

1 **Title: Peripheral blood hematolgy, plasma biochemistry, and the optimization of an *in*
2 *vitro* immune-based assay in the brown watersnake (*Nerodia taxispilota*)**

3
4 **Abstract**

5 Reptiles represent a phylogenetic lineage that provides a unique link between
6 ectothermic anamniotes and endothermic amniotes. Compared to mammalian and avian species,
7 our understanding of the reptilian immune system is greatly lacking. This gap in knowledge is
8 largely due to an absence of established immune-based assays or specific reagents for these
9 species. In the present study, brown watersnakes (*Nerodia taxispilota*) were live-captured in the
10 wild, sexed, weighed, measured, bled via the caudal vein and released. At 24 hr post-collection,
11 peripheral blood leukocytes were enriched and evaluated with an established mammalian *in-vitro*
12 lymphocyte proliferation assay. Snake peripheral blood leukocyte enrichment yielded > 90%
13 lymphocytes with viabilities averaging 81.5%. Baseline physiologic data for *N. taxispilota*,
14 including hematolgy and total solids, leukocyte differentials, cell recovery and plasma
15 biochemistry, were also collected. Cells cultured with Concanavalin A exhibited significantly
16 increased proliferation at both 72 and 96 hr. These preliminary results show that enriched
17 peripheral blood from wild-caught *N. taxispilota* provides a sufficient yield of leukocytes that
18 can be cultured and functionally evaluated using a standard mammalian *in-vitro* immune-based
19 assay.

20
21 Keywords: snake, peripheral blood collection, hematolgy, lymphocyte separation, mitogen,
22 proliferation

23
24 **Introduction**

25 Assessing an animal's capacity to withstand foreign antigenic assault (*i.e.*, pathogens,
26 toxins, toxicants) is a fundamental component of ecoimmunological studies. Snakes and other
27 reptiles are unique in that they are ectothermic amniotes, bridging the gap between ectothermic
28 fishes and amphibians to endothermic birds and mammals. As such, reptiles present an
29 opportunity to provide unique insights into the evolution of the vertebrate immune response.^[1]
30 Snakes represent a group of reptiles comprised of more than 3,000 species, and thus inhabit a
31 wide diversity of environments.^[2] Furthermore, snakes are important predators within their
32 respective ecosystems and can have relatively long-life spans with a longer potential exposure to
33 environmental contaminants.^[3,4] Collectively, these traits suggest that snakes may be useful
34 bioindicators for anthropogenic impacts on ecosystem health.^[5]

35 Establishing a reliable panel of immune assays would provide researchers with the
36 necessary tools to study reptile immunity as well as assess the effects of anthropogenic stressors
37 on reptilian health.^[6] The snake's immune system is similar to other vertebrates in that they
38 possess an innate, cell-mediated, and humoral immunity. Relative to mammalian and avian
39 species, there is still a paucity of data available regarding reptilian immunity – especially in
40 snakes.^[1] While interest in the snake immune system has increased in recent years, the majority
41 of studies involving snake immunity have been limited to the examination of hematological
42 characteristics, innate immunity, and the characterization of leukocytes.^[7-10] Unfortunately, these
43 techniques do not provide an assessment of immune cell phenotype and functionality.^[11] Thus,
44 establishing and validating commonly used mammalian *in vitro* immune assays in snakes will
45 allow for a more thorough examination of anthropogenic effects on snake immunity.

46 This study optimized a select panel of established *in vitro* mammalian immune-based
47 assays, while generating baseline hematological data for the brown watersnake (*Nerodia*

48 *taxispilota*), a common, large-bodied riverine snake species found in the southeastern United
49 States. The immune panel evaluated total leukocytes, performed white blood cell differentials,
50 and measured spontaneous and mitogen-induced T cell proliferation, *in vitro*. In addition,
51 baseline hematological parameters, including total red blood cell counts, packed cell volume, and
52 plasma total solids were collected as well as reference plasma biochemistry data for this snake
53 species.

54

55 **Methods**

56 ***Animal and Blood Collection***

57 Snakes (N = 12) were collected by hand from the Savannah River near Augusta, Georgia,
58 USA during late spring (5 May) of 2019. Each snake was sexed, measured (snout-vent length
59 [SVL] and tail length [TL] to nearest 1 mm) and bled via the caudal vein. All snakes were
60 immediately released following processing. Snake captures started in the morning (0930 hr) and
61 were finished by the evening (1830 hr). For each snake, 3 – 5.5 mL of blood were obtained (\leq
62 1% of the animal's body mass) within 3 – 5 min of capture. Peripheral blood samples were
63 collected from the caudal vein using aseptic technique. Blood samples were collected with a 23 g
64 needle and then immediately transferred to sterile sodium heparin vacutainer tubes (Becton
65 Dickinson, San Antonio, TX, USA) with a 18 g needle. Once in vacutainer tubes, samples were
66 mixed via gentle inversion 3 – 5 x and stored at approximately 20°C until arrival at the College
67 of Veterinary Medicine at the University of Georgia (Athens, GA) the next morning (0800 hr). A
68 small aliquot of fresh whole blood (non-heparinized) was taken from the initial blood collection
69 (post vacutainer transfer) to make whole blood smears and evaluate packed cell volume (PCV).

70 All samples for this experiment were collected, transported, and processed within 24 hr of the
71 initial capture and bleeding.

72 .

73 ***Whole Blood Smears***

74 On the day of blood collection, 10 μ L of whole blood were used to make blood smears
75 for leukocyte differential counts. Smears were allowed to air-dry overnight and then stained with
76 Wright Giemsa (Sigma Aldrich, St. Louis, MO, USA) using a 10-min full stain/10-min diluted
77 stain protocol. A total of 200 leukocytes per slide were enumerated for a 5-point differential
78 (azurophil, basophil, heterophil, lymphocyte, and monocyte) in the monolayer of the smear. Cell
79 counts are expressed per microliter and as percentages (%). The white blood cell (WBC)
80 estimate was calculated by multiplying the average number of WBCs in 10 microscope fields by
81 objective power squared.^[12] All slides were counted using an Olympus CX31 compound light
82 microscope (Olympus America Inc., Center Valley, PA) under 40x magnification. Recent
83 literature in reptilian hematolgy was used to guide identification and enumeration of cell types,
84 and a board-certified clinical pathologist (KM) supervised the enumeration of whole blood
85 smears.^[13-15]

86

87 ***Packed Cell Volume and Total Solids***

88 A small aliquot of whole blood was used to determine PCV and total solids. Briefly,
89 microhematocrit tubes were filled with whole blood, sealed with Chā-seal tube sealing
90 compound (Chase Instruments Co., West Babylon, NY, USA), and centrifuged at 14,489 x g for
91 3 min at ~ 23°C in a microhematocrit centrifuge (Unico, South Brunswick Township, NJ, USA)
92 to evaluate PCV. Snake PCV was read using a microcapillary reader (International Eastern

93 Company, Needham, MA, USA) and expressed as a percent (%). Total solids (g/dL) were
94 evaluated using a TS 400 Handheld Refractometer (Reichert Technologies, Depew, NY, USA).

95

96 ***Peripheral Blood Leukocyte Isolation and Enrichment***

97 A “slow spin” separation protocol previously used in birds and crocodilians was used to
98 isolate snake leukocytes.^[16,17] All peripheral blood samples less than 4 mL in volume received an
99 initial addition of Ca free/Mg free PBS (1 – 3 mL depending on initial volume to a total of 6 mL;
100 Fisher Scientific, Ottawa, Ontario). Blood samples were centrifuged in an Eppendorf 5810R
101 centrifuge (15 amp, Hauppauge, NY) at 40 x g and 23°C for 15 min with the acceleration and
102 brake set to zero. A minimum of 0.5 mL of plasma was collected from each blood sample and
103 stored at -80°C until biochemistry analysis. Using aseptic technique in a laminar flow hood, a
104 sterile Pasteur pipette was inserted approximately ~ 2 cm above the plasma buffy coat layer. The
105 Pasteur pipette was then moved in a clockwise direction until the leukocytes were separated and
106 suspended into the plasma layer. The plasma-buffy coat layer was aseptically removed and
107 transferred into a sterile 15 mL conical polystyrene centrifuge tube (Thermo Fisher Scientific,
108 Waltham, MA, USA) containing 5 mL of complete RPMI media (10% fetal bovine serum, L-
109 glutamine, 1% non-essential amino acids, 2% penicillin-streptomycin). The enriched cell
110 suspensions (containing resuspended leukocytes) were centrifuged at 240 x g, 7°C for 10 min.
111 The cells were then resuspended in 5 mL complete media. To maximize snake leukocyte
112 enrichment, the vacutainer tubes (containing the original snake whole blood samples) were then
113 gently resuspended with 5 mL room temperature PBS and centrifuged at 40 x g and 23°C for 15
114 min. The second buffy coat cell collection consisting of the plasma-PBS-buffy coat layer was
115 aseptically removed and transferred into the sterile 15 mL conical polystyrene centrifuge tube

116 (Fisher Scientific) containing the first collection of enriched cells in 5 mL of complete RPMI
117 media. These combined enriched cell suspensions were centrifuged at 240 x g, 7°C for 10 min,
118 resuspended in 2 mL of complete RPMI media, and then enumerated.

119

120 ***Whole Blood and Enriched Leukocyte Enumeration***

121 A 10 µL aliquot of whole blood from each snake was serially diluted 1:1000 in Ca
122 free/Mg free PBS (Fisher Scientific, Ottawa, Ontario). Next, a 20 µL aliquot of each diluted
123 sample was loaded into a SD100 Nexcelom cell counting chamber and snake whole blood was
124 enumerated using a Nexcelom Cellometer Auto T4 (Nexcelom Bioscience, Lawrence, MA,
125 USA). To enumerate enriched leukocytes, 100 µL was collected from the enriched cells in 2 mL
126 of complete media (Fisher Scientific, Ottawa, Ontario) and transferred into 500 µL microfuge
127 tubes containing a Trypan Blue Solution, to assess viability. A 20 µL of each diluted cell
128 suspension was loaded into SD100 Nexcelom cell counting chamber slide, enumerated, and
129 assessed for viability. Snake whole blood cell and enriched leukocyte values were reported as N
130 x 10⁶/mL.

131

132 ***Peripheral Blood Leukocyte Enrichment Assessment via Cytospin***

133 Purity of lymphocytes was assessed by adding a 20 µL (~ 5 x 10⁴ cells) aliquot of
134 peripheral leukocytes into individual cytospin slide chambers. Chambers were diluted with 180
135 µL of Ca free/Mg free PBS (Fisher Scientific, Ottawa, Ontario) to a total volume of 200 µL.
136 Slide chambers were centrifuged at 34 x g for 3 min at 23°C using a 7150 Hematology Slide-
137 Stainer Cytocentrifuge (Wescor, Logan, UT, USA). Slides were then stained with Wright-
138 Giemsa (Sigma-Aldrich, St. Louis, MO, USA) using a 10-minute full stain/10-minute diluted

139 stain protocol. Stained slides were evaluated on an Olympus CX31 compound light microscope
140 (Olympus America Inc., Center Valley, PA) under 40x magnification. A total of 200 leukocytes
141 across a minimum of 10 fields were enumerated to determine lymphocyte purity percentage.
142 Values are expressed as mean % \pm 1 SE. A board-certified clinical pathologist (KM) supervised
143 the enumeration of snake cytopsin smears.

144

145 ***Evaluation of Spontaneous, Con A, and LPS-induced Leukocyte Proliferation***

146 On the day that samples were processed in the lab, 100 μ L/ well of Concanavalin A (Con
147 A; 1.0, 10, 50, and 100 μ g/mL) and lipopolysaccharide (LPS; 5 and 50 μ g/mL) in complete
148 RPMI-1640 media were aliquoted in 96 well tissue culture plates (Corning, Corning, NY, USA).
149 Each well received 100 μ L of media alone, Con A, or LPS at the concentrations mentioned
150 above. To each well, 100 μ L of enriched leukocytes (4×10^6 cells/mL) were pipetted in triplicate.
151 All plates were cultured at 30°C, 5% CO₂ in a humidified tissue culture incubator for 48 or 72 hr.
152 At 48 or 72 hr, plates were temporarily removed from the incubator and 20 μ L of alamarBlueTM
153 dye (Thermo Fisher Scientific) were added to each well. The alamarBlueTM dye is a water-
154 soluble dye that when initially added to cell cultures is in an oxidized state (*i.e.*, blue color).
155 Cellular proliferation increases the metabolic activity of the cells which chemically reduces the
156 dye in the media, changing the color of the dye from blue to red.^[18] This dye also fluoresces
157 when reduced, which is an added benefit to researchers using a fluorescent detection platform.
158 Plates were then returned to the incubator for another 24 hr. Plates were evaluated for
159 spontaneous (media + cells only) and Con A or LPS-induced proliferation. The degree of
160 proliferation was assessed by measuring the absorbance of cells at 570 and 600 nm via a

161 Synergy4 microplate reader (BioTek, Winooski, VT, USA). Values are expressed as mean delta
162 of optical density ($\Delta\text{OD}570/600$) \pm 1 SE of the wells (triplicate).

163

164 ***Plasma Biochemistry***

165 Plasma samples collected from whole blood were analyzed using the Avian-Reptile
166 Profile Plus rotor in a VetScan VS2 (Abaxis Inc., Union City, California, USA). These rotors
167 provide information for 12 biochemistry analytes, including albumin (Ab), aspartate
168 aminotransferase (AST), bile acids (BA), calcium (CA^{++}), creatine kinase (CK), globulin
169 (GLOB), glucose (GLU), potassium (K^{+}), sodium (Na^{+}), phosphorous (PHOS), total protein
170 (TP), and uric acid (UA). Frozen banked samples were thawed in a refrigerator and processed the
171 same day. The rotor was loaded with 0.1 mL of plasma and analyzed per the manufacturer's
172 instructions.

173

174 ***Statistics***

175 Statistical analyses were performed on the cell proliferation data to assess the best
176 concentrations of mitogens (Con A and LPS) to measure proliferative responses ($\Delta\text{OD}570/600$)
177 for immunoassays in *N. taxispilota*. These data were analyzed using ANOVAs. Data were
178 evaluated for normality and homogeneity of variances. A separate ANOVA was used for each
179 incubation period (72 and 96 hr) for each mitogen group (media alone vs. multiple
180 concentrations of a single mitogen). Differences among groups were considered significant with
181 a $p < 0.05$. A post hoc analysis was performed (Tukey's HSD) if significant differences were
182 found among groups. All analyses were performed in RStudio.^[19]

183

184 **Results**

185 ***Snake Body Size and Sex***

186 Twelve adult *N. taxispilota* (7 females, 5 males) were sampled for this experiment. Mean
187 (± 1 SE) SVL and TL of females was 865.9 ± 18.5 mm and 254.3 ± 9.2 mm, respectively. Mean
188 SVL and TL of males was 764.2 ± 21.8 mm and 260.4 ± 8.7 mm, respectively. Previous studies
189 in this species suggested that female and male brown watersnakes near the Savannah River Site
190 (Aiken, SC, USA) are sexually mature at 795 mm (~ 5-6 years of age) and 500 mm (~ 3 years of
191 age) snout-vent length (SVL), respectively.^[20,21] All of the males sampled in this study were well
192 above the 500 mm threshold (range 711 – 816 mm SVL). All females, with the exception of one
193 individual at 786 mm, were above the 795 mm threshold (range 786 – 922 mm SVL). Based on
194 the smallest female's size at capture and data from previous studies, we postulated that she was
195 sexually mature.^[20,21]

196

197 ***Snake Hematology and Total Solids***

198 Analysis of total red blood cell (RBC) cellularity, PCV, mean corpuscular volume and
199 total solids revealed that the range in numeric values for the 12 snakes were relatively tight. The
200 standard errors for each of the four blood biomarkers were less than 10% of the mean (**Table 1**).
201 One individual was not included in the dataset for hematology and total solids due to suspected
202 lymph contamination.

203

204 ***Snake Leukocyte Differentials and Calculated Cellularity***

205 Analysis of brown watersnake whole blood smear leukocyte differentials revealed that
206 lymphocytes were the most common cell type, followed by azurophils, heterophils, basophils
207 and then monocytes (**Table 2**).

208

209 ***Total Leukocyte Recovery and Purity***

210 Average enriched leukocyte recovery per snake was $4.8 \times 10^6/\text{mL}$. Analysis of the
211 cytospin slides confirmed that the enriched leukocytes recovered were > 90% lymphocytes and
212 average viability was 81.5% (**Table 3**).

213

214 ***Effects of Mitogens on Snake Lymphocyte Proliferation***

215 Snake leukocytes cultured with LPS (5 and 50 $\mu\text{g}/\text{mL}$) did not exhibit significantly
216 increased lymphocyte proliferation at either 72 or 96 hr (**Figure 2**). LPS-induced proliferation
217 was comparable to spontaneous proliferation at 72 and 96 hr ($F_{2,33} = 0.18 - 1.97$, $p = 0.156 -$
218 0.838). Con A-induced proliferation exhibited a significant effect of exposure ($F_{4,55} = 7.7 -$
219 11.39, both $p < 0.001$) concentration on snake lymphocytes, with similar trends observed at 72
220 and 96 hr (**Figures 3A and 3B**). At both 72 and 96 hr, ConA-induced proliferation at a
221 concentration of 50 $\mu\text{g}/\text{mL}$ was significantly increased compared to spontaneous proliferation at
222 $p \leq 0.001$ and $p = 0.002$, respectively.

223

224 ***Snake Plasma Biochemistry***

225 Plasma biochemistry was evaluated on 9 of the 12 snakes. One snake had a low initial
226 blood volume, one sample was contaminated with lymph fluid post collection and the third

227 sample was diluted with PBS prior to collection. Of the 12 plasma biochemical analytes
228 examined, only the bile acids and creatine kinase concentrations had wide ranges (**Table 4**).
229

230 **Discussion**

231 This study sought to determine whether snake peripheral blood could be aseptically
232 enriched to yield an adequate lymphocyte cell number for use with an established mammalian *in*
233 *vitro* immunoassay, while generating novel reference hematological and plasma biochemistry
234 data for wild-caught brown watersnakes (*Nerodia taxispilota*).

235 Aseptically enriched *N. taxispilota* lymphocytes exposed to Con A successfully
236 proliferated at both 72 and 96 hr, with the 72 hr culture period demonstrating the optimal peak in
237 the Con A-stimulated growth curve. This proliferative response would appear to suggest that a
238 large portion of the peripheral blood enriched lymphocytes were T cells, which has been reported
239 in other species.^[22-24] Exposure to LPS did not induce a significant increase in proliferation in *N.*
240 *taxispilota* at 72 or 96 hr. Our results are similar to a recent study in a watersnake species from
241 India (*Natrix piscator*), in which LPS-induced splenocyte proliferation (20 µg/mL of LPS) did
242 not significantly differ when compared to spontaneous proliferation.^[25] Since LPS is a potent
243 inducer of B cells, it is possible that these cell types were absent or numerically too low in the
244 enriched leukocyte fraction to induce a detectable proliferative response. Further, immune
245 responses of reptiles are known to be strongly affected by the season.^[26,27] Therefore, it is also
246 possible that the *N. taxispilota* were sampled at a seasonal period when the B cells were less
247 responsive.^[27] Interestingly, other studies in snakes and turtles have reported that the LPS did
248 cause a significant increase in lymphocyte proliferation.^[8,28,29] A review of these studies revealed
249 that the proliferation assay methodologies were different (e.g., basal cell concentration,

250 collection/extraction method, mitogen concentration, length of incubation), which could have
251 impacted lymphocyte purity and/or function. In the present study, the peak Con A-stimulated
252 proliferation was reached at 50 μ g/mL or 5.0 μ g/well cultured with 4.0×10^5 cells/well.
253 Although the highest concentration of Con A (100 μ g/mL or 10 μ g/well) used in this study
254 appeared to show signs of toxicity in *N. taxispilota* (demonstrated by a decline in proliferation),
255 the toxic response in these snakes did not appear to be as dramatic as those seen in lymphocytes
256 from other taxa.^[16,30]

257 To our knowledge, this is the first study to provide preliminary reference data for blood
258 hematology or plasma biochemistry in wild *N. taxispilota*. Snake plasma biochemistry and
259 hematology values in our study were similar to the limited data available from a closely related
260 snake species (*Thamnophis* spp.).^[7] Leukocyte differentials were also comparable to those
261 reported in other snake species, with lymphocytes (51.4%) being the most common and
262 azurophils (35.5%) the second most common leukocyte type observed in *N. taxispilota*
263 smears.^[13] Heterophils (7.2%), basophils (4.2%), and monocytes (1.7%) all comprised a much
264 smaller average portion of the leukocyte differential. It is important to consider the potential
265 effects of handling stress on the reference blood hematology and plasma biochemistry of *N.*
266 *taxispilota*. Capture and manual restraint of animals for blood collection is known to increase
267 hormones that may alter results. A study in sea turtles showed that while WBC counts do
268 increase significantly between 0 and 10 min of capture, the differences between 0 and 6 min
269 were negligible.^[31] Another study in garter snakes (*Thamnophis sirtalis*) found that bleed times
270 of 10 min or less did not affect baseline corticosterone concentrations – a hormone significantly
271 elevated during the stress response.^[32] All snakes in this study were hand-captured and bled
272 within 3 – 5 minutes, thus, we suspect that our values likely reflect baseline conditions.

273 In summary, the results of our study show that the collection, transport, and enrichment
274 of blood leukocytes from wild *N. taxispilota* yields appreciable concentrations of lymphocytes,
275 allowing for the assessment of this species' immune status. Similar to a previous study in
276 alligators, lymphocytes from our snakes were successfully enriched within 24 hr, obtaining an
277 average purity of >90%, which suggests that overnight field collections and subsequent
278 immunoassays can be performed with ease.^[17] Con A-induced proliferation yielded robust
279 results, with best responses observed at a concentration of 50 µg/mL and 72 hr incubation period.
280 Future studies should determine the optimal exposure concentration for LPS-induced
281 proliferation in this species as well as other mitogens (*i.e.*, phytohemagglutinin [PHA] or
282 pokeweed mitogen [PWM]). A previous study found that peripheral blood leukocytes from
283 turtles responded differently to LPS relative to PWM.^[29] Thus, future work should focus on other
284 mitogens and other lymphoid tissues to evaluate B cell response in *N. taxispilota*. Once these
285 techniques are optimized, researchers should be able to employ a suite of assays to evaluate both
286 T and B cell function in *N. taxispilota*. In conclusion, using the immune methods developed and
287 the hematologic and biochemistry data generated in this study, researchers working with this
288 species should be able to assess inherent differences (e.g., reproductive impacts, seasonal effects,
289 etc.) in the snake's health status as well as begin to understand how anthropogenic stressors
290 impact their immune system.

291
292

293 **Literature cited**

294

295 [1] Zimmerman, L.M.; Vogel, L.A.; Bowden, R.M. Understanding the vertebrate
296 immune system: insights from the reptilian perspective. *J. Exp. Biol.* 2010, 213, 661-671.
297 DOI: 10.1242/jeb.038315.

298 [2] Vitt, L.J.; Caldwell, J.P. *Herpetology: an introductory biology of amphibians and*
299 *reptiles*. Gomez, K., Gonzalez, P. Eds. Elsevier: Amsterdam, 2014, Pp 1 – 626.

300 [3] Rowe, C.L. "The calamity of so long life": life histories, contaminants, and potential

301 emerging threats to long-lived vertebrates. *Bioscience*, 2008, 58, 623-631. DOI:
302 10.1641/B580709

303 [4] Willson, J.D.; Winne, C.T. Evaluating the functional importance of secretive
304 species: A case study of aquatic snake predators in isolated wetlands. *J. Zool.*,
305 2016, 296, 266-273.

306 [5] Haskins, D.L.; Gogal, R.M., Jr; Tuberville, T.D. Snakes as Novel Biomarkers of
307 Mercury Contamination: A Review. *Rev. Environ. Contam. T.* 2019, 249, 134-152. DOI:
308 10.1007/398_2019_26

309 [6] Keller, J.M.; Peden-Adams, M.; Aguirre, A. Immunotoxicology and implications
310 for reptilian health. In *Toxicology of Reptiles*. Gardner, S., Oberborster, E.
311 Eds. CRC Press: Boca Raton, FL, 2006, Pp 199–240

312 [7] Wack, R.F.; Hansen, E.; Small, M.; Poppenga, R.; Bunn, D.; Johnson, C.K. Hematology and
313 plasma biochemistry values for the Giant Garter Snake (*Thamnophis gigas*) and Valley
314 Garter Snake (*Thamnophis sirtalis fitchi*) in the central valley of California. *J. Wildlife Dis.*
315 2012, 48, 307-313. DOI: 10.7589/0090-3558-48.2.307

316 [8] Palacios, M.G.; Bronikowski, A.M. Immune variation during pregnancy suggests
317 immune component-specific costs of reproduction in a viviparous snake with disparate life-
318 history strategies. *J. Exp. Biol.* 2017, 327, 513-522. DOI:
319 [9] Giori, L.; Stacy, N.I.; Ogle, M.; Nelson, S.; Fecteau, K.A.; Cushing, A.C. Hematology,
320 plasma biochemistry, and hormonal analysis of Louisiana pine snakes (*Pituophis ruthveni*):
321 effects of intrinsic factors and analytical methodology. *Comp. Clin. Path.* 2019, 29, 145-
322 154. DOI: 10.1007/s00580-019-03030-w.

323 [10] Brusch IV, G.A.; Christian, K.; Brown, G.P.; Shine, R.; Denardo, D.F. Dehydration
324 enhances innate immunity in a semiaquatic snake from the wet-dry tropics. *J. Exp. Biol.*
325 2019, 331, 245-252. DOI: 10.1002/jez.2260

326 [11] de Carvalho, M.P.N.; Queiroz-Hazarbassanov, N.G.T.; de Oliveira Massoco, C.; Sant'Anna,
327 S.S.; Lourenço, M.M.; Levin, G.; Sogayar, M.C.; Grego, K.F.; Catão-Dias, J.L. Functional
328 characterization of neotropical snakes peripheral blood leukocyte subsets: Linking flow
329 cytometry cell features, microscopy images and serum corticosterone levels. *Dev. Comp.*
330 *Immunol.* 2017, 74, 144-153. DOI: 10.1016/j.dci.2017.04.007

331 [12] Weiss, D.J. Uniform evaluation and semiquantitative reporting of hematologic data in
332 veterinary laboratories. *Vet. Clin. Path.* 1984, 13, 27-31. DOI: 10.1111/j.1939-
333 165X.1984.tb00836.x

334 [13] Stacy, N.I.; Alleman, R.A.; Sayler, K.A. Diagnostic hematology of reptiles. *Clin. Lab. Med.*
335 2011, 31, 87-108. DOI: 10.1016/j.cll.2010.10.006

336 [14] Nardini, G.; Leopardi, S.; Bielli, M. Clinical hematology in reptilian species. *Vet. Clin.*
337 *Exot. Anim.* 2013, 16, 1-30. DOI: 10.1016/j.cvex.2012.09.001.

338 [15] Sykes IV, J.M.; Klaphake, E. Reptile hematology. *Clin. Lab. Med.* 2015, 35, 661-680.

339 [16] Gogal, R.M., Jr.; Ahmed, S.A.; Larsen, C.T. Analysis of avian lymphocyte proliferation by
340 a new, simple, nonradioactive assay (lympho-pro). *Avian Dis.* 1997, 41, 714-725. DOI:
341 10.2307/1592166

342 [17] Finger, J.W. Jr.; Williams, R.J.; Hamilton, M.T.; Elsey, R.M.; Oppenheimer, V.A.;
343 Holladay, S.D.; Gogal, R.M., Jr. Influence of collection time on hematological and immune
344 markers in the American Alligator (*Alligator mississippiensis*). *J. Immunoassay*
345 *Immunochem.* 2015, 36, 496-509. DOI: 10.1080/15321819.2014.1001030

346 [18] Ahmed, S.A., Gogal, R.M., Jr., Walsh, J.E. A new rapid and simple non-radioactive assay to

347 monitor and determine the proliferation of lymphocytes: an alternative to [³H]thymidine
348 incorporation assay. *J. Immunol. Methods.* 1994, 170, 211-224. DOI: 10.1016/0022-
349 1759(94)90396-4

350 [19] R Development Core Team. R: A language and environment for statistical computing. R
351 Foundation for Statistical Computing, 2011, Vienna, Austria, 2019, <http://www.R-project.org>.

353 [20] Mills, M.S. Ecology and life history of the brown water snake (*Nerodia taxispilota*). Ph.D.
354 dissertation, University of Georgia: Athens, Georgia, USA, 2002, 231 p.

355 [21] Mills, M.S. Species account of the brown water snake (*Nerodia taxispilota*).
356 In *North American Watersnakes: a natural history*. Gibbons, J.W., Dorcas, M.E. Eds.
357 University of Oklahoma Press: Norman, OK, 2004, Pp 196-211.

358 [22] Walliser, I.; Göbel, T.W. Chicken IL-17A is expressed in $\alpha\beta$ and $\gamma\delta$ T cell subsets
359 and binds to a receptor present on macrophages, and T cells. *Dev. Comp. Immunol.* 2018,
360 81, 44-53. DOI: 10.1016/j.dci.2017.11.004

361 [23] Tomlinson, J.E.; Wagner, B.; Felipe, M.J.B.; Van de Walle, G.R. Multispectral
362 fluorescence-activated cell sorting of B and T cell subpopulations from equine
363 peripheral blood. *Vet. Immunol. Immunop.* 2018, 199, 22-31. DOI:
364 10.1016/j.vetimm.2018.03.010

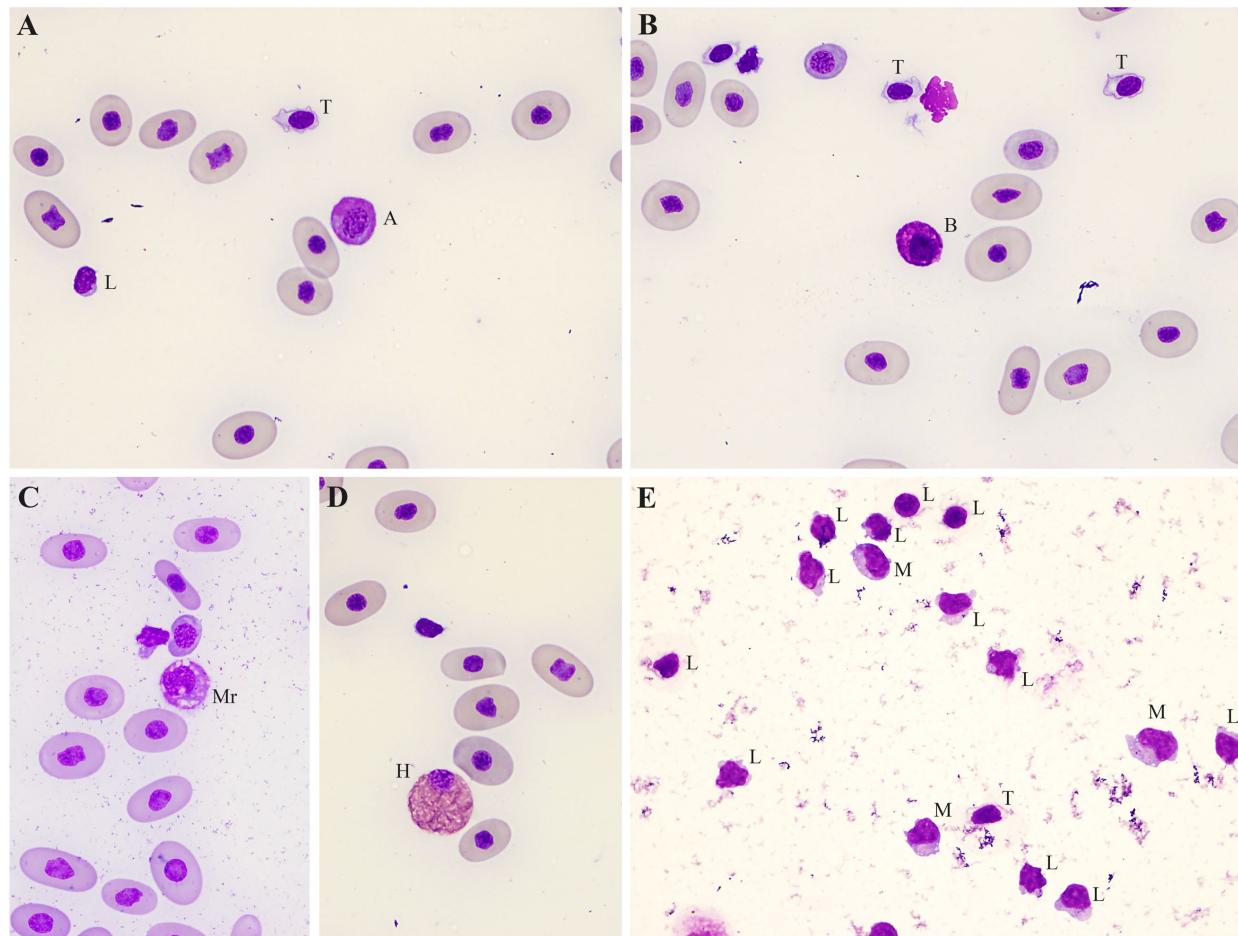
365 [24] Banovic, F.; Tarigo, J.; Gordon, H.; Barber, J.P.; Gogal, R.M., Jr. Immunomodulatory
366 *in vitro* effects of oclacitinib on canine T-cell proliferation and cytokine
367 production. *Vet. Dermatol.* 2019, 30, 17-e6. DOI: 10.1111/vde.12698

368 [25] Tripathi, M.K.; Singh, R. Differential suppressive effects of testosterone on immune
369 function in fresh water snake, *Natrix piscator*: An *in vitro* study. *PLoS One.* 2014, 9,
370 e104431. DOI: 10.1371/journal.pone.0104431

371 [26] Zapata, A.G.; Varas, A., Torroba, M. Seasonal variations in the immune system of lower
372 vertebrates. *Immunol. Today* 1992, 13, 142-147

373 [27] Zimmerman, L.M. Reptilia: Humoral immunity in reptiles. In *Advances in Comparative
374 Immunology*. Cooper, E. Eds. Springer: Cham, Switzerland, 2018, Pp 751-772

375 [28] Saad, A.H. Sex-associated differences in the mitogenic responsiveness of snake blood
376 lymphocytes. *Dev. Comp. Immunol.* 1989, 13, 225-229. DOI: 10.1016/0145-
377 305X(89)90003-7


378 [29] Muñoz, F.J.; De la Fuente, M. In vitro proliferation of blood, spleen, and thymus
379 leukocytes from the turtle *Mauremys capsica*. *Comp. Biochem. Phys. C.* 2003, 134, 303-
380 309. DOI: 10.1016/S1532-0456(03)00004-8

381 [30] Gunther, G.R.; Wang, J.L.; Yahara, I.; Cunningham, B.A.; Edelman, G.M. Concanavalin A
382 derivatives with altered biological activities. *PNAS.* 1973, 70, 1012-1016. DOI:
383 10.1073/pnas.70.4.1012

384 [31] Flower, J.E.; Norton, T.M.; Andrews, K.M.; Nelson, S.E., Jr.; Parker, C.E.; Romero, L.M.;
385 Mitchell, M.A. *Conserv. Physiol.* 2015, 3, cov003. DOI: 10.1093/con-phys/cov003

386 [32] Gangloff, E.J.; Sparkman, A.M.; Holden, K.G.; Corwin, C.J.; Topf, M.; Bronikowski, A.M.
387 Geographic variation and within-individual correlations of physiological stress markers in a
388 widespread reptile, the common garter snake (*Thamnophis sirtalis*)

389
390
391
392

Figure 1: Images taken from brown watersnake *Nerodia taxispilota* blood smears (panels A-D) and an enriched leukocyte cytospin (panel E). Examples of azurophils (A), basophils (B), heterophils (H), lymphocytes (L), monocytes (M), and reactive monocyte (Mr) are pictured. Examples of thrombocytes (T) are also provided.