a known challenge in cybersecurity operations settings [47], and we adopted
knowledge already learned when constructing our hypotheses and initial research questions about
the tool. However, as we devised the plan for collecting data towards answering those research
questions, we discovered additional factors that refuted initial assumptions about how the tool
would be used. Factors included:

Decision task and alternate decisions support paths. The analysts use the
classification output from the AI model with other alert data to make a decision about an event;
they may not regularly question the classification output. To mitigate this, we captured data from
before/after the tool was deployed to see if including explanations changes analyst behaviors. We
seek to capture measurements such as if the explanations are expanded and average response
time. We also made the visual presentation of explainability more palatable compared to previous
versions, which did not organize or present explanations in ways that could be quickly utilized
during the decision-making process.

Workflow. Much of the information cybersecurity analysts use to make a triage decision exists
in a central incident handling tool, with little navigation required within the dashboard to find
decision-critical information. This is a standard workflow in cybersecurity operations settings,
and thus perhaps less critical for our own studies. However, user workflow should be considered
prior to deployment of XAl techniques in some fashion to understand potential friction points for
adoptability.

Tool separation/location. The xAl tool exists outside the main dashboard where analyst
conclusions are registered; it is located in a supporting software program which requires pivoting
to engage with it. While this program is routinely accessed by analysts, the addition of the tool
was not immediately obvious. To mitigate this, we (1) hosted training with the analysts so they
would be able to locate the xAl tool, and (2) created an interface feature (Figure 1) to increase
salience of the new xAl tool.

105

Number of end users and their roles. In our scenario, there is an assigned primary
incident responder per week causing turnover and rotation within the group of users whose roles
differ regarding decision-making about an event. To mitigate this, we include all users who
interact with the explainability tool, not just the incident responders who are primarily responsible
for incidents in a given week.

6.2.2. Results

We collected instrumented data without interrupting the incident handling context with and
without xAl tools. We then measured user trust and perception of usefulness of the xAl tool.

As described in Section[6.2.1] quantitative data were collected continuously over the course of
several months; we monitored this data stream to capture a pre-deployment baseline of existing
tool use and post-deployment data to ensure the XAl tool was working properly. Data were
collected for 36 days pre-tool implementation and 43 days post-tool implementation. A total of
2834 unique alert IDs that were triggered by the macro or pdf_url classifier were included in the
data. Of the 2834 alerts, 17 were promoted to events which are the focus of this analysis

(Table [6-5).

One hypothesis we had was that the availability of a novel explainability tool would change the
likelihood of an analyst seeking out an explanation from ML models. Surprisingly, we discovered
that users were not interacting much with the existing tool or the new tool. As shown in Table [6-5]
out of 9 events that occurred pre-explainability tool, the pre-existing explanation tool was opened
2 times (22%). Of 8 events post-explainability tool, the new explanation tool was opened 2 times
(25%). Why were these analysts not often opening the explanations, even prior to the
implementation of a novel explainability tool? A shift in thinking allowed us to appreciate the key
finding in the pre- deployment data: the targeted analysts did not use explanations in their daily
workflows. Moreover, the placement of a new tool in an inconspicuous location will further
decrease the likelihood that users engage with the tool and relying on training to overcome that
limitation is an insufficient strategy.

Another hypothesis was that the introduction of the explainability tool would change the length of
time it took for an analyst to make a decision and close the event. When investigating this
hypothesis we considered only the events where the explainability tool was opened and found that
the average length of time (in minutes) for the 2 events pre-explainability tool (where the existing
tool was used) was 85 minutes, whereas for the 2 events post-implementation the average time
was 724 minutes. Note that one event post-tool was open for more than one day (Table [6-6).

We thought that an analyst’s rate of compliance with the model output might change depending
on whether they were using their old tool, or the new tool to view the model explanation. In this
case, of the four events (pre- and post- tool period), the analysts agreed with the classifier output
and in the fourth instance the classifier’s output was uncertain (Table [6-7). We could not detect a
difference pre- and post-tool.

106

Table 6-5. Data collected from 17 SCOT entries. LB=LaikaBoss

Period | Opened | Classifier| Analyst| Time (notes) Total Analysts
Expla- Predic- | Agreed | Event SCOT | with
nation in | tion with Open Event | SCOT
LB Classi- | (min- Views | Enttries

fier utes) Count

Pre-Tool | N malicious| Y 0.50 19 1
Pre-Tool | N benign Y 30554.9| 21 days | 31 1
Pre-Tool | N benign Y 39.9 22 1
Pre-Tool | N benign Y 11.7 21 1
Pre-Tool | N benign Y 217.8 27 0
Pre-Tool | N malicious| Y 35.5 21 1
Pre-Tool | Y benign Y 120.7 60 2
Pre-Tool | N benign Y 9.9 32 0
Pre-Tool | Y malicious| Y 48.3 18 0
Post-Tool | Y uncertain | N/A 52.0 43 1
Post-Tool | N malicious| Y 0.87 11 0
Post-Tool | N benign Y 5.55 10 0
Post-Tool | N/A benign Y 8.3 LB 77 1

was not

opened
Post-Tool | N benign N N/A Still 85 1

under

inves-

tiga-

tion/no

close

time
Post-Tool | Y benign Y 1395.7 | 1 day 27 2
Post-Tool | N benign Y 7.55 16 1
Post-Tool | N malicious| Y 79.0 26 2

Table 6-6. Time to close events where explanations were viewed.

Period | Time Event Open (minutes) | Average Time Event Open
Pre-Tool 120.7 35
Pre-Tool 48.3
Post-Tool 52.0
Post-Tool 1395.7 724

107

Table 6-7. Analyst agreement with classifier in events where explanations
were viewed.

Period | Classifier Prediction | Analyst Agreed with Classifier?
Pre-Tool benign Y
Pre-Tool malicious Y
Post-Tool uncertain N/A
Post-Tool benign Y

Table 6-8. Unique analysts with SCOT entries for events where explanations
were viewed.

Period | Total SCOT Event Views | Analysts with SCOT | Average Unique An-
Entries Count alysts with SCOT
Entries
Pre-Tool 60 2 ’
Pre-Tool 18 0
Post-Tool 43 1
Post-Tool 27 2 1.5

When thinking about an event, multiple analysts can add information into the event log via the
SCOT tool. We wondered if events where an explanation was viewed would have a different
number of unique analyst entries. In Table [6-8] we show that there is no difference.

Finally, we thought that analysts might more often view an event if an explanation was opened at
all. We found very little difference in the number of SCOT event views during the pre-tool phase
versus the post-tool phase (Table [6-9).

Also as described in Section qualitative data were collected in the form of an online survey
sent to N=11 analysts. Questions probed user trust and perception of usefulness of the xAl tool
[49] (questions listed in Table[6-2), one analyst responded to the request, are listed in table[6-10]
The one respondent disagreed strongly with the statement, “This explanation of the model shows
me how accurate the model is”, and agreed strongly with, “From the explanation, I understand
how well the model works.” Due to small sample size we were unable to analyze our
instrumented event data by an average trust score.

Table 6-9. Number of total SCOT views for events where explanations were

viewed
Period | Total SCOT Event Views | Average SCOT Event Views
Pre-Tool 60 39
Pre-Tool 18
Post-Tool 43 35
Post-Tool 27

108

Table 6-10. Survey data from one analyst (of 11 possible, response rate =

9%), n = 1.
Question Response Numerical Rating
Q.1.1 I am confident in the explainability | I agree somewhat 4
tool. I feel that it works well.
Q.1.2 The outputs of the explainability | I’m neutral about it 3
tool are very predictable.
Q.1.3 The tool is very reliable. I can count | I’'m neutral about it 3
on it to be correct all the time.
Q.1.4 I feel safe that when I rely on the | I agree somewhat 4
explainability tool I will get the right an-
SWers.
Q.1.5 The explainability tool is efficient | I agree somewhat 4
in that it works very quickly.
Q.1.6 I am wary of the explainability tool. | I’'m neutral about it 3
Q.1.7 The explainability tool can perform | I agree somewhat 4
on the task better than a novice human
user.
Q.1.8 I like using the system for decision | I agree somewhat 4
making.
Q.2.1 From the explanation, I understand | I agree strongly 5
how the model works.
Q.2.2 This explanation of how the model | I’'m neutral about it 3
works is satisfying.
Q.2.3 This explanation of how the model | I agree somewhat 4
works has sufficient detail.
Q.2.4 This explanation of how the model | I disagree somewhat 2
works seems complete.
Q.2.5 This explanation of how the model | I disagree somewhat 2
works tells me how to use it.
Q.2.6 This explanation of how the model | I agree somewhat 4
works is useful to my goals.
Q.2.7 This explanation of the model | I disagree strongly 1
shows me how accurate the model is.
Q.2.8 This explanation lets me judge | I disagree somewhat 2

when 1 should trust and not trust the
model.

109

6.2.3. Discussion

Despite our efforts to understand analyst interaction with the system using unobtrusive data
collection, we faced several challenges in deploying the tool in a live setting. Due to the chosen
location of the tool, we expected some level of low engagement. To mitigate this risk of low
familiarity with the tool’s existence, we conducted a single-day training, which covered an
overview on the tool’s user interface, as well as a tutorial on its operational use. However, not all
analysts were able to attend the training, and some analysts identified this as the reason they did
not use the tool.

The explanation capability was added to existing intrusion detection systems with the assumption
that understanding model rationale would help with triage tasks. One of the core insights gained
is that this is a false premise. Taking the time to understand the rationale of one of many possible,
and often contradictory, detection mechanisms is not necessarily the most efficient path for triage.
This is especially true when analysts have other sources of information available to them that are
more easily consumable, including the observation itself (e.g., the file that might be malware) and
data views that have been developed based on analyst feedback. To some degree, performing the
same manual analytic steps on samples regardless of alert source might ensure consistency and
help prevent analytical bias.

The xAl tool targeted analysts based on the hypothesis that improved understanding of the
model’s decisions would increase analyst confidence and improve overall performance. Due to
widespread skepticism amongst security analysts, this hypothesis made sense: provide more data
such that their skepticism is satisfied. However, we believe that injecting a new xAl tool over
existing models that analysts already trusted impact our ability to detect gain in confidence and
reduction of skepticism.

We were also prepared to face challenges related to the environment in which the xAl tool was
deployed. Though we found this to be not as relevant for our use case, the context of the xAl
deployment may impact its usefulness and adoptability. Security incident responders are known
to experience high load of alerts, and are subject to different kinds of cognitive biases when
interacting with intrusion detection systems [64]. These settings have a history of high turnover
and burnout [[12, 95]], and judgments about alerts are often made with pressure from long queue of
alerts or time expected to make a decision [89]. More relevant to our use case was that the actual
workflow of incident response analysts did not include validation of detection mechanism outputs
(xAlI or not), and rationalizing those outputs is not an efficient path.

Our own efforts resulted in some lessons learned for deploying AI models “in the wild”, which
might be useful for others developing xAl for use in real-world settings. The study originally
aimed to conduct more controlled field experiments, which quickly evolved into tool
improvement. Over the period of about 6 months, we were forced to modify our original study
design to the extent that we developed new research questions and pursued entirely new studies.
For some researchers, these changes represent some level of risk, which we believe can be
mitigated by learning from studies like ours and considering certain design and deployment
elements before commencing data collection.

110

Table 6-11. Practical considerations for xAl deployment

Practical Considerations Supporting Questions
Who uses the model outputs, and in what way?
Who are your end-users? How does the xAl tool help them accomplish their goals?

With respect to explainability, who critically questions how
the model works (within their normal workflow)?

What is the context in which | Do environmental pressures counteract the availability of
the model is deployed? the model?

Are the features, feature names, and visual representations
of explainability relevant and meaningful in this context?
What is the relative risk of | How does the risk of model inaccuracy impact the end user?

the model being wrong? What are the consequences of trusting the model?

What is the risk of the expla- | How does an unclear explanation impact the end user?
nation being unclear or in- | What are the consequences of presenting a poor or incorrect
correct? explanation?

We learned that our user base seemingly trusts the output of the Al model to the extent that they
do not explore provided novel explainability tools, similar to previous conclusions on non-expert
users [11]. Further investigation revealed that incident responders, or the people who are making
decisions from the Al outputs (and a suite of other tools), are not interested in validating the
model. However, this realization led us to consider two new questions: (1) who would validate
the model outputs, and thus potentially benefit from XAl tools, and (2) how can the incident
responders still contribute to the quality of Al explanations?

We found that Al model maintainers, or the experts tasked with training AI models and
monitoring their performance, are more invested in verifying model outputs for the purpose of
improving model accuracy. Accordingly, we have pivoted our efforts to understand that user base
better. Future research also includes exploring the second question of increasing input from
incident responders into Al tools without interrupting normal workflow.

We also learned that the context in which the XAl tool was deployed dictated how much it might
actually be used and for what purposes. Though most of this lesson was learned through literature
review, we still found that some aspects of context impacted how we deployed the XAl tool. For
instance, we considered how the presentation of information in the explanations could be
improved such that the outputs were meaningful to the target users. Additional contextual factors,
such as time pressure, task volume, and consequences of trusting xAl tools, were found to be less
critical for our use case but should be considered for researchers and developers planning to
deploy such tools in real environments. Based on the above lessons learned, we offer
considerations for developing and deploying XAl tools in live contexts. The questions in Table
[6-1T]can help guide decisions and mitigate risks during various stages of technology transfer.

111

6.2.4. Conclusions

While conducting a study aimed to understand if cybersecurity analysts would benefit from an
xAl tool in a real-world setting, we learned that a team of cybersecurity analysts seemingly trust
the output of the AI model and do not explore the provided explanations. Rather, other existing
tools are used to validate the output of Al models. In this context, the use of the output from the
Al classification model was embedded in cybersecurity analysts’ main workflow, while the use of
the new xAl tool was not.

We identified considerations that researchers and developers can integrate into current processes
to design and target better XAl tools for more successful technology transfer. Additionally,
examining real-time, nonintrusive data from instrumented backend data collection is a great
means to understand if and how end users are using an XAl tool. Ultimately, considering the end
users and their context early in the process reduces risks and impact of unidentified challenges.

6.3. Explainability for Model Maintainers

6.3.1. Objective and Research Question

The user study conducted in the cybersecurity operations setting revealed several facts about
MLE, one of which was that the incident handlers are one of at least two (2) possible user groups.
The second user group is comprised of model maintainers who are responsible for building,
training, and maintaining (or updating) machine learning (ML) models deployed in the incident
handling domain of cybersecurity operations. To better understand this user group and capture
new potential requirements for the explainability tool, we conducted a third, short study using
nonexperimental exploratory methods. Our research question for this study was:

How do model maintainers (and related supporting roles) interact with the model and
explanation?

All of the examples relate to using the open-sourced PDFrate dataset, but are applicable to
specific models used within a defined workflow.

6.3.2. Method

The population of model maintainers is even smaller than the incident handling group with a total
of three (3) persons who could conduct this job. However, as our findings reveal, the roles of
these individuals vary greatly. To capture a wide variety of potential factors, we conducted
one-hour semi-structured interviews with the model maintainers (n = 3) following a set of
questions developed to understand roles and goals of each participant. The interview protocol is
included in Appendix [E]

The qualitative interview data was analyzed by one researcher with experience in qualitative
coding and analysis. Statements from the participants were identified by thematic interest and
summarized in the findings. Due to low sample size and high variation across the sample, we

112

present this research as useful insights for current and future work as it pertains to ML models in
practice. However, our research findings should not be interpreted as generalizable beyond the
operational environment from which they were collected.

6.3.3. Findings
6.3.3.1. Roles

Each of the participants had different roles when interacting with an ML model of interest.

The first two participants had supporting roles that aid incident handlers when needed, improve
the model through identification of specific samples, and help monitor the model’s performance.
In addition to this support, both participants had unique roles supporting at least one additional
facet. The first participant had deep knowledge of underlying models and had a major role in
creating the ML model. This knowledge helps this person identify specific samples for model
maintainers to consider, ensuring coverage of new/emerging threats. The second participant had
some knowledge of underlying models and fills an analyst role in addition to supporting model
maintainers. This unique role is to try to make the model more usable to analysts. This person’s
prior experience as an analyst helps in understanding how ML inference can be used to make
decisions for specific observations.

The main model maintainer role is held by a single individual. The scope of their work includes
developing classifier algorithms, identifying new features, building a process for training and
testing, deploying a ML model, and model maintenance at a regular interval (weekly/monthly).

Model maintenance and retraining is continuous, and likely indeterminant in length as the model
maintainer continues to add new samples to the training set. The process happens in 3 phases.
First, the maintainer must find incorrect predictions and edge cases, conducted through a case by
case review. Cases can be identified by supporting roles and analysts or through the maintainer’s
own queries and analysis. Next, the model maintainer must judge if particular samples are benign
or malicious, sometimes redoing incident analysis to reach a conclusion. Like the analysts, the
model maintainer relies on contextual information about the observation/case. This contextual
information is extraneous to the model itself; this could include the actual artifact (email, pdf,
etc.) and summary data from Splunk, but varies by case. Last, the model maintainer must decide
if the case is relevant to improving the model by adding to the training set.

6.3.3.2. Model Goal/Health Metrics

The goal of the ML model, and thus of the model maintainers, is to detect threats reliably and
consistently. Complete detection is not realistic given the dynamic, ever-changing nature of cyber
threats and the nature of the model as a random forest model. Despite this unknown, there are
some quantifiable metrics that are used to help gauge model performance. Namely, uncertainty
and incorrect classifications should trend to zero. Overall, the expectation is incremental
improvement over the long-term. This is achieved by adding new observations that train the
model to detect new and unique threats.

113

The model itself is meant to assist a human in making a judgment about a given observation.
Thus, two effectiveness metrics are linked to analyst interaction. The model should indicate when
results are uncertain to draw human attention, and the tool should monitor how often analysts
look at the explanations as a potential indicator of usefulness.

6.3.3.3. Key Aspects of the Model and its Outputs

The following points are key aspects of the model such that it can meet the decision-making
needs of both analysts and model maintainers. Note that these model characteristics and outputs
apply to both individual observations (as seen in the analyst workflow) and at the overall model
level (as seen in the model maintainer role).

e Confidence / Certainty of prediction: this is perhaps the most important piece of
information beyond the prediction itself for the analyst and model maintainer to judge the
output of the model. All participants noted this was missing from the current explainability
tool, and that it would be difficult to critically evaluate the model output without it.

e (lassification accuracy: Was the model correct? Accuracy requires knowledge of ground
truth (currently determined by a human retroactively) but could be a later addition by the
human user to help evaluate model performance.

e Feature filters: The top 10 features only show a small portion of the values that contribute
to the overall prediction. It may be helpful to have the option to see all features (or at least
know the total number of features used in a given instance) or a user-constrained set of
features such that they have appropriate framing for the judgment.

e Total values for benign/malicious/overall: The Top 10 shortlist of features can be somewhat
confusing. Analysts are expected to evaluate the prediction against the numeric outputs of
the model, but due to the number of features it is unrealistic to show all features and feature
values. Alternatively, the model could show the total values for benign and
malicious-predicting features, as well as the net value, to share with the analyst how "close"
the prediction was to the center. The total magnitude in either direction would help analysts
understand how close the prediction was to uncertain.

e Feature-specific information:

— Feature definitions: Currently the feature names are somewhat obscure if the user does
not have knowledge of the model’s architecture and function. For instance, the feature
name “email_to_domain_other” is somewhat easy to parse as “domain” is either
internal or external, whereas “pdf_text_keyword_view” is more challenging to
decipher with multiple potential meanings.Model maintainers have this knowledge,
but analysts may not. It is important to give this meaning to a user such that they can
properly ingest the information and make judgments.

— Raw feature values (pre-normalization): These data would indicate a feature-specific
number, which may not be useful in all contexts. Not all users said this would be
important, especially if the user is not familiar with the distribution of each feature.

114

This sample was predicted to be: benign

Figure 6-8. Current explainability visualization with benign and malicious fea-
ture weights does not allow the user to manipulate the outputs in any way.
Giving the analyst some control over the analysis interface will help them
filter to information they think is relevant or better understand the context of
the outputs for more effective decision making and perception of usefulness.

Sparkline of the distribution: This small visual would show where the observation
falls in the distribution for that feature. This addition could complement the raw
values as contextual information to help decision making.

Global feature importance: This would be the same set of numerical values for the set
of features included in the model. Global feature importance measures the importance
of the feature for the entire model. It indicates how much impact that one feature, out
of hundreds, has on a classification outcome. Building on the previous example,
perhaps the feature checking whether email domain is internal versus external would
be significant contributor to a classification outcome in this model checking for
malicious emails. The global feature importance would not change
observation-to-observation unless, or until, the model is retrained.

Class feature importance: This is different for each observation. Local feature
importance measures the contribution of the feature for that specific observation. For
instance, observation K was run through the model, and observation K is an email that
has an image included. In the case of observation K, in this one instance it is possible
for “pdfstructure_image_dimensions_len" to be a bigger contributor to the prediction
(model outcome) than average/other observations. The set of numerical values for the
set of features used in this observation would vary.

Information that triggered the feature value (context): For instance, if a particular
feature strongly contributes to the prediction of “malicious", the feature itself might
not give enough information for the analyst to judge the outcome. The analyst may
want to know what exactly caused the feature to produce its result; this information is
not currently included in or accessible through the explainability tool. Currently,
analysts must pivot to the actual observation and its artifacts (e.g. email, attachments,
etc) to find this information. Reducing the need to pivot between tools would save the
analyst time while also increasing confidence in the tool.

115

This sample was predicted to be: benign

Figure 6-9. Explainability visualization shows “pdf_text_keyword_here” as a
feature contributing to “malicious”. However, it is unclear whether the high
value is due to a large number of the word “here” in the pdf text, or due to a
small number of the word “here” in the pdf text.

6.3.4. Discussion
6.3.4.1. Use Cases for Explainability Tool

Based on statements from participants, the following examples demonstrate how the ML model
explainability tool might be used in both the analyst and model maintainer contexts.

1. Evaluating residuals: Being able to see and explore the residuals would help in determining
if new features are needed.

2. Hypothesizing new features: Being able to see the model from a higher level; what features
are already included and their respective coverage would help in hypothesizing if/which
features should be added to the model.

3. Finding similar examples: It is helpful to be able to evaluate an observation against similar
records. Helping an analyst or model maintainer identify those observations and pivot from
the tool would help improve this comparison process.

4. Specialized/custom queries: Analysts and especially model maintainers expressed interest
in being able to view multiple observations and control those outputs using specialized or
custom queries.

5. Investigate specific aspects of an observation: It would be helpful to identify an aspect of
the explanation to draw the analysts’ attention to something specific in the email/pdf. For
instance, if a feature indicates that there is something present (or missing) in the email or
pdf that indicates a potentially malicious artifact, providing that information (what is the
actual evidence observed by the model) to the analyst would improve their confidence and
efficiency in evaluating the classifier output.

6.3.4.2. Other Findings

One finding of note was that participants from user studies 1, 2, and 3 indicated a trust dynamic
that might not match how we are thinking about the problem. The main person who performs
model maintenance indicated more trust in the analyst’s decision than the model, but User Studies

116

1 and 2 indicated that people in general trust ML predictions and analysts are likely to agree with
model outputs (respectively).

We found that the explainability interface likely has low generalizability to other models and
processes within Security Operations. Other ML models are employed, but they are commercial
models embedded in purchased tools and not within the control of model maintainers to train and
prune them.

Practically speaking, there are a lot of (raw and meta) data associated with events that analysts
evaluate and we noted some challenges in the evaluation and training processes that could be
addressed without ML or explainability. For instance, when viewing an event flagged by a
classifier, analysts are interested in identifying what portions of a PDF caused the classification.
However, this is not immediately obvious, and the existing tool/platform does not tie back to the
original PDF, but rather simply provides a list of features. Moreover, features in the model that
contribute to “malicious” do not provide evidence in the same window, and the analyst is forced
to pivot in order to properly evaluate the feature and corresponding information that triggered it.
These small improvements in usability would help by improving confidence and efficiency of
incident response analysts.

117

7. CONCLUSIONS

In retrospect, this LDRD was quite ambitious and could have been carved out into separate
research projects of their own. Despite being quite ambitious, several future research veins are
exposed that could be pursued:

o Extending the application of SA and other mathematical analysis to ML. SAGE was
able to expose several key underlying issues that limit the effectiveness of explainability
methods outlined in this report. A direct path forward would be address these issues. We
also only examined SA, but there are several other possibly mathematical frameworks that
would be pursued.

¢ Quantifying the trust of an ML model prediction. SAGE initially developed the
GeoTrust metrics and made a connection to a relatively small effort in the ML. community
that researches the robustness of nearest-neighbor type methods. These methods by
necessity depend upon the geometry of the training data. However, the curse of
dimensionality severely limits its applicability. A direct path forward here could investigate
how to expand beyond small feature spaces. This would also help the application of
mathematical frameworks which are also limited by exploding computational constraints as
the number of features increases. Another direction forward could be to tie the GeoTrust
metrics into the existing methods that directly or indirectly leverage nearest-neighbors such
as DeppKNN [84]] or Radial Basis Functions [[129]]. We note that from our experiments in
Chapter 2] nearest-neighbor approaches are not able to capture correlations in the feature
space as well as other ML algorithms.

¢ Quantifying and optimizing the impact explanations on end users. The intention of
SAGE was to measure directly the impact of explanations on end-users in an established
workflow. However, we mostly discovered the overall ineffectiveness of explanations.
There are several research questions including the most obvious of how to improve the
effectiveness of the explanations or what would constitute an effective explanation

In addition to these direct research directions, recently there has been interested in explanations
and adversarial vulnerability. The mathematical framework established as part of SAGE could be
used to help study this intersection as well as privacy preserving ML. We conclude that SAGE has
investigated a very timely and important issue to national security as explainability is desired by
many customers because of the high-consequence applications. However, often the explainability
methods are simply provided without understanding the impact of the explanation on the end-user
and possible information could be leaked (i.e. possibly measured using Fidelity). We expect that
these issues will be high-interest topics for research going forward and hope that SAGE has
helped to facilitate future high-impact research.

118

REFERENCES

[1] Kjersti Aas, Martin Jullum, and Anders Lgland. Explaining individual predictions when
features are dependent: More accurate approximations to shapley values. arXiv preprint
arXiv:1903.10464, 2019.

[2] Julius Adebayo, Justin Gilmer, Michael Muelly, lan Goodfellow, Moritz Hardt, and Been
Kim. Sanity checks for saliency maps. Advances in Neural Information Processing
Systems, 31:9505-9515, 2018.

[3] Algorithmia. Machine learning in production: a roadmap for success. Technical Report
MSU-CSE-06-2, Algorithmia, 2020.

[4] Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser, Adrien Bennetot,
Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina,
Richard Benjamins, et al. Explainable artificial intelligence (xai): Concepts, taxonomies,
opportunities and challenges toward responsible ai. Information Fusion, 58:82—-115, 2020.

[5] S.R. Arwade. Translation vectors with non-identically distributed components.
Probabilistic Engineering Mechanics, 20:158-167, 2005.

[6] Vijay Arya, Rachel KE Bellamy, Pin-Yu Chen, Amit Dhurandhar, Michael Hind, Samuel C
Hoffman, Stephanie Houde, Q Vera Liao, Ronny Luss, Aleksandra Mojsilovié, et al. One
explanation does not fit all: A toolkit and taxonomy of ai explainability techniques. arXiv
preprint arXiv:1909.03012, 2019.

[7] Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

[8] David Avis, David Bremner, and Raimund Seidel. How good are convex hull algorithms?
Computational Geometry, 7(5):265-301, 1997.

[9] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When is “nearest
neighbor” meaningful? In International conference on database theory, pages 217-235.
Springer, 1999.

[10] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[11] Markus Borg, Cristofer Englund, Krzysztof Wnuk, Boris Duran, Christoffer Levandowski,
Shenjian Gao, Yanwen Tan, Henrik Kaijser, Henrik Lonn, and Jonas Toérnqvist. Safely
entering the deep: A review of verification and validation for machine learning and a
challenge elicitation in the automotive industry. arXiv preprint arXiv:1812.05389, 2018.

[12] J P Bourget. Addressing analyst fatigue in the soc.
https://www.brighttalk.com/webcast/288/224207,2016.

119

https://www.brighttalk.com/webcast/288/224207

[13] Leo Breiman. Random forests. Machine Learning, 45(1):5-32, October 2001.

[14] Vanessa Buhrmester, David Miinch, and Michael Arens. Analysis of explainers of black
box deep neural networks for computer vision: A survey. arXiv preprint
arXiv:1911.12116, 2019.

[15] Saikiran Bulusu, Bhavya Kailkhura, Bo Li, Pramod K Varshney, and Dawn Song.
Anomalous example detection in deep learning: A survey. IEEE Access,
8:132330-132347, 2020.

[16] Nadia Burkart and Marco F Huber. A survey on the explainability of supervised machine
learning. Journal of Artificial Intelligence Research, 70:245-317, 2021.

[17] Adrian Bussone, Simone Stumpf, and Dympna O’Sullivan. The role of explanations on
trust and reliance in clinical decision support systems. In 2015 international conference on
healthcare informatics, pages 160—169. IEEE, 2015.

[18] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. Density-based clustering
based on hierarchical density estimates. In Jian Pei, Vincent S. Tseng, Longbing Cao,
Hiroshi Motoda, and Guandong Xu, editors, Advances in Knowledge Discovery and Data
Mining, pages 160—172, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[19] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks.
In 2017 IEEE symposium on security and privacy (sp), pages 39-57. IEEE, 2017.

[20] Diogo V Carvalho, Eduardo M Pereira, and Jaime S Cardoso. Machine learning
interpretability: A survey on methods and metrics. Electronics, 8(8):832, 2019.

[21] Pierluigi Casale, Oriol Pujol, and Petia Radeva. Approximate convex hulls family for
one-class classification. In Carlo Sansone, Josef Kittler, and Fabio Roli, editors, Multiple
Classifier Systems, pages 106—115, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[22] Arjun Chandrasekaran, Viraj Prabhu, Deshraj Yadav, Prithvijit Chattopadhyay, and Devi
Parikh. Do explanations make vga models more predictable to a human? arXiv preprint
arXiv:1810.12366, 2018.

[23] Jason A Colquitt, Brent A Scott, and Jeffery A LePine. Trust, trustworthiness, and trust
propensity: a meta-analytic test of their unique relationships with risk taking and job
performance. Journal of applied psychology, 92(4):909, 2007.

[24] Alexander D’ Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanabhi,
Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D Hoffman,
et al. Underspecification presents challenges for credibility in modern machine learning.
arXiv preprint arXiv:2011.03395, 2020.

[25] Peter De Vries, Cees Midden, and Don Bouwhuis. The effects of errors on system trust,
self-confidence, and the allocation of control in route planning. International Journal of
Human-Computer Studies, 58(6):719-735, 2003.

120

[26] Sukanta Dey, Abhishek Kumar, Mehul Sawarkar, Pranav Kumar Singh, and Sukumar
Nandi. Evadepdf: Towards evading machine learning based pdf malware classifiers. In
International Conference on Security & Privacy, pages 140-150. Springer, 2019.

[27] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine
learning. arXiv preprint arXiv:1702.08608, 2017.

[28] Bradley J Erickson, Panagiotis Korfiatis, Zeynettin Akkus, and Timothy L. Kline. Machine
learning for medical imaging. Radiographics, 37(2):505-515, 2017.

[29] Hubert Etienne. When Al ethics goes astray: A case study of autonomous vehicles. Social
Science Computer Review, 2020.

[30] Shi Feng and Jordan Boyd-Graber. What can ai do for me? evaluating machine learning
interpretations in cooperative play. In Proceedings of the 24th International Conference on
Intelligent User Interfaces, pages 229-239, 2019.

[31] Richard V Field, Jr. Stochastic models: theory and simulation. (SAND2008-1365), 3 2008.

[32] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. Model class reliance: Variable
importance measures for any machine learning model class, from the “rashomon”
perspective. arXiv preprint arXiv:1801.01489, 68, 2018.

[33] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. The elements of statistical
learning, volume 1. Springer series in statistics New York, 2001.

[34] Edwin Ernest Ghiselli. Theory of psychological measurement. McGraw-Hill, 1964.
[35] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[36] Ian Goodfellow and Nicolas Papernot. The challenge of verification and testing of machine
learning. Cleverhans-blog, 2017.

[37] Ben Green and Yiling Chen. Disparate interactions: An algorithm-in-the-loop analysis of
fairness in risk assessments. In Proceedings of the conference on fairness, accountability,
and transparency, pages 90-99, 2019.

[38] M. Grigoriu. Applied Non-Gaussian Processes. P T R Prentice-Hall, Englewood Cliffs,
NJ, 1995.

[39] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern
neural networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th

International Conference on Machine Learning, volume 70, pages 1321-1330. PMLR,
06-11 Aug 2017.

[40] Mark A Hall. Correlation-based feature selection of discrete and numeric class machine
learning. 2000.

[41] Mark Andrew Hall. Correlation-based feature selection for machine learning. 1999.

[42] Joseph Hart and Pierre A Gremaud. An approximation theoretic perspective of
sobol’indices with dependent variables. International Journal for Uncertainty
Quantification, 8(6), 2018.

121

[43] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and
out-of-distribution examples in neural networks, 2018.

[44] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with
outlier exposure. Proceedings of the International Conference on Learning
Representations, 2019.

[45] Bernease Herman. The promise and peril of human evaluation for model interpretability.
arXiv preprint arXiv:1711.07414, page 8, 2017.

[46] Kevin Anthony Hoff and Masooda Bashir. Trust in automation: Integrating empirical
evidence on factors that influence trust. Human factors, 57(3):407-434, 2015.

[47] Robert R Hoffman. The concept of a “campaign of experimentation” for cyber operations.
The Cyber Defense Review, 4(1):75-84, 2019.

[48] Robert R Hoffman, Gary Klein, and Shane T Mueller. Explaining explanation for
“explainable ai”. In Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, volume 62, pages 197-201. SAGE Publications Sage CA: Los Angeles, CA,
2018.

[49] Robert R Hoffman, Shane T Mueller, Gary Klein, and Jordan Litman. Metrics for
explainable ai: Challenges and prospects. arXiv preprint arXiv:1812.04608, 2018.

[50] Giles Hooker and Lucas Mentch. Please stop permuting features: An explanation and
alternatives. arXiv preprint arXiv:1905.03151, 2019.

[51] Johan Huysmans, Karel Dejaeger, Christophe Mues, Jan Vanthienen, and Bart Baesens. An
empirical evaluation of the comprehensibility of decision table, tree and rule based
predictive models. Decision Support Systems, 51(1):141-154, 2011.

[52] Bertrand Iooss and Clémentine Prieur. Shapley effects for sensitivity analysis with
correlated inputs: Comparisons with sobol’ indices, numerical estimation and applications.
International Journal for Uncertainty Quantification, 9(5), 2019.

[53] Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Certified robustness of nearest
neighbors against data poisoning attacks. arXiv preprint arXiv:2012.03765, 2020.

[54] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are not enough, learn to
criticize! criticism for interpretability. Advances in neural information processing systems,

29, 2016.

[55] Kenji Kira and Larry A Rendell. A practical approach to feature selection. In Machine
Learning Proceedings 1992, pages 249-256. Elsevier, 1992.

[56] Ronald T Kneusel and Michael C Mozer. Improving human-machine cooperative visual
search with soft highlighting. ACM Transactions on Applied Perception (TAP), 15(1):1-21,
2017.

[57] Daphne Koller and Mehran Sahami. Toward optimal feature selection. Technical report,
Stanford InfolLab, 1996.

122

[58] Igor Kononenko, Edvard Simec, and Marko Robnik-Sikonja. Overcoming the myopia of
inductive learning algorithms with relieff. Applied Intelligence, 7(1):39-55, 1997.

[59] Isaac Lage, Emily Chen, Jeffrey He, Menaka Narayanan, Been Kim, Sam Gershman, and
Finale Doshi-Velez. An evaluation of the human-interpretability of explanation. arXiv
preprint arXiv:1902.00006, 2019.

[60] Vivian Lai and Chenhao Tan. On human predictions with explanations and predictions of
machine learning models: A case study on deception detection. In Proceedings of the
conference on fairness, accountability, and transparency, pages 29-38, 2019.

[61] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning.
Technical Report TR 98-11, Computer Science Department, lowa State University,
October 1998.

[62] Dongha Lee, Sehun Yu, and Hwanjo Yu. Multi-class data description for
out-of-distribution detection. Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, Jul 2020.

[63] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for
detecting out-of-distribution samples and adversarial attacks. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 7167-7177. Curran Associates, Inc., 2018.

[64] Antoine Lemay and Sylvain Leblanc. Cognitive biases in cyber decision-making. In

Proceedings of the 13th International Conference on Cyber Warfare and Security, page
395, 2018.

[65] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang Tang,
and Huan Liu. Feature selection: A data perspective. ACM Computing Surveys (CSUR),
50(6):1-45, 2017.

[66] Stan Lipovetsky and Michael Conklin. Analysis of regression in game theory approach.
Applied Stochastic Models in Business and Industry, 17(4):319-330, 2001.

[67] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. Learning
under concept drift: A review. IEEE Transactions on Knowledge and Data Engineering,
31(12):2346-2363, 2018.

[68] Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala
Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local
explanations to global understanding with explainable ai for trees. Nature machine
intelligence, 2(1):56—67, 2020.

[69] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Advances in neural information processing systems, pages 4765-4774, 2017.

[70] Thierry A Mara, Stefano Tarantola, and Paola Annoni. Non-parametric methods for global
sensitivity analysis of model output with dependent inputs. Environmental modelling &
software, 72:173—-183, 2015.

123

[71] Mohammad Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani M Thuraisingham.
Classification and novel class detection in concept-drifting data streams under time
constraints. IEEE Transactions on Knowledge and Data Engineering, 23(6):859-874,
2010.

[72] Microsoft. Machine learning operations maturity model.
https://docs.microsoft.com/en-us/azure/architecture/

example—scenario/mlops/mlops—maturity-modell, 2020. Accessed:
2020-04-12.

[73] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences.
Artificial intelligence, 267:1-38, 2019.

[74] Tim Miller, Piers Howe, and Liz Sonenberg. Explainable ai: Beware of inmates running
the asylum or: How i learnt to stop worrying and love the social and behavioural sciences.
arXiv preprint arXiv:1712.00547, 2017.

[75] Sina Mohseni, Niloofar Zarei, and Eric D Ragan. A multidisciplinary survey and
framework for design and evaluation of explainable ai systems. arXiv preprint
arXiv:1811.11839, 2018.

[76] Christoph Molnar. Interpretable Machine Learning. 2019.
https://christophm.github.io/interpretable-ml-book/.

[77] Douglas C Montgomery. Design and analysis of experiments. John wiley & sons, 2017.

[78] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well
calibrated probabilities using bayesian binning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 29, 2015.

[79] Menaka Narayanan, Emily Chen, Jeffrey He, Been Kim, Sam Gershman, and Finale
Doshi-Velez. How do humans understand explanations from machine learning systems? an
evaluation of the human-interpretability of explanation. arXiv preprint arXiv:1802.00682,
2018.

[80] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 427-436, 2015.

[81] Weili Nie, Yang Zhang, and Ankit Patel. A theoretical explanation for perplexing
behaviors of backpropagation-based visualizations. In International Conference on
Machine Learning, pages 3809-3818. PMLR, 2018.

[82] William L. Oberkampf, Martin Pilch, and Timothy G Trucano. Predictive capability
maturity model for computational modeling and simulation. Technical report, Sandia
National Laboratories Albuquerque, NM, 2007.

[83] Art B Owen. Sobol’ indices and Shapley value. SIAM/ASA Journal on Uncertainty
Quantification, 2(1):245-251, 2014.

124

https://docs.microsoft.com/en-us/azure/architecture/example-scenario/mlops/mlops-maturity-model
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/mlops/mlops-maturity-model
https://christophm.github.io/interpretable-ml-book/

[84] Nicolas Papernot and Patrick McDaniel. Deep k-nearest neighbors: Towards confident,
interpretable and robust deep learning. arXiv preprint arXiv:1803.04765, 2018.

[85] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and
Ananthram Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE
European Symposium on Security and Privacy (EuroS P), pages 372-387, 2016.

[86] Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,
et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research,
12:2825-2830, 2011.

[87] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Towards practical verification of
machine learning: The case of computer vision systems. arXiv preprint arXiv:1712.01785,
2017.

[88] LeeAnn Perkins, Janet E Miller, Ali Hashemi, and Gary Burns. Designing for
human-centered systems: Situational risk as a factor of trust in automation. In Proceedings

of the human factors and ergonomics society annual meeting, volume 54, pages
2130-2134. SAGE Publications Sage CA: Los Angeles, CA, 2010.

[89] C Petersen and R Lentz. Surfacing critical cyber threats through security intelligence: A
reference model for it security practitioners. SANS Institute, 2015.

[90] John Platt et al. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Advances in large margin classifiers, 10(3):61-74, 1999.

[91] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and
Charles K Nicholas. Malware detection by eating a whole exe. In Workshops at the
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[92] Saman Razavi, Anthony Jakeman, Andrea Saltelli, Clémentine Prieur, Bertrand looss,
Emanuele Borgonovo, Elmar Plischke, Samuele Lo Piano, Takuya Iwanaga, William
Becker, Stefano Tarantola, Joseph H.A. Guillaume, John Jakeman, Hoshin Gupta, Nicola
Melillo, Giovanni Rabitti, Vincent Chabridon, Qingyun Duan, Xifu Sun, Stefan Smith,
Razi Sheikholeslami, Nasim Hosseini, Masoud Asadzadeh, Arnald Puy, Sergei
Kucherenko, and Holger R. Maier. The future of sensitivity analysis: An essential
discipline for systems modeling and policy support. Environmental Modelling & Software,
137:104954, 2021.

[93] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I trust you?”:
Explaining the predictions of any classifier. In Knowledge Discovery and Data Mining
(KDD), 2016.

[94] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision
model-agnostic explanations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[95] Christina Richmond and Pere Lindstrom. Idc security survey: As the job churns. Technical
report, 2015.

125

[96] Marko Robnik-Sikonja and Igor Kononenko. Theoretical and empirical analysis of relieff
and rrelieff. Machine learning, 53(1-2):23-69, 2003.

[97] Cynthia Rudin. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, 1:206-215,
2019.

[98] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni,
Debora Gatelli, Michaela Saisana, and Stefano Tarantola. Global sensitivity analysis: the
primer. John Wiley, 2008.

[99] Karthik Ramakrishnan Corey Salveson. The ai maturity framework. Technical Report
MSU-CSE-06-2, Element Al, 2020.

[100] Julian Sanchez, Wendy A Rogers, Arthur D Fisk, and Ericka Rovira. Understanding
reliance on automation: effects of error type, error distribution, age and experience.
Theoretical issues in ergonomics science, 15(2):134-160, 2014.

[101] Kristin E Schaefer, Jessie YC Chen, James L. Szalma, and Peter A Hancock. A
meta-analysis of factors influencing the development of trust in automation: Implications
for understanding autonomy in future systems. Human factors, 58(3):377-400, 2016.

[102] David W Scott. Multivariate density estimation: theory, practice, and visualization. John
Wiley & Sons, 2015.

[103] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. "andromaly": a
behavioral malware detection framework for android devices. Journal of Intelligent
Information Systems, 38(1):161-190, 2012.

[104] Lloyd S Shapley. A value for n-person games. Contributions to the Theory of Games,
2(28):307-317, 1953.

[105] Leon Sixt, Maximilian Granz, and Tim Landgraf. When explanations lie: Why many
modified bp attributions fail. In International Conference on Machine Learning, pages
9046-9057. PMLR, 2020.

[106] Michael R Smith, Nicholas T Johnson, Joe B Ingram, Armida J Carbajal, Bridget I Haus,
Eva Domschot, Ramyaa Ramyaa, Christopher C Lamb, Stephen J Verzi, and W Philip
Kegelmeyer. Mind the gap: On bridging the semantic gap between machine learning and
malware analysis. In Proceedings of the 13th ACM Workshop on Artificial Intelligence and
Security, pages 49-60, 2020.

[107] Ralph C. Smith. Uncertainty Quantification: Theory, Implementation, and Applications.
Society for Industrial and Applied Mathematics, USA, 2013.

[108] Charles Smutz and Angelos Stavrou. Malicious pdf detection using metadata and structural
features. In Proceedings of the 28th Annual Computer Security Applications Conference,
ACSAC ’12, page 239-248, New York, NY, USA, 2012. Association for Computing
Machinery.

126

[109] Ilya M Sobol. Global sensitivity indices for nonlinear mathematical models and their
Monte Carlo estimates. Mathematics and computers in simulation, 55(1-3):271-280, 2001.

[110] Robin Sommer and Vern Paxson. Outside the closed world: On using machine learning for
network intrusion detection. In 2010 IEEE symposium on security and privacy, pages
305-316. IEEE, 2010.

[111] Nedim Srndic and Pavel Laskov. Practical Evasion of a Learning-Based Classifier: A Case
Study. In Proceedings of the 2014 IEEE Symposium on Security and Privacy, pages
197-211, Washington, DC, USA, 2014. IEEE Computer Society.

[112] Mallory C Stites, Megan Nyre-Yu, Blake Moss, Charles Smutz, and Michael R Smith.
Sage advice? the impacts of explanations for machine learning models on human
decision-making in spam detection. In International Conference on Human-Computer
Interaction, pages 269-284. Springer, 2021.

[113] David John Stracuzzi, Michael Christopher Darling, Matthew Gregor Peterson, and
Maximillian Gene Chen. Quantifying uncertainty to improve decision making in machine
learning. Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States), 2018.

[114] Erik Strumbelj and Igor Kononenko. Explaining prediction models and individual
predictions with feature contributions. Knowledge and information systems,
41(3):647-665, 2014.

[115] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks.
In International Conference on Machine Learning, pages 3319-3328. PMLR, 2017.

[116] The Institute for Ethical Al & Machine Learning. The responsible machine learning
principles. https://ethical.institute/principles.html. Accessed:
2020-04-12.

[117] Erico Tjoa and Cuntai Guan. A survey on explainable artificial intelligence (xai): Toward
medical xai. IEEE Transactions on Neural Networks and Learning Systems, 2020.

[118] Laura Tolosi and Thomas Lengauer. Classification with correlated features: unreliability of
feature ranking and solutions. Bioinformatics, 27(14):1986—-1994, 2011.

[119] Perry Van Wesel and Alwyn E Goodloe. Challenges in the verification of reinforcement
learning algorithms. National Aeronautics and Space Administration, NASA STI Program,
2017.

[120] Razvan Viorescu. 2018 reform of EU data protection rules. European Journal of Law and
Public Administration, pages 27-39, 2017.

[121] Yizhen Wang, Somesh Jha, and Kamalika Chaudhuri. Analyzing the robustness of nearest
neighbors to adversarial examples. In International Conference on Machine Learning,
pages 5133-5142. PMLR, 2018.

127

https://ethical.institute/principles.html

[122] Alexander Warnecke, Daniel Arp, Christian Wressnegger, and Konrad Rieck. Evaluating
explanation methods for deep learning in security. In 2020 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 158—174. IEEE, 2020.

[123] Hilde JP Weerts, Werner van Ipenburg, and Mykola Pechenizkiy. A human-grounded
evaluation of shap for alert processing. arXiv preprint arXiv:1907.03324, 2019.

[124] Eyal Winter et al. The Shapley value. Handbook of game theory with economic
applications, 3(2):2025-2054, 2002.

[125] Shawn Xu, Subhashini Venugopalan, and Mukund Sundararajan. Attribution in scale and
space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9680-9689, 2020.

[126] Weilin Xu, Yanjun Qi, and David Evans. Automatically Evading Classifiers: A Case Study
on PDF Malware Classifiers. In 2/th Annual Network and Distributed System Security
Symposium (NDSS), February 2016.

[127] Lei Yu and Huan Liu. Efficient feature selection via analysis of relevance and redundancy.
Journal of machine learning research, 5(Oct):1205-1224, 2004.

[128] Nirit Yuviler-Gavish and Daniel Gopher. Effect of descriptive information and experience
on automation reliance. Human factors, 53(3):230-244, 2011.

[129] Pourya Habib Zadeh, Reshad Hosseini, and Suvrit Sra. Deep-rbf networks revisited:
Robust classification with rejection. arXiv preprint arXiv:1812.03190, 2018.

[130] Bianca Zadrozny. Learning and evaluating classifiers under sample selection bias. In

Proceedings of the twenty-first international conference on Machine learning, page 114,
2004.

[131] H Zhang. The optimality of naive bayes,". In Proc. Seventeenth Int. Florida Artif. Intell.
Res. Soc. Conf. FLAIRS 2004, volume 1, pages 1-6, 2004.

128

APPENDIX A. Machine Learning Models

We go over each of the aforementioned models in Chapter 2] and highlight how their mathematical
structure might enable them to either identify, or fail to identify, correlations. Experiments are
provided to emphasize these ideas.

A.1. Random Forest

Random forests involve a "forest" of decision trees, each producing a "vote" when it comes to
classifying a point. To create these trees, the training data is sub-sampled into groups which are
then used to train each decision tree [13l]. While it is difficult to understand and interpret the
ensemble that is the entire forest, individual trees are relatively easy to interpret, especially under
the context of how the individual trees are formed.

Given some subset (sampled with replacement) of the training data, each decision tree has to
determine a feature and a corresponding threshold for that feature to split on. This determination
is made in such a way that the GINI impurity of the resulting splits is minimized.

Definition A.1.1 (GINI Impurity). A measure of how often a randomly chosen element from the
set would be incorrectly labeled if it was randomly labeled according to the distribution of labels
in the subset. A GINI Impurity value of 0 indicates all cases in a node fall into a single class. For
J classes with p; being the proportion of items of class i in the set:

J J
Ie(p)=Y. piY. p=1-Y p}
i=1

i=1 ki

There exist two choices at each split. Which feature to split on, and which value of the chosen
feature. Once a feature is known, it is relatively easy to find the value to split on that provides the
lowest GINI impurity to each of the resulting sets.

To prevent over-fitting in the forest, the choice of feature for each split is limited to a random
subset of all of the possible features (typically of size ~ \/|F|, where |F| is the number of
features). This, for example, stops all of the decision trees from having the same feature split as
their top node, if one feature is highly separable. This leads to a diverse set of trees that,
hopefully, provide a better approximation of the target function.

To visualize the decision boundaries of individual trees in Figure a series of decisions over
Fi and F; that led to leaf nodes that voted "non-correlated" are plotted. These were pulled from
15/100 trees in a forest where each tree was limited to a depth of 3.

129

Decision Boundaries of 3-Deep Random Forest NO SHIFT

@ Not Correlated (]
3 o Correlated
.

-2

-3

Figure A-1. Example of splits over F; and F, and the areas that belong to
"non-correlated” leaf nodes that resulit.

Random Forests and Correlations

Now from the results presented Section [2.3.1]it is apparent that random forests are able to "see"
correlations as a means of classification. Take the scope of a decision tree with the non-shifted
data. Theoretically, no matter the subset of features offered as possible features to split on, there is
no "best" feature and no best split. This is because all of the features have identical distributions
of data (normally distributed with u = 0,0 = 1). Splits that are not at 0 will have different
numbers of points between the two resulting groups, but they should have the exact same number
of points from each class (identical distributions with respect to each feature individually).

Due to the random nature and variance of sampling, many splits will offer slight decreases to
GINI impurity. However this will be completely random, so theoretically each feature should
appear 1/|F | of the time in the parent node for the non-shifted data (We verify this experimentally
in section @) However, once either F; or F; (the correlated features) are split on, the tree has
access to the joint distribution of F; and F;. This means that whichever of the two was not split on
has the ability to greatly decrease the GINI impurity compared to the remaining features, where
the GINI impurity would remain the same for any split, since every joint distribution except for Fj
and F> looks identical. Thus the second of the two correlated features will be chosen as soon as it
is in the random feature subset to be split on.

Why is a secondary split in a decision tree conditional to the first? This is illustrated in

Figure [A-2 on the next page. The distributions of F; for both classes are given in the upper
histogram, where they are from identical distributions. If Fj is in the random subset of possible
features to split on and the best split is at /1 = —0.75 then we have the distribution of the two
classes over F> with F; > —0.75 in the histogram on the right. This split of points has a
distribution that has separability for a group of the non-correlated points, while F; as a whole has
a distribution similar to that of Fj.

130

Example spliton F; and then F;

100

s
50
35
o +

« Not Correlated
3 Correlated

-3

Figure A-2. Example of a split on F; (due to random variance) and the result-
ing distribution with respect to F,. Note the histogram on the right is for the
data to the right of the split at F/; = —0.75.

This difference in distribution comes from the fact that all, or a significant number of (for high
correlation values), correlated points with F; > —0.75 will also have F, > —0.75, leaving a "hole"
at F, < —0.75. This pattern is seen in practice, as decision trees that contain successive splits on
both correlated classes will have the splits taking place on nearly identical thresholds.

Feature Distribution of Parent Node

As mentioned previously, every node in a decision tree has access to a subset of features to make
a split on. The default value for this is typically \/W . Since we use 8 features and int is a
truncation call, every node has access to two of the eight features to determine a split. To verify
our earlier claim, that for the non-shifted data, the first node should essentially be random
(whether we use 2 features or 8 per node), we repeatedly train random forests and note the feature
used in the initial split.

As for the shifted data, when using the default parameters we expect the shifted feature (F3) to be
split on every time it is included in the two features to be selected from. There is a 1/4 chance
that Fg is in the parent node’s two features, where it will be selected every time. Thus we expect
F to be used in 1/4 of the time, with the rest of the features 3 /28 of the time. When all features
are used, we expect Fg to be picked all of the time.

To give a point of comparison, we train the trees using the default number of features to select
from at a node, two, as well as with access to all eight features. This is done for each correlation
for both the shifted and non-shifted data sets, leading to four sets of results. To eliminate large
variances in the results, 100 datasets were generated for each correlation value and random forests

131

for each dataset produced 100 decision trees in their ensemble, leading to a total of 10,000 trees
analyzed per correlation value. Table [A-1]is for the default parameter for the number of features
at a node and Table [A-2 on the next page|is for nodes using all features.

Table A-1. Counts of instances where a given feature was used in the parent
node for a decision tree (out of 10,000), for 8 features per node.

Correlation F 23 F Fy Fs Fs F F3

Shifted

1.0 1088 1131 1074 1064 963 1084 1075 2521
0.9 1032 1058 1108 1089 1027 1093 1070 2523
0.8 1189 1084 1082 1036 1071 1008 1052 2478
0.7 1105 1097 1083 1041 1079 1105 1061 2429
0.6 1051 1069 1087 1156 1017 1027 1105 2488
0.5 1113 1079 1037 1098 1056 1038 1087 2492
04 1015 1190 979 1117 1057 1067 1073 2502
0.3 1067 1052 1035 1060 1054 1149 1099 2484
0.2 1119 1051 1134 1044 1015 1086 1034 2517
0.1 1056 1127 1124 1055 1025 1045 1092 2476
0.0 1094 1041 1037 1061 1006 1087 1072 2602
Not-Shifted

1.0 1285 1265 1220 1267 1231 1250 1226 1256
0.9 1253 1292 1226 1193 1251 1346 1212 1227
0.8 1144 1195 1121 1309 1302 1270 1340 1319
0.7 1213 1263 1253 1217 1310 1267 1269 1208
0.6 1274 1225 1237 1249 1242 1306 1195 1272
0.5 1207 1230 1237 1389 1247 1140 1308 1242
04 1280 1256 1270 1255 1234 1261 1240 1204
0.3 1297 1263 1278 1223 1323 1234 1218 1164
0.2 1205 1215 1283 1312 1235 1233 1271 1246
0.1 1251 1252 1249 1210 1297 1262 1341 1138
0.0 1265 1168 1277 1212 1203 1235 1355 1285

From Table [A-T| we see our hypothesis was correct. For the shifted data approximately 25% of the
time Fg was chosen in the parent node, while the remaining features were selected 3/28 ~ 10.7%
of the time, or 1,070 times of the 10,000 trees. As for the non-shifted data, we see each feature
represented approximately 1/8th of the time.

From Table [A-2 on the next page| we again see our hypothesis was correct. For the shifted data we
have that Fg appears nearly 100% of the time when the node has access to each of the features to
make a split. Then for the non-shifted results we again see that the features are represented
relatively equally, approximately 1/8th of the time.

It is also important to note that in none of the tests does the correlation value have any effect on
the choice of initial feature to split on. This is in-line with the above discussion where each

132

feature looks identical unless a joint distribution is analyzed.

Table A-2. Counts of instances where a given feature was used in the parent
node for a decision tree (out of 10,000), for 2 features per node.

Correlation F P B Fy F5 Fg F F3

Shifted

1.0 0 0 0 0 0 0 0 10,000
0.9 0 0 0 0 0 0 0 10,000
0.8 0 0 0 0 0 0 0 10,000
0.7 0 0 0 0 0 0 0 10,000
0.6 0 0 0 0 0 0 0 10,000
0.5 0 0 0 0 0 0 0 10,000
0.4 0 0 0 0 0 0 0 10,000
0.3 0 0 0 0 0 0 0 10,000
0.2 0 0 0 0 0 0 0 10,000
0.1 0 0 0 0 0 0 0 10,000
0.0 0 1 0 0 0 0 0 9,999
Not-Shifted

1.0 1200 1132 1166 1364 1325 1152 1247 1414
0.9 1239 1258 1281 1214 1341 1188 1243 1236
0.8 1322 974 1204 1485 1311 1072 1211 1421
0.7 1289 1118 1432 1416 1140 1502 1160 943
0.6 1320 1375 1223 1356 1261 1243 1068 1154
0.5 1125 1224 1298 1091 1183 1359 1283 1437
0.4 1255 1166 1256 1340 1165 1340 1163 1315
0.3 1378 1129 1133 1222 1206 1375 1169 1388
0.2 1317 1172 1221 1321 1248 1216 1167 1338
0.1 1152 1518 1269 1052 1254 1283 1180 1292
0.0 1246 1203 1341 1292 1038 1367 1376 1137

A.1.1. Multilayer Perceptron

Without getting into the nitty-gritty of the inner workings of a multilayer perceptron we give two
different perspectives of the explanation for how an MLP recognizes the presence of a correlation
in the data.

Feature-Space Perspective

The most basic reasoning for this phenomenon is understood by how the model partitions the
feature space. In Figure|A-3 on the following page| we show the decision boundary of an MLP
trained on the non-shifted data, over F; and F> with F; = 0 fori = 3,4,...,8, with Cr, p, = 1.0.

133

Here we see a narrow band around Fj = F3, the width of which expands as the values of these two
features increase in magnitude. This expansion simply comes from the lack of training data in
that region (typically values lie in the domain [—3.5,3.5])).

It is also worth noticing the steep gradient that exists near the boundary of the center region. The
drop off from 0.99 towards one class to near O (for the other class) takes place over a very thin
region. This indicates a very sharp confidence in the model, implying that the model just accepts
the error for points in the non correlated class that lie near F; = F>.

Output prob for different F1/F2 values

0.88

077

0.66

- 055

F0.44

033

F022

F011

Figure A-3. Output over F; and F, with F; through F; set to zero, Cr, r, = 1.0.

From this perspective we can summarize that the MLP sees a region that contains an extremely
high proportion of correlated points. Thus it creates a boundary around that region to identify this
class.

Weight Perspective

In an alternate perspective we analyze the weights of the network. Since the MLP consists of a
single hidden layer with five hidden nodes the first weight matrix will be 8 x 5 with 5 bias values.
The results of activating on these weights and biases are combined into a single output using an
additional 5 weights and a bias. A visualization of these weights and biases is found in

Figure [A-4 on page 136

From this we see an interesting pattern in the last three nodes. The weights for F3 to Fg in these
nodes are near zero, with the weights for F| and F, alternating in sign between the nodes. We
analyze two cases to illustrate how this network sees the correlation, but first we give the weights
of the network in Table |A-3 on the facing page]

134

Now, assuming that the random distribution of F3 through Fg means that the slightly nonzero
weights for these features in the first two nodes are a wash, we can approximate this network in
terms of F| and F>, given in Table [A-4]

Table A-3. Example MLP weights.
Node | 1 2 3 4 5

F 23 -1.0 -25 35 -3.0
F 07 16 25 -35 3.0
F3 02 00 00 00 0.0
Fy 0.1 00 00 00 0.0
F5 04 02 00 00 00
Fs 03 -02 00 00 0.0
F 0.1 00 00 00 0.0
Fg 00 00 00 00 0.0
Bias | 1.1 1.0 00 00 00
Output | 1. 22 -75 -8 -8
Bias -0.6

Table A-4. Approximation to MLP in terms of F| and F.

Node ‘ Approximation Fi=F

M 23N +07KR+1.1 —1.6F+1.1
Ny —1.0Fi+1.6F,+1.0 0.6F+1.1
N3 —2.5F; +2.5F,+0.0 0

Ny 3.5FF —3.5F,+0.0 0

Ns —3.0F1 +5.0F,4+0.0 0

Output | Aj +2A; —8(A3+As+As)—0.6 where A; = max(0,N;)

First, assume F = F| =~ F>: From Table |A-4| we see that the last three nodes will be zero, as the
values of F and F, will approximately cancel out. Then if F > 0.7 we have that N; will not
activate, but N, will. If F < —2 we have that N> will not activate, but Ny will. If —2 < F < 0.7
both will activate. Thus A; or A, are positive, with A3,A4,As ~ 0. We can see from the output
function that this will be relatively large, as N and N, play inverse roles so that at least one of A

and A, is large. Thus this value will have a sigmoid near 1, matching the correlated class (label of
D).

Second, assume F| # F, by a sizable margin and F = |F; — F>|: Again from Table we have
that either one or two of the last three nodes will activate, approximately three times the
difference between Fj and F>. This will then be weighed in the output layer by -8, meaning that
the negative contribution to the output is from —24F to —48F'. Since F' has to be decently greater
than zero for the point to be non-correlated, it is impossible for the output from the first two nodes
to outweigh this (at least under the domain of the training data, as this is seen in the growing

135

region of the correlated class as you get away from F7, F, = 0.) Thus the sigmoid of this
extremely negative output will be near 0, matching the non-correlated class (label of 0).

From these examples we see that the first two hidden nodes work as a compliment to the last
three. The last three nodes have a strongly negative output weight, leading to a non-correlated
class if they activate strongly, which happens when F; # F,. The first two nodes, between the two
of them, provide a positive output when F; ~ F,. Note that this is not an if and only if
relationship, it just so happens that when F; ~ F; one or both of these nodes activate. In the case
that there is not a correlation but these two nodes activate, the strongly negative contribution from
the lack of correlation in the last three nodes will overrule this.

To summarize, the last three nodes recognize the lack of correlation. Then some combination of
the first two activate when F| ~ F>, for positive or negative values of F; and F;.

Thus in the case of correlation we have low activation from the last three and strong activation
from the first two. In the case of no correlation we have a strong, negatively-weighted, activation
from the last three that outweighs whatever the activation from the first two is.

Hidden Layer

F1 o o o

-2

-6
Bias

o0 0
3 4 5

Hidden Node

Figure A-4. MLP weights for a single layer with 5 hidden nodes. Size of circle
indicates magnitude of the weight, color indicates value.

A.1.2. Support Vector Machine

The support vector machine algorithm attempts to create a maximum-separator in the data. This
is done by solving a minimization problem with the use a the ’kernel-trick’ to increase

136

separability by projecting the features to a much higher (in the case of the radial basis function
kernel, an infinite) dimension. To investigate just how the model understands a correlation we plot
the decision boundary along with the prediction probabilities for each point in the training set. In
Figure [A-3we give the decision boundary over F] and F; with the remaining features set to zero,
for both the non-shifted and shifted data. In Figure [A-6] we give the decision boundary over Fy
and Fg, with the remaining features set to zero, again for both the non-shifted and shifted data.

SVM Decision Boundary for F1,Fz, Not Shifted

SVM Decision Boundary for F1,F, Shifted

4 1
3 ol 3 . . 08
2 ”
PR : ’
.. .t
: : 0 e R -4!‘/
I PR 7’
06 0 e 24 Wl et 06
1 1 ce T, ?’.-l‘.r.?., 2
L oy g
., e N s -~ LN
@ o w o ¢ :.Ej'" ﬁilrt:‘é‘ e
% o ¥ e =
- % o o
a o4 -1 " ‘;ﬂvﬁ'—#-"‘ 0 . 04
PP S - e
AL e JA R
L -2 A A S W
-’ I
02 . . 02
3 -3 .
-4 -4
4 3 2 a4 o 1 2 3 4 4 3 2 4 0 1 2 5 2
F F

(a) SVM decision boundary over F; and F», non-shifted. (b) SVM decision boundary over F; and F>, shifted.

Figure A-5. SVM decision boundary over F; and F, for non-shifted (left) and
shifted (right) F;.

SVM Decision Boundary for F1,Fs, Not Shifted SVM Decision Boundary for Fy,Fg, Shifted

-3

—4

-3

-4

4

(a) SVM decision boundary over F; and Fg, non-shifted. (b) SVM decision boundary over F; and Fg, shifted.

Figure A-6. SVM decision boundary over F; and F; for non-shifted (left) and
shifted (right) Fs.

In these results we see a very similar decision boundary over F and F; (Figure[A-5)). However in
the second figure (Figure[A-6)) we see that the shifted boundary acknowledges that the
non-correlated class lies above the correlated class with respect to Fg and thus provides some
means of separability.

It should be noted that for both sets of plots the color of the scattered points indicate the prediction
137

probability from the model, or how strongly the model believes a point belongs to each class.
This comes from a five-fold cross validation during the fit call. Thus these points will integrate
information from the higher dimensional space, not just the cross sections of the two displayed.

Varying Shift Size

It was noted that the shifted and non-shifted data had very similar distributions of test-set
accuracy scores in the main experiment. To further explore whether this is a failing of the model
or just a random occurrence we significantly increase the number of repeats (since SVM is a
relatively fast algorithm in our case) and only test the accuracy for SVM over several different
shift sizes. Total shifts of 0, 0.5, and 1.0 will be compared.

In Table[2-1 on page 34|it was determined that a best artificial split with respect to Fg would be at
F3 = 0, and it should offer an approximate accuracy of 60%. Following the same idea of an
artificial split at Fg = 0, utilizing the CDF of the distribution at 0, (t = —0.5, o = 1) we see that
approximately 70% accuracy should be achieved for a pair of means with a separation of 1.

To thoroughly test the effect of larger separation on Fg, a total of 100 data sets for each of the
three shift sizes (0,0.5, and 1.0) were generated, and each of those data sets was tested over 100
training/test splits for a total of 10,000 runs per shift size. The test-set accuracy for each shift size
in each run was recorded. To generate a baseline the experiment was run for Cr, , = 1 and

CF,.», = 0 to allow comparison to the model’s performance when the separability of Fg is the only
real information. The results are displayed in Figure[A-7]

Test-set results for varying shift size, SVM Cg, r, =1.0 Test-set results for varying shift size, SVM Cr, g, =1.0

Accuracy
@
o
&
Accuracy

070

o 05 10 o 0s 10
Total Shift Size Total Shift Size

(a) SVM Results for various shift sizes, Cr, r, = 1. (b) SVM Results for various shift sizes, Cr, , = 0.

Figure A-7. SVM test-set accuracy for shifts on F; of total width 0, 0.5, and
1.0. Results are over 10,000 runs. Left: Cr, r, = 1. Right: Cr, r, =0

From these results we see that there is a slight increase in accuracy as the size of the shift
increases for the correlated data. However, this increase in accuracy is not directly equal to the
increase in theoretical separability on Fg. Looking at the averages over 10,000 runs (Table
(the facing page)) we see that there is only a slight increase in accuracy of approximately 4% when
the theoretical separation increases 10 fold. We see this theoretical separation in the results for
Cr,.», = 0, as the accuracy increases by exactly 10% as the shift increases from 0.5 to 1.

138

Table A-5. Mean and standard deviation of SVM test-set accuracies for vari-
ous shift sizes.

‘ Cr.p, =1 ‘ Crp, =0
Shift Width | Mean Std Dev. | Mean Std Dev.
0.0 0.725 0.01785 | 0.499 0.02016
0.5 0.744 0.01780 | 0.578 0.02032
1.0 0.786 0.01682 | 0.678 0.01956

This muted increase in accuracy when the correlation exists shows that there is some mixing in
separability between correlation and feature shift, with respect to a support vector machine. This
is evidenced by the marked increase in separability in the results without correlation.

A.1.3. K-Nearest Neighbor

The K-Nearest Neighbor algorithm utilizes the votes (class label) of the closest K points to a
given point x to determine the class label of x.

Under this paradigm, the classification of a given point x can be considered with respect to the
density of each class in a given area surrounding x. This area, or €-neighborhood, is variable for
each point, as the size of the neighborhood is determined by the distance to the K™ neighbor.
Thus a point under question, x, is assigned to the class with the highest density in the
e-neighborhood around x.

As seen, and discussed, previously in Figure [2-3 on page 26| the joint distribution of F| and F; is
the only distribution containing information on the separability of the two classes. Visualizing
this two-dimensionally under the guise of Cr, r, = 1.0 we have the correlated class lying on

F; = F;,, with the non-correlated class normally distributed in the surrounding space. We then add
in F3, which has an identical, normal distribution for both classes. This can be seen to distribute
the points across the Z-axis, effectively spreading out the points for both classes. However, a
hyperplane through F; = F still holds the entirety of the correlated class, with a handful of
class-confused non-correlated points.

Adding in the remaining five dimensions (F4-Fg) we note that the correlated class still lies on the
space defined by F| = F,, while the non-correlated class lies on a higher dimension, noisier
manifold. It makes sense then that under the Euclidean metric these points become further apart.
As an aside, it is noted in [9] that the ratio of the nearest to furthest neighbors to a point approach
1 under modest increases in dimensionality. This curse of dimensionality spreads the points across
the higher dimensional space, however the effect of this spreading is that the non-correlated class
is spread relatively less, due to F; = F; or F| =~ F, depending on the strength of the correlation.

This difference in separation distance yields the hypothesis that in the space of F| = F>, there are
seemingly more correlated points in the vicinity than non-correlated points. This leads to an
increase in the likelihood that more than half of the K nearest neighbors belong in the correlated
class when we consider points in the space F; = F>, due to the relative density of this class.

139

Density Experiments

To explore this idea of higher density of correlated points in the space F; = F, we perform two
experiments, following a similar design. First a correlated and non-correlated set of data points
are created, 1000 points for each (this is the same as the method used for the main experiments in
this paper). Then an additional point is randomly generated from this distribution, x. Given some
equally-spaced discretization of the space between —3 and 3 we have a grid of values to step
through. Iteratively, F and F; for the point x are set to these grid values, and then either the
proportion of correlated class points within K neighbors or within some €-neighborhood are
determined. When dealing with the €-neighborhood case, the total number of points in the
neighborhood is also determined. This entire process is repeated to decrease the variance in the
results.

To summarize the parameters for these experiments: we control the total number of repeats of the
experiment, the granularity of the grid spacing, and the number of nearest neighbors or size of the
g-neighborhood to explore. As well, this experiment can be done for various levels of Cr, , in the
data, however in all cases we set F; = F> € GRID.

In all of the following results the grid spacing was set to 0.01, the number of repeats was 1000,
the number of nearest neighbors used were K = {5,10,20,50, 100,200}, and the sizes of the
e-neighborhood were € = {3,4,5,6,7}.

Results for Cr, r, = 1.0

First we look at the results for the proportion of correlated class points, Figure |A-8 on the facing |
in the K-nearest neighbors we see that with Cr, , = 1.0 that more-often-than-not there
were more correlated class points within the K neighbors. As we increase the number of
neighbors we increase the resolution of the results, however for all cases of K = 20 or more we
see that near the edges of the distribution that more than half of the neighbors belong to the
correlated class. This is due to the nature of the joint distribution. The likelihood of
non-correlated point being near an extreme value for F| = F;, requires that both F; and F, are
uniquely extreme, essentially squaring the probability of a correlated class point being that
extreme in both aspects (as the position of the point with respect to F; and F> can be considered as
coming from a single distribution for Cr, p, = 1.0).

When we average these 1,000 individual results, Figure |A-9 on the next pagel we see that on
average the number of correlated class points in each K-nearest neighbors exceeds the number of
non-correlated points. It is interesting to note that the relative proportion of correlated points
actually decreases as the number of neighbors examined increases. This illustrates that more
points from the normal distribution of the non-correlated class are being included in the
neighborhood under the increase of K.

When the €-neighborhood is considered the results show a similar curve towards a more balanced
(with respect to the two classes) center of the grid. It is interesting to note that this balance occurs
with a massive increase in the number of neighbors in the €-neighborhood. This can be seen in

Figures|A-11 on page 143} [A-12 on page 144] With this we see, as before, a higher proportion of

140

K-Nearest Neighbor Density

Density out of 5 Neighbors Density out of 10 Neighbors

g 5
s s
R
§ . I 5 AL
i i LA
[T
Value of F1,F2 Walue of F1,F2
Density out of 20 Neighbors Density out of 50 Neighbors

| ‘\Illillll\\'ﬂlw

Density of Corr Class in NN
Density of Corr Class in NN

Value of F1,F2 Value of F1,F2
Density out of 100 Meighbors Density out of 200 Neighbors

Density of Corr Class in NN
Density of Corr Class in NN

-3 2 1 1 2 3 3 2 A1 1 2 3

0 o
Value of F1,F2 Walue of F1,F2

Figure A-8. Proportion of correlated points in K-nearest neighbors at each
grid point, for Cr, , = 1.0 and K < {5,10,20,50, 100,200}, over 1000 runs.

Average Correlated Class Density of Nearest Neighbors

0.90 4

0.85 A

0.80 1

0.75 A

0.70 A

0.65 1

0.60 A

0.55 A
100-NN
200-NN o

050

-3 -z -1 0 1 2 3

Figure A-9. Average proportion of correlated points in K-nearest neighbors
at each grid point, for Cr, r, = 1.0 and K € {5,10,20,50, 100,200}, over 1000 runs.

141

correlated points near the ends of the grid, with a ratio of the two classes approaching 0.5 or
below in the middle.

As for the averages of the realizations, Figure [A-10| we see the correlated class density decrease
as the size of the neighborhoods. This is similar to the trend seen under K-nearest neighbors.
However, even with this decrease, we see that with neighborhoods of size less than 5.5 (where the
total points encompassed by the neighborhood do not max out at 2,000), that the proportion of
correlated points remains above 0.5 across the grid.

Averages for Neighberhood Density and Size

Average Correlated Class Density of eps-Neighborhoods

= 3.0-Neighborhood
0.80 3 5-Neighborhood
40-Neighborhood
0.75 —— 45-Neighborhood
5.0-Neighborhood
—— 5 5-Neighborhood
6.0-Neighborhood
6.5-Neighborhood
7.0-Neighborhood
7.5-Neighborhood

0.70
0.65

0.60

055 /

-3 -2 -1 0 1 2 3

= 3.0-Neighborhood
3.5-Neighborhood
4.0-Meighborhood
= 4.5-Neighborhood
5.0-Neighborhood
= 5.5-Neighborhood
6.0-Neighborhood
6.5-Neighborhood
7.0-Neighborhood
7.5-Neighborhood

2000
1750
1500
1250
1000

750

500

250

-3 -2 -1 0 1 2 3

Figure A-10. Average proportion of correlated points in e-neighbors at each
grid point, for Cr, r, = 1.0 and € € {3,4,5,6,7}, over 1000 runs.

These results provide further evidence that the density of correlated points in the space
surrounding F| = F; lead to the K-nearest neighbor algorithm understanding the correlation in the
class, even though the classes overlap in the space.

Lesser Correlations

While all of the above was repeated for Cr, p, = 0.9,0.8,0.5,0.2,0.0, for the sake of avoiding a
second appendix, we leave out the plots except for the average over various K nearest neighbors.
These plots can be seen in the notebook correlated_variable_experiments_knn. We
see the averages for various K neighbors over the different values of C, f, in Figure

DAY A4

With these results we see a similar trend to Cr, , = 1.0 (Figure|A-9 on the previous page), where
as the number of neighbors increases the average correlated class density decreases. With the

142

3.000-Neighborhood
Density in 3.000-Neighborheod Number of Neighbors in 3.000-Neighborhood

(a) Proportion of correlated points in neighborhood of radius 3.

4.000-Neighborhood
Density in 4.00¢ Number of Neighbers in 4.000-Neighborhood

(b) Proportion of correlated points in neighborhood of radius 4.

5.000-Neighborhood
Density in 5.000 Number of Neighbors in 5.000-Neighborhood

(c) Proportion of correlated points in neighborhood of radius 5.

6.000-Neighborhoad
Density in 6.000-Neighborhood Number of Neighbors in 6.000-Neighborhood

(d) Proportion of correlated points in neighborhood of radius 6.

Figure A-11. Proportion of correlated points in e-neighborhoods for ¢ ¢

{3,4,5}, realized over 1000 runs.

decrease in correlation we see that the correlated class density for neighbors near points along
Fi = F; decreases as well. By the time the correlation reaches Cr, r, = 0.5 we have that the
density of the correlated class near F; = F, approaches 0.5. However, this relatively weak
correlation still provides an increased density near the edges of the region surveyed. With

143

6.000-Neighborhood
Density in 6.000-Neighborheod Number of Neighbers in 6.000-Neighborhaod

(a) Proportion of correlated points in neighborhood of radius 7.

Figure A-12. (Cont.)Proportion of correlated points in e-neighborhoods for
€ € {3,4,5}, realized over 1000 runs.

Average Correlated Class Density of Nearest Neighbors Average Correlated Class Density of Nearest Neighbors

— 5NN
10NN
— 20NN
— S0-NN
100-NN
—— 200-NN

— 5NN
10-NN
— 20NN
— SO-NN
100-NN
— 200-NN

= -2 -1 1] 1 2 -3 -2 -1 [1 2

(a) Average proportion of correlated (b) Average proportion of correlated
points in K-nearest neighbors, points in K-nearest neighbors,
Cr,.F, =0.9. Cr.r, =0.8.

Average Correlated Class Density of Nearest Neighbors Average Correlated Class Density of Nearest Neighbors

— 5NN
10NN
— 20NN
— S0-NN
100-NN
— 200-NN

= -2 -1 0 1 2 -3 -2 -1 0 1 2

(c) Average proportion of correlated (d) Average proportion of correlated
points in K-nearest neighbors, points in K-nearest neighbors,
Cr,.p, = 0.5. Cryp, = 0.2,

Figure A-13. Average proportion of correlated points in K-nearest neighbors
at each grid point, for Cr, r, =0.9,0.8,0.5,0.2 and X < {5,10,20,50,100,200}, over
1000 runs.

Cr,.;, = 0.2 the averages actually drop below 0.5, down to 0.48. This means that many of the
points near Fy = F, = 0 are essentially evenly distributed for Cr, r, = 0.2.

When there is no correlation between F; and F, we see essentially random fluctuations in the
density (Figure|A-14 on the facing pagel), as expected. This decrease from high correlated class
density to low density in the neighbors provides good evidence for a density based argument for
the recognizing of correlations in the data by the K-Nearest Neighbors algorithm.

144

Average Correlated Class Density of Nearest Neighbors

27
— SN
10-NN
20-NN

—— 50-NN
100-MH
= 200-NN

-3 -2 -1 0 1 2 3

Figure A-14. Average proportion of correlated points in K-nearest neighbors
at each grid point, for Cr, r, =0.0 and K € {5,10,20,50, 100,200}, over 1000 runs.

A.1.4. Logistic Regression

Logistic regression functions similarly to standard least-squares, in that the algorithm determines
weights and a bias such that # = wx + b. However, instead of comparing the output 7 to the target
values of y, we push 7 through a sigmoid function:

1

= A.l
1+e? A1)

o(t)

So that it takes on a response in the range (0, 1). This can be interpreted as the probability of class
membership in a binary class system. Thus we can define the probability that a data point x

belongs to class y =1 as
1

= T (A.2)

P(x)
And thus we map every point in the feature space to an output probability for class membership.
By the properties of Equation[A.2] if wx+ b < 0 then P(x) < 1/2. If wx+b > 0 then P(x) > 1/2.
Since wx = |w||x| cos(0) where 6 is the angle between w and x, we have that o € (5%, %) will

lead to P(x) > 1/2. Conversely, o € (Z,3E) will lead to P(x) < 1/2.

In this context, the vector perpendicular to w will lead to P(x) = 1/2, as

cos(m/2) = cos(3m/2) = 0. Thus everything "above" (with respect to the direction of w) will be
more likely to belong to class y = 1, with P(x) > 1/2 and everything "below" will be more likely
to belong to class y = 0. Thus we can take this line perpendicular to w as the linear separator of
the two classes, with the bias b determining the location of the divider on w.

However, as we understand this data set, a dividing line is going to be unable to capture the region
of correlated points, as they lie "inside" the space of the non-correlated class. Thus there is no
clear line of separation between the class labels that can be drawn. If we look at the decision
boundaries on the surface of F; and F; (all other components are set to zero) we see this is the
case (Figure [A-15 on the next page).

In Figure |A-15 on the following page|on the left we see that in the non-shifted data, for the most
part, the individual prediction probabilities (shading of each point) lines up with the decision
boundary. Any mismatch comes from the fact that the points are projected down onto

145

Legistic Regression Decision Surface for F1.Fz, Not Shifted

fahat A

-4 -3 -2 -1 o 1 2 3 4

F

(a) Logistic regression decision boundary over
F and F,, non-shifted.

Logistic Regression Decision Surface for F1.F;, Not Shifted

-4 -3 -z -1 0 1 2 3

F

4

(b) Logistic regression decision boundary over
F; and F>, shifted.

Figure A-15. Logistic regression decision boundary over F; and F, for non-
shifted (left) and shifted (right) F3, both with Cr, , = 1.0. Scatter coloring is

sigmoid output for a point.

F3, ..., Fg = 0. We see that the linear separator goes through the correlation line near its center,
providing approximately a 50/50 split of the classes. Due to having no meaningful feature
separation, with respect to any single feature, the line is essentially a function of the random

sampling used to generate the data.

On the right, we see the decision boundary lies above the data, however as seen previously under
the analysis of the distributions, it is highly likely that each subdivision of the data consists of an

equal distribution of both classes.

146

SVM Decision Boundary for F1.Fg, Not Shifted SVM Decision Boundary for F1.Fg. Not Shifted

4 3 2 a0 1 2 i 4 4 3 2z 4 1 2 i 4
A A

(a) Logistic regression decision boundary over F; and Fg, (lohlshgfitit: regression decision boundary over F and Fg, shifted.

Figure A-16. Logistic regression decision boundary over F; and Fz for non-
shifted (left) and shifted (right) F;. Scatter coloring is sigmoid output for a
point.

When we analyze the decision surface with respect to F; and Fg, with F,,. .., F7 set to zero, we
see a similar result for the non-shifted data. The actual labels are distributed evenly between the
data, resulting in a division that achieves approximately 50% accuracy. When we look at the
shifted data on the right, we see a much clearer picture of separability. It should also be noted that
a large magnitude weight on Fg means that higher and lower probabilities for class membership
are achieved as points get away from the line near Fg = 0. Although there is only a slight increase
in accuracy (up to 60% from 50%), the shifted data provides a means for the linear separator to
apply a meaningful distinction between the classes, rather than being decided by randomness as
in the non-shifted data.

Feature Importance

For the non-shifted data an example of w and b are:

w= [().157 —0.058 —0.064 0.100 —0.070 0.092 —0.024 —0.037} b=—-0.011
(A.3)
Whereas for the shifted data:

w:[0.00I 0.016 —-0.075 —-0.128 —0.086 —0.007 —0.008 —0.506] b =-0.027
(A4)

In the non-shifted data we see the largest magnitude feature weight belongs to F, however it is of
similar magnitude to F4 and Fg. In the case of the shifted data, Fg is the largest magnitude feature,
and approximately four times larger than the next largest in magnitude, Fy, as well as
approximately four times larger than the largest feature in the non-shifted data.

This indicates that Fg is the most important feature in the shifted data, which aligns with the
increased separability coming from Fg.

147

A.1.5. Gaussian Naive Bayes

Naive Bayes revolves around maximizing the probability of a class label y given some input data
X1,...,X, Where n is the number of features |F|. Using Bayes’ Theorem we have:

P(y)P(x1,...,xn|y)

A.S
P(x1,...,x7) (A-5)

P(y|x1,...,xn) =

Now, making the assumption that all features are independent, we have that the probability of x;
taking a value given y and all other features is the same as the probability as x; taking that value
given y. Thus:

P(xi|y7x17"'7xi*17-xi+17"'7-xn) :P(xl|y> (A6)

Using this assumption of independence we can replace P(x1,...,x,|y) with [T"_, P(x;|y) in the
numerator of Equation Noting that the denominator of this equation is a constant with
respect to the input data we can remove the denominator and replace the equality with
proportionality. Thus we find the class that maximizes the probability:

P(y|x1,...,x) o< P(y) HP(x,-|y) (A7)
i=1

Which gives the actual problem:
n

¥ = argmax,P(y) HP(xi|y) (A.8)
i=1

As for the Gaussian part of Gaussian Naive Bayes, we assume a Gaussian distribution of each
feature with respect to the class label and thus derive

L 2
P(xily) = : exp (—M) (A.9)

p
\/2mo? 20y

This derivation comes from the work in [131]].

Essentially, given some probability of a value occurring in a feature for each y, we take the y that
is most likely over all features (product) and most likely without respect to any x; (P(y)).

Why does this stop Naive Bayes from learning correlation? The actual maximization
problem revolves around P(y), which is simply the relative frequency of each class (which are
equal, both classes have the same frequency), and the product of all P(x;|y). The "winning" class
label will have higher probabilities for some or all of the features.

148

However, our data is drawn from a normal distribution with ; =0 and 6; =1 fori =1,2,...,8
for both classes. So ;,, = 0 for all i and both y (with the same holding for o;). Thus the values
for P(x;|y) given in Equation[A.9| will all approach

e b i y)?
P(-xl |y) - Wexp (261%, (AlO)
Ly ’
1 2
P(xily) = P(xi) = \/T_neXp (—%) (A.11)

(A.12)

as the number of samples increases so that the observed values for y;, — 0 and 6;, — 1 for all i
and y. Thus P(x;|y) are all just functions of x;, no matter the specific feature i or class label y.

This means that the actual class allocation comes from variance in the sampling of the normal
distribution, meaning that some means differ slightly from zero and some variances differ slightly
from one. This means the labels are essentially a function of random sampling, and thus we can
expect the accuracy to be around 0.5, as seen in the results.

Shifted Data

For the shifted data, in Fg we actually see a difference in values of P(xg|y). Since the correlated
class (y = 1) has ug | = —0.25 and the non-correlated class (y = 0) has pg o = 0.25 they will have
different conditional probabilities (note that they both have 6g g = 031 = 1):

1 i +0.25)?

P(xglyzl):mexp (-%) (A.13)
1 i —0.25)?

Pluly=0)= ——exp (—%) (A.14)

In Figure |A-17 on the next page| we see that the conditional probability for P(xg|y = 1) is higher
when xg < 0 and P(xg|y = 0) is higher when xg > 0. Since all P(x;|y = 0) = P(x;]y = 1) for
i=1,2,...,7and P(y =0) =~ P(y = 1), we have that the label for a class will be determined by
whether xg is greater than or less than 0.

Our results then align with the discussion surrounding Table [2-1 on page 34] where it was
determined that Fg has approximately 60% accuracy in separability when Fg = 0 is used as a
separator, as it will be in Gaussian Naive Bayes for the shifted data.

149

Values for correlated Plxg|y = 1) and non-correlated Plxgly =0)

0.40 —— Correlated
Non-Correlated

035

030

025

020

Plxaly)

0.15

010

005

0.00

-4 -3 -2 -1 o 1 2 3 4

Figure A-17. Values for P(x3|y = 1) and P(xg|y = 2) in the shifted data, where
y=1in the correlated class (us ; = —0.25) and y =0 in the non-correlated class
(us0 = 0.25)

150

APPENDIX B. Closed-Form Analytical Solution to Shapley Values

In this Section, we briefly provide the details for the closed-form analytical solution to the
Shapley values that are used for the fidelity calculations. Calculating Shapley values following
Equation [4.3]is fairly straight forward once a value function is established. Here, we provide the
value function that we used.

Following the proof provided by Aas et al. [1] for value function of a linear equation
f(x)=PBo+ 2721 Bx; where x;“. represents the an observed value of x; for a data point x:

vis =E[fls]
=) BiElj]+) Bix. (B.1)
JEs Jj€S

Here, we use variance as our uncertainty measure for the Qol and for the input features in
determining the global importance values. Therefore, we use the standard deviation ¢ for the x;
in S using the nominal values defined in Equation |4.9|in place of actual values for xjf. We
calculate the expectation E[x;] using the mean values u for the variables not in S. As all of the
features have a zero mean, E[x;] = 0 meaning that the first summation in Equation is zero and

Var(x;) = E[x?]

B.0.1. Value of v|s for Linear Models and Independent Variables

For the the linear model (Equation[4.7), the value function for each subset S in M is:

+
+(Beok)” + (Bnom)”
+(B202)* + (B303)* + (Bacs)’ (B.2)

B.0.2. Value of v|s for Linear Models and Correlated Variables

When there are correlated features, knowing the value of one feature provides information for the
expected value for the features that are correlated with it. Thus, if feature x;, is perfectly correlated
with x; the mean and variance x; are equivalent to those of x;. If x; and x, are perfectly
correlated, the value functions are the same as above in Equation [B.2]except for the following

151

cases when either x; or x; are in S since one feature provides information about the other

correlated feature when it is not included in S:

VI = vl = (Bi61)" + (B02)’
Ve iy =Vlgses = (B101)7 + (B202)° + (B303)
Vs =Vl = (B101)7 +(B202)> + (Bsou)’
Ve = Vhoyse = Yy apne = (B161) 4 (B202)° + (B303)” + (B40s)’ (B.3)

B.0.3. Value of v|s for Nonlinear Models and Independent Variables

For the nonlinear model (Equation [4.§), the value function changes for x3 and x4 from Equation
due to their multiplicative relationship and an expected value of E[x;] = 0. Therefore, the
series of equations changes from Equation accordingly:

V], = V|x, =0

Ve =V = (Bio1)’

V|x2.,x3 = V|x2,X4 = (,32672)2
Ve = (B303)° (B4os)

Ve s = Vs = (B101)° + (B202)?

Viyase = (B 01)% + (B363)* (B4o4)
Vo = (B202)°+(B303)” (Bsoy)
Yy oisy = (B101)2 + (B202)” + (B303)° (Byos)’ (B.4)

B.0.4. Value of v|s for Nonlinear Models and Correlated Variables

Finally, for a nonlinear model where x; and x, are correlated, we get a combination of Equations

and [B.4] producing:
V‘Jq = V|xz = V|X17Xz
V|X3 = V|x4
v X1,X3 =V X1,X4 - v|x27x3 - v|x27x4 - V|~xl7-x2>x3 - V|x17x2>x4
v|x37x4
v‘xl X3.X4 V‘x27x37x4 = lel X0,X3,X4

152

= (Bi61)* + (B:02)?

=0

= (B161)* + (B202)*

= ([3303)2 (1340'4)2

= (B161)* + (B202)* + (B303)* (Bsou)?

APPENDIX C. Details for Classification Trust

We provide additional details for clarity.

C.0.1. Scaling and Measuring Distance

Our measures can be used with any scaling, but scaling is important and unavoidable. Doing no
scaling is a decision to use the scaling inherent in the raw data. Our algorithms rely on the
distance between a pair of points, which combines coordinate value differences into a single
number. Each coordinate of a point corresponds to a different feature. For some data, such as the
intermediary layers in a deep neural network, the features may already be comparable. For other
data, such as tabular text, each might be expressed in different units, and at different scales. This
can dramatically bias the value of a distance, with coordinates at large scales dominating. In the
absence of domain-specific or problem-specific information, we deem it reasonable to weight the
importance of each feature equally. Our approach is to take the min and max value of each feature
in the training data, and linearly scale it to [0, 1]. Thus, each feature is scaled to a fraction of its
range that appears in the training data. Query points must be scaled the same way for consistency,
but there are no limits on their values and their coordinates may fall outside [0, 1].

Categorical Features

Categorical features have values from a non-ordinal set: e.g., red, yellow, blue. We map these to
mutually exclusive binary variables: e.g., is-red, is-yellow, is-blue. Of course, for any point,
exactly one of these binary variables will be True.

Binary Features

False and True are mapped to O and 1.

C.0.2. Is This Just Another Classifier?

We introduced geometric measures of how trustworthy a classification is. We believe it is a
benefit that these measures are classifier-agnostic, and can serve as a check on any supposed
confidence that a classifier self-reports. We believe it is a benefit that these measures are
classifier-generic, and can be used to compare the trustworthiness of different types of classifiers,
including those not yet invented.

153

Any resemblance to an existing classifier is purely coincidental.

154

APPENDIX D. Ensemble of Experts Baseline

D.1. Ensemble of Experts Baseline

We sought to develop an expert baseline explanation for comparison to other methods by
combining the decision rationale of multiple domain experts. This study was conducted using the
PDFrate classifier [108], specifically using the publicly published datasetmwhich uses the
mimicus feature extractor [[111]]. The PDFrate classifier uses metadata and structural features to
identify malware embedded in PDF files using a Random Forest model. Five experts were
included in this study representing a wide range of experience (from 2 to 10 years) and familiarity
with PDF malware.

Experts were provided with metadata from 20 PDF samples and asked to provide a classification
(benign, malicious, or don’t know), confidence (low, medium, or high), and two lists of attributes
that indicate each class. The metadata provided is the exact same metadata from which the
PDFrate features are extracted. However, analysts were asked to provide classification based on
their own intuition so the analysts may have focused on different attributes than the PDFrate
classifier.

We normalized the identified attributes from each analyst, combining equivalent properties into a
single feature. For example, the following shows an example of one sample from an
inexperienced analyst:

Sample Hash:
la2e2f3a722fd4614£f60ba35696e5042bbbef72415fd5dcallcf56d5afllbbeb

Classification: malicious

Confidence: medium

Benign Attributes: Large size

Malicious Attributes: Possible suspicious timezone, javacript
presence, acroform, URL

The following is the classification and explanation from an experienced analyst for the same
PDF:

Sample Hash:
la2e2f3a722fd4614£60ba35696e5042bbbef72415fd5dcallcf56d5afllbbcb
Classificaton: malicious

Uhttps://github.com/csmutz/pdfrate
155

Confidence: high

Benign Attributes:
NA

Malicious Attributes: Javascript, Acroform, +800 TZ, Limited
content, Single page, Small number of images, text, etc., file
and link to file (and inidcator of hacking tools masm), Lack
of metadata (creator, author, etc), Mismatches in metadata:
Ex. different date formats, Repeated fields but different
values for uuids

An example of the consolidated features on the same PDF from the five analysts is as follows,
with features reported by multiple analysts indicated by number in parenthesis:

Classification
malicious (5)

Confidence
medium (4)
high

Benign Attributes
Large file size
Medium file size
Large amount of content
Malicious Attributes
+800 timezone (5)
Presence of Javascript (5)
Presence of Acroform (3)
Small amount of content
single Page
Images
Text
Presence of URL (5)
URL target is local file
masm tools (3)
Lack of Metadata (2)
mismatch metadata
Negative date delta
Presence of small boxes
Presence of embedded document objects

Some qualitative observations from compiling this data is:
e Analysts classifications were very consistent

e Analysts frequently identified the same attributes, but occasionally listed them as support
for opposing classes

156

Count | Analyst Feature Coverage | Number of ML Features Required
1 complete many
8 complete few
33 complete one
2 poor many
37 poor few
1 poor one

Table D-1. Counts of analyst features by how well they are represented by the
machine learned feature set and how many of the machine leared features are
required to provide coverage

e Analyst experience level wasn’t strongly correlated to higher accuracy or confidence
e Analyst experience was correlated with longer explanations (more attributes)

The attributes identified by analysts do not align perfectly with the features used by the machine
learning model in all cases. Some are nearly identical. For example, the "Presence of Javascript,
which is the top analyst feature corresponds directly with count_js and count_javascript, the 2nd
and 3rd ranked features of the machine learned model. However, in many cases the human
attributes are higher level or more abstract concepts while the features for the machine learner are
necessarily easily quantifiable. For example, one commonly identified analyst feature is "Lack of
Metadata". This concept is well represented in machine learner features as the count of characters
in each metadata field, but this requires utilizing multiple machine learner features. Other abstract
and complex analyst features, such as "Normal looking metadata" are not fully represented by
features in the machine learning model, even though portions of these concepts are reflected in
features such as histogram analysis of text in metadata fields. Table was created based on
input from the primary PDFrate developer indicating how well the analyst features are
represented in the machine learning feature set and how many machine learning features are
required to replicate the analyst feature.

D.2. Ensemble of Experts Comparison

We compared the baseline of expert ensemble explanations to SHAP_Dep and SHAP by
measuring the intersection of the top 5 features per prediction class as identified by each method.
For the expert ensemble, features were ranked by the number of analysts that listed the feature for
a given class. For SHAP_Dep, the full feature space was evaluated for correlations. For SHAP,
kernelshap with the full training set provided as sample data was utilized. We limited the number
of features included by each method to a threshold that ensured that each method had
approximately the same number of most important features in each explanation.

The similarity in explanations was evaluated by having the same domain expert that compiled the
expert ensemble data compare the features in each explanation. If the expert explanation had a
feature that was fully or mostly indicated by a feature in the machine learning feature set, then the
two explanations were considered to intersect on that feature pair. For example, if the expert

157

explanation included "Presence of Javascript", then it would intersect with other explanations
methods if either or both of the features count_js or count_javascript were present in the list of
important machine learning model features. Note that this means that only expert features that
were completely represented by one or few machine learning features could possibly overlap.
70% of the occurances of features present in the expert explanations were able to be represented
by ML features, indicating that the majority of the features identified by experts could have
intersected with the machine learning model features.

The expert explanations overlapped with 20% of the features in SHAP explanations compared to
8% for SHAP_Dep. This difference likely indicates that SHAP is more effective than SHAP_Dep
in creating explanations that match human analyst intuition. The expert that compiled these
results also indicated that the features identified by the SHAP_Dep seemed consistent with a
greater emphasis on correlated features. The domain expert noticed that some of the features
identified by experts were related to groups of features related to each other. For example, in one
sample, the expert ensemble identified that a specific metadata value was important. This specific
value can not be directly represented by numerical features so it is not directly represented in the
machine learning model feature set. There are various model features that are derived from the
metadata field including the counts of various types of characters (lower case, upper case, special,
etc). The SHAP_Dep explanation included many of these features derived from the same
metadata as the field identified by the expert ensemble. In the cases where specific values or terms
are important for classification but parameterized features are not specific enough to capture
individual values, it is expected that multiple related features could capture these terms and those
features would necessarily be correlated. That SHAP_Dep identified presumably correlated
features related to specific terms identified by the expert ensemble indicates that including
correlations in explanations may be useful in some situations.

Both SHAP and SHAP_Dep had very low overlap with expert explanations (20% and 8%
respectively). It is recognized that the experts may focus on different aspect of the samples than
the machine learning model, but it was possible for the machine learning model to represent 70%
of the features in the expert explanations. The lack of consistency between machine learning
model and expert explanations seems to indicate that model explanations may not be intuitive for
analysts. This apparent semantic gap between analyst intuition and model rationale indicates that
model explanations may not be useful for aiding analyst comprehension of observations whether
it be due to deficiencies in explanation methods or differences in model and expert rationale.
Furthermore, SHAP and SHAP_Dep explanations were very different. SHAP and SHAP_Dep
explanations overlapped less than 20%.

Given these results, future work should address these differences when providing explanations.
Previous research in social science has found that explanations that do not match human intuition
are often disregarded [73]]. Thus, some training or further explanations of unexpected
explanations from the ML model may be required for end-user adoption. This also helps motivate
the difference between using human-based explanation metrics, which may be biased to the way
humans understand how a model works versus what a ML is actually doing.

158

APPENDIX E. Interview Questions

**%* The following questions may be asked in a Delphi Method, but likely in a phone interview

kekesk

1.
2.

Please describe your job role(s) as it pertains to model maintenance.

What is your primary goal when performing model maintenance? How do you know when
you’ve achieved it?

How do you normally interact with the pdf-url & macro machine-learning models /
outputs? About how often?

What other machine learning models do you interact with in this way?

. What information would you normally be searching for when you’re investigating the ML

output (e.g. classifier = malicious/benign)? What questions do you normally ask in your
head as you’re doing this? [SHOW EXPLANATION - Figure |[E-1|]

When you see this presentation, what do you think it means?
a) What do you think the features represent? The feature values?
b) What do you think the direction of the bar represents?
¢) What do you think the color represents?
Given this visual, can you imagine any difficulties in obtaining the information you need?

Is the amount of information presented appropriate for your needs in evaluating the model
output as a model maintainer? If not, please describe.

159

3d458138-9c91-11eb-a3a0-53748398bd78
=3 ==

[P PR ot vy
Wt 2500 A hckable Bober Tabhe

POF-URL € ier Luplan
Fisal Ages MIIE Virt

THis sample was prediciad 1o bai benign

Figure E-1. Interface of the explanation integrated into the standard user in-
terface used the incident responders.

160

DISTRIBUTION

Email—Internal I

Courtney S. Dornburg 5954 ccdornb@sandia.gov

Curtis Johnson 5952 cjohnso@sandia.gov
Tu-Thach Quach 9364 tong@sandia.gov
Technical Library 01177 libref@sandia.gov

161

163

Sandia
National
Laboratories

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Summary
	Introduction
	Scope of Research
	SA and MLE
	Trust Measures
	User Studies

	Lessons Learned

	Impact of Correlations on Classification
	Experimental Design
	Data
	Training and Testing

	Design of Experiments
	Results
	Random Forest
	Multilayer Perceptron
	Support Vector Machine
	K-Nearest Neighbor
	Logistic Regression
	Gaussian Naive Bayes

	Feature Selection Algorithms
	Relief
	ReliefF

	Conclusion
	Future Work

	Correlation Preservation Sampling
	Resmapling Approaches
	Empirical Methods
	Analytical Methods
	Comparison of Methods

	Correlation Preservation Sampling
	CorrPS-KDE
	CorrPS-TRV

	Experiments
	Conclusion

	Limitations of Current Machine Learning Explainability Methods
	Global Sensitivity Analysis Methods
	Sobol' Indices
	Shapley Values

	Trusting Learned Models
	Black Box Explanation Methods
	What Constitutes the Fidelity of an Explanation?

	Empirical Examination of Explanation Fidelity
	Synthetic Data
	Ensemble of experts comparison

	Discussion
	Conclusion

	Classification Trustworthiness
	Geometric Trustworthiness
	Training Proximity Metric
	Extrapolation Metric
	Class Ambiguity Metric
	Measuring the Trust of a Region

	Identifying Important Features
	Synthetic Data Verification of the Trust Metrics
	Synthetic Data Experimental Observations
	Examination of Dense Rings & Pluto 8D

	Experimental Results on PDFrate
	Comparison with Out-of-Distribution Methods
	Maximum Softmax Probability
	Outlier Exposure
	DeepMCDD

	Implementation
	Results
	Future Work
	Conclusion

	User Study Results
	Sage Advice? The Impacts of Explanations for Machine Learning Models on Human Decision-Making in Spam Detection
	Method
	Procedure
	Results
	Discussion

	Lessons Learned from xAI Deployment in a Cybersecurity Operations Setting
	Methods
	Results
	Discussion
	Conclusions

	Explainability for Model Maintainers
	Objective and Research Question
	Method
	Findings
	Discussion

	Conclusions
	References
	References
	Appendices
	Machine Learning Models
	Random Forest
	Multilayer Perceptron
	Support Vector Machine
	K-Nearest Neighbor
	Logistic Regression
	Gaussian Naive Bayes

	Closed-Form Analytical Solution to Shapley Values
	Value of v|s for Linear Models and Independent Variables
	Value of v|s for Linear Models and Correlated Variables
	Value of v|s for Nonlinear Models and Independent Variables
	Value of v|s for Nonlinear Models and Correlated Variables

	Details for Classification Trust
	Scaling and Measuring Distance
	Is This Just Another Classifier?

	Ensemble of Experts Baseline
	Ensemble of Experts Baseline
	Ensemble of Experts Comparison

	Interview Questions

