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ABSTRACT 
This report summarizes work completed under the Laboratory Directed Research and 
Development (LDRD) project “Uncertainty Quantification of  Geophysical Inversion Using 
Stochastic Differential Equations.”  Geophysical inversions often require computationally 
expensive algorithms to find even one solution, let alone propagating uncertainties through to 
the solution domain.  The primary purpose of  this project was to find more computationally 
efficient means to approximate solution uncertainty in geophysical inversions.  We found 
multiple computationally efficient methods of  propagating Earth model uncertainty into 
uncertainties in solutions of  full waveform seismic moment tensor inversions.  However, the 
optimum method of  approximating the uncertainty in these seismic source solutions was to 
use the Karhunen-Loève theorem with data misfit residuals.  This method was orders of  
magnitude more computationally efficient than traditional Monte Carlo methods and yielded 
estimates of  uncertainty that closely approximated those of  Monte Carlo.  We will summarize 
the various methods we evaluated for estimating uncertainty in seismic source inversions as 
well as work toward this goal in the realm of  3-D seismic tomographic inversion uncertainty. 
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ACRONYMS AND DEFINITIONS 

Abbreviation Definition

1-D one dimensional

3-D three dimensional

FDMC finite-difference Monte Carlo

GF Green’s function

H&G Hallo and Gallovic

Hz Hertz

KL Karhunen-Loève

KLMC Karhunen-Loève Monte Carlo

km kilometer

L2 Euclidean norm

LDRD Laboratory Directed Research and Development

m meter

MC Monte Carlo

P-wave primary (compressional) wave

PCE polynomial chaos expansion

s second

S-wave shear wave

STF source time function

SVD singular value decomposition

UQ uncertainty quantification

Vp P-wave velocity

Vs S-wave velocity
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1. INTRODUCTION 
Many quantities of  interest in geophysics are inferred from observed data instead of  directly 
predicted from first principles.  For example, the magnitude of  an earthquake and how that fault 
moved during rupture are inferred via geophysical inversion of  observed seismograms.  Often, 
however, uncertainties in these inferred quantities of  interest are poorly known or not even 
provided.  One reason for this lack of  uncertainty quantification (UQ) in geophysical inverse 
solutions is due to the computational expense of  propagating uncertainty of  the model and/or data 
through a complex geomodel to final output.  Currently, Monte Carlo (MC) and Bayesian methods 
are computationally infeasible for many realistic models due to the expense of  individual runs and 
large parameter spaces. 

The primary purpose of  this LDRD project was to explore methods of  propagating uncertainty in 
geophysical inversion in a more computationally efficient way.  We investigated using polynomial 
chaos expansions (PCEs) of  probability distributions due to their succinctness in describing many 
common probability distributions.  We also used the Karhunen-Loève (KL) theorem to represent 
stochastic processes while minimizing the number of  parameters needed to represent that process.  
In this report we summarize results that have been more fully documented in other SAND reports 
or a peer-reviewed journal as well as work that we did using polynomial chaos in an attempt to more 
efficiently parametrize uncertainty in geophysical structural inversion.  In the remainder of  this 
chapter, we briefly outline polynomial chaos representations and the KL theorem since they are used 
throughout this report.  In the following chapters we discuss using waveform covariance methods, 
KL representations of  Green’s functions, KL reconstructions of  inversion residuals, and end with 
PCE representations for structural inversions. 

1.1. Karhunen-Loève Theorem 
The Karhunen-Loève theorem states that any second order random process can be decomposed 
into a series of  spatial basis functions with random coefficients (e.g. Le Maitre and Knio, 2010), or: 

 (1-1) 

where  is a realization of  a stochastic process,  is the mean of  the random process,  
are uncorrelated random variables with zero mean and unit standard deviation that span the random 
space for an event ;  and  are, respectively, the eigenvalue and eigenfunction pairs of  the 
covariance function of  the process with respect to (typically) space or time variables .  Thus, if  we 
know or can assume a form for the correlation function among space variables, we can produce a 
realization that adheres to that correlation function by summing properly normalized randomly 
scaled eigenfunctions of  that correlation function.  For continuous variables, analytical expressions 
for the eigenfunctions and eigenvalues are only known for relatively few covariance functions.  
However, in the discrete domain, the eigenvectors and eigenvalues can be numerically evaluated for a 
wide variety of  covariance matrices, assuming those matrices actually adhere to the rules of  
covariance matrices, such as possessing positive definiteness.  However, numerically solving for 
eigenvector and eigenvalues can easily become computationally burdensome if  not intractable for 
multidimensional domain covariance matrices unless some simplifying assumptions can be made, 
such as wide-sense stationarity or circularity at domain boundaries like is assumed for discrete 
Fourier transforms.  In fact, if  the covariance function is a wide-sense circular stationary signal, the 
eigenfunctions are the Fourier bases and eigenvalues are the discrete Fourier transform of  the 
correlation function (Mallat, 2009).  More information on covariance functions and the KL theorem 
can be found in Preston (2018). 

D (x, θ ) = D0(x) + ∑
i>=1

ri(θ ) λiui(x)

D (x, θ ) D0(x) ri(θ )

θ λi ui(x)
x
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1.2. Polynomial Chaos Expansion 
Chaos polynomials are sets of  orthogonal polynomials that can be used to compactly represent 
probability distribution functions.  Any probability function for which the chaos polynomial has 
support can be expanded as a (perhaps infinite) sum of  scaled (orthogonal) chaos polynomials of  
different orders, i.e. 

 

where  is a realization of  a random event in the space or time domain ,  is the coefficient 
for chaos polynomial  and random event .  The coefficients  depend on the specific 
probability distribution function that describes the random process.  This is called polynomial chaos 
expansion (PCE), and this can be a means of  compactly parameterizing fairly complex probability 
distributions in certain cases. 

There are multiple classes of  chaos polynomials and the optimal class depends on the known or 
expected form of  the probability distribution one is trying to represent.  Each class has different 
supports and weight functions that make certain choices optimal for certain distribution functions 
(Xiu and Karniadakis, 2003).  For example, a Gaussian distribution function is best represented with 
Hermite chaos polynomials since the weight function is a unit Gaussian with support along the 
entire real line.  With Hermite polynomials any Gaussian distribution can be represented by two 
parameters, which are the coefficients for Hermite polynomials up to first order.  A gamma 
distribution, on the other hand, is optimally represented by Laguerre chaos polynomials since, again, 
only two parameters are necessary to describe any gamma distribution with up to first-order 
Laguerre polynomials.   

v (x) = ∑
i=0

Vi(x, θ )Φi(θ )

v (x) x Vi(x, θ )
Φi(θ ) θ Vi(x, θ )
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2. WAVEFORM COVARIANCE METHOD 
This chapter summarizes the work described in Poppeliers and Preston (2021b), where we 
propagated model uncertainty into estimates of  seismic source time functions using an estimate of  
model covariance.  As with our other methods presented in this report, we employ a Monte Carlo 
scheme to invert seismic waveforms.  The inversion is linear, and assumes a point seismic source 
that is modeled as a set of  six independent source time functions.   

For several of  the Monte Carlo based inversion schemes that we describe in this report, the basic 
idea is that the Earth model uncertainty is ‘captured’ by a probability distribution of  the seismic 
Green’s functions (GFs).  To propagate the model uncertainty, we simply invert the data N times, 
where for each inversion we select a set of  GFs from the probability distribution of  the GFs.  In 
total, we explored three different methods of  constructing the probability distribution of  GFs: 

1. Based on an assumption of  Earth model uncertainty, we constructed a suite of  stochastic Earth 
models and used a computationally expensive finite difference calculation to calculate a set of  
GFs for each realization of  the Earth model (details of  this work are in Poppeliers and Preston, 
2020).  Throughout this report, we refer to this method as the finite-difference Monte Carlo 
(FDMC) approach. 

2. Given only a limited set of  seismic GFs, estimated using finite difference simulations and 
stochastic Earth models, we used a Sandia-developed code called Dakota (Adams et al., 2019) to 
estimate the model covariance.  Using the Dakota-estimated covariance matrices, we employed 
the Karhunen-Loève (KL) theorem to build up a suite of  surrogate, stochastic GFs.  Using the 
stochastic GFs, we then inverted data as before (see Chapter 3 in this report; Poppeliers and 
Preston, 2021a).  We refer to this method as the Dakota-KL method.   

3. In this chapter we describe an additional method to construct the stochastic GF distribution, but 
with only a single finite difference simulation.  The method, which we term the H&G method, 
proceeds by constructing approximate covariance matrices and is based on simplifying 
assumptions of  the model and its uncertainty (Hallo and Gallovic, 2016).  An attractive aspect of  
the H&G method is that it assumes that the uncertainty in the model is expressed as variations 
about the mean wave speed model, which makes it appropriate for stochastic modeling.  Using 
the approximate covariance matrices, we then construct the suite of  stochastic GFs using the KL 
theorem and use those GFs for a Monte Carlo inversion (see Poppeliers and Preston, 2021b, for 
details).   

The H&G method assumes that uncertainties in the Earth model lead to time shifts of  discrete 
seismic arrivals.  If  the uncertainties are Gaussian-distributed, then these time shifts are uniformly 
distributed, with variance that is directly related to model uncertainty.  This information is used to 
approximate the auto- and cross-covariance functions, which are subsequently used to build up an 
approximate covariance matrix for each station and GF component (Figure 2-1).  The H&G-
estimated covariance matrix  is decomposed using singular value decomposition 

 

where  is a matrix whose columns contain orthogonal eigenfunction that correspond to the 
singular values contained on the diagonal of  matrix . The subscript ‘sim’ denotes that the 
eigenfunction/eigenvalue pairs are simulated using the H&G method.  Using these eigenpairs, we 
build up a suite of  stochastic GFs using the KL theorem  

xcov(τ)

[UsimΣsimVsim] = xcov(τ)

Usim
Σsim
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where  is a stochastic GF for station  located at , from moment tensor 
component  located at , with non-random component  and random event ,  are 
uncorrelated random variables with zero mean and unit standard deviation, and  and  are the 
eigenpairs obtained from  and .   is a ‘base’ GF, which we assume is the mean GF 
of  the distribution and can be obtained using a single GF estimate through a single realization of  a 
stochastic Earth model, or an Earth model that contains no stochastic heterogeneity. 

gstoch
kn (x′ , t′ ; x, t, θ ) = gbase

kn (x′ , t ; x, t) +
J

∑
i=1

ni(θ ) λi u(t)

gstoch
kn (x′ , t′ ; x, t, θ ) k x′ 

n x t θ ni(θ )
ui(t) λi

U Σ gbase
kn (x′ , t′ ; x, t)
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Figure 2-1: Examples of covariances.  Panel (A) shows the mean 
(stationarized) autocovariance functions estimated from 1,000 finite 

difference simulations (blue) and from the H&G method (red) for an Earth 
model with stochastic heterogeneities.  This result is for a single station and 
single GF component.  Panels (B) and (C) show the covariance matrices for 

the FDMC simulations and the H&G method, respectively



3. APPROXIMATING GREEN FUNCTION UNCERTAINTY USING AN 
UNCERTAIN EARTH MODEL 

For this work, we devised a computationally efficient method to approximate the probability 
distribution of  seismic Green’s functions (GFs) given the uncertainty of  an Earth model.  The 
motivation for this work was to be able to propagate the uncertainty of  an Earth model into 
simulated seismic GFs.  Seismic GFs are often required for several analysis methods, such as ground 
motion predictions, estimating seismic source parameters, seismic travel time calculations, or forward 
modeling to help guide interpretation.  The details of  this method are described in Poppeliers and 
Preston (2021a). 

Our method is based on the Karhunen-Loève (KL; Section 1.1 and Equation 1-1) theorem and an 
approximation of  the GF (or seismogram) covariance.  To obtain the required basis functions, we 
first estimate the model covariance using a hybrid Monte Carlo approach.  Specifically, we begin with 
an Earth model with known, large scale, geologic structure.  Then, for each (of  a few tens) Monte 
Carlo simulations, we superpose a stochastic distribution of  impedance heterogeneities that obey a 
von Karman distribution.  The von Karman distribution is assumed to mimic the high wavenumber 
heterogeneities in the Earth, which we assume is the primary form of  uncertainty.  Note that the 
statistics (i.e. the correlation length) of  the stochastic heterogeneities are identical for each model, 
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Figure 3-1: Panel A: 1,000 Green's functions (grey) computed using 1,000 stochastic Earth 
models, where for each model the GFs were estimated using finite differences (i.e. FDMC 
method), with the mean GF shown in blue.  The standard deviation about the mean GF are 
shown in green.  Panel B: 1,000 Green's functions, estimated with the Dakota-KL method.  

For display purposes, we've filtered the GFs with a 30 Hz lowpass filter.  Note that the 
distribution appears similar to that produced by the Monte Carlo method, but appears more 

ringy at t > 0.6 seconds.  Also, the width of the standard deviation is slightly less than that of 
the Monte Carlo derived distribution, for this particular Green’s function.  The probability 

density functions of the GFs produced by the FDMC method and the Dakota-KL method are 
shown in (C) and (D), respectively.



but the individual realization of  each stochastic realization is unique.  Using a finite difference 
solution to the elastic wave equation, we simulate a complete set of  seismic GFs for each model.  We 
then use the suite of  GFs as input to the Sandia-developed code Dakota (Adams et al., 2019; 
dakota.sandia.gov) to estimate the covariance of  the GFs.  Using singular value decomposition 
(SVD), we decompose the GF covariance into their eigenfunction/eigenvalue pairs, where we use 
the eigenvectors as the basis functions, which are scaled by the eigenvalues.  We use the SVD-derived 
basis functions in the KL theorem to estimate a suite of  surrogate GFs, which we term a GF 
probability distribution.  We call this approach the Dakota-KL method. 

To test the efficacy of  our method, we compare the Dakota-KL derived GF probability distribution 
to those produced by more traditional Monte Carlo methods.  Similar to the method described 
above, we produce a suite of  GFs from 1,000 realizations of  a stochastic Earth model and estimate 
the GFs for each model using finite differences.  Comparing the resulting FDMC GFs with those 
produced using our Dakota-KL method, we show that the GF probability distributions are virtually 
identical, especially for direct arrival body waves.  However the accuracy of  the KL-based method 
generally decreases for later times in the simulated Green’s function distribution (Figure 3-1). 
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4. KL-INVERSION 
For this work, we developed a method to efficiently propagate approximate uncertainty when 
linearly inverting seismic data for the source time functions (STFs) corresponding to the six 
independent components of  the seismic moment tensor.  In previous work, we used an estimate of  
Earth model uncertainty and Monte Carlo tests to propagate model uncertainty for this type of  
inversion, but this method presented two major challenges.  First, we required an estimate of  Earth 
uncertainty to build up a stochastic representation for Monte Carlo simulations.  Secondly, for each 
Monte Carlo simulation, we had to compute a set of  seismic Greens functions (GFs) using a 
computationally expensive finite difference calculation.  The resulting suite of  GFs were used to 
invert the data, once for each Monte Carlo step.  The final result was a suite of  seismic source 
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Figure 4-1: Summary of inversion results for both methods.  Thick blue shows the mean 
estimate of the seismic source time functions (STFs) for the FDMC method, with one 

standard deviation about the mean (thin blue).  Thick red shows the mean STFs from the 
KLMC method, with one standard deviation about the mean (thin red). The green shows the 

actual STFs used to simulate the data.



parameter estimates in the form of  a probability density function.  As mentioned previously, we 
termed this process the Finite Difference Monte Carlo (FDMC) method.   

The work described in this chapter has the same goal: propagating model (and data) uncertainty into 
an estimate of  the seismic source parameters.  Our method is founded on the idea that the data 
residual contains the combined effects of  model and data uncertainty and therefore we use a 
stochastic distribution of  the residuals to propagate those uncertainties in a pseudo-Monte Carlo 
scheme.  However, the innovation that we present here avoids the expensive finite difference 
calculations that we used in the FDMC method.  Rather, our new method requires only a single 
estimate of  seismic GFs, which we use to build up a suite of  surrogate data residuals.  Specifically, 
we invert the data once using a single set of  GFs.  Then, assuming that the data residual is a 
stochastic process with zero mean, we construct a stochastic distribution of  residuals using the 
Karhunen-Loève (KL) theorem: 

 

where  is a suite of  random data residuals for channel  with non-random component  and 
random event ,  are uncorrelated random variables with zero mean and unit standard 
deviation, and  are a set of  orthogonal basis functions scaled by .  We construct the basis 
functions using Fourier series, where  are a pair of  sine/cosine functions of  frequency , and  
are the (real-valued) amplitude spectral components of  the residual’s autocorrelation function 
corresponding to channel .  Then, we invert the data  times, where for each inversion we add a 
single realization of  the stochastic residual distribution to the data.  We term this procedure the 
KLMC method, and show that it produces estimates of  the seismic source parameters, along with 
their uncertainties, that are similar to those estimated using the FDMC method (Figure 4-1).  More 
importantly, the method presented here is computationally several orders of  magnitude faster than 
our previous FDMC method, and requires no a-priori assumptions of  model and/or data 
uncertainty.   

The details of  this work are, at the time of  this writing, undergoing peer review in the journal 
Geophysical Journal International (Poppeliers and Preston, in review). 

ϵstoch
k (θ, t) =

F

∑
f=1

nf (θ ) λf,k uf (t)

ϵstoch
k (θ, t) k t

θ ni(θ )
uf (t) λf,k

uf (t) f λf,k

k M
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5. STRUCTURAL INVERSION 
Geophysical structural inversions use either the seismic waveforms themselves or information 
collected from those waveforms to infer the structure of  the Earth.  For example, travel times of  
certain seismic arrivals such as P-waves can be used in a structural inversion to infer the 3-D 
distribution of  seismic P-wave speeds within the Earth.  However, each travel time has an associated 
uncertainty with it.  Because of  noise from a passing truck, for example, an analyst may be unsure 
exactly where to pick the P-arrival.  These uncertainties in the data will obviously translate into 
uncertainty in the resultant structure obtained from the inversion.  In this section we will attempt to 
find a more computationally efficient means of  estimating the uncertainty in structural inversions 
using polynomial chaos-based approaches by comparing PCE results to Monte Carlo. 

5.1. Data and Model Setup 
A subset of  the travel time dataset used in Preston et al. (2020) was used for the structural inversion 
tests in this chapter.  For this modeling exercise, we extract absolute P and S travel time data with all 
sources and receivers within the latitude and longitude bounds from 36.40°N to 36.95°N latitude 
and from 115.87°W to 116.38°W longitude and to a depth of  15 km from the Preston et al. (2020) 
model.  The model has 2 km horizontal and 1 km vertical node spacing.  There are nearly 125,000 
absolute travel times, of  which about 47,500 are S-picks with the remainder being P arrival times.  
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Figure 5-1: Model extent showing seismic stations (red triangles) and starting 
earthquake source locations (blue circles).



All travel time picks have estimated travel time pick uncertainties associated with them, which were 
chosen by the analysts when they picked the arrivals.  There are a total of  38 stations and over 
10,000 sources all of  which are earthquakes (Figure 5-1).  Earthquake hypocentral parameters are 
simultaneously inverted for in conjunction with the 3-D Earth structural parameters of  P- and S-
wave speeds throughout the model domain.  In order to ensure reasonable P- and S-wave speeds we 
impose constraints that are enforced during the inversion process: P-wave speeds must lie between 1 
km/s and 7 km/s and the Vp/Vs ratio must lie between 1.6 and 1.9 down to 5 km below sea level 
and 1.6 and 1.8 below 5 km depth.  We use an anisotropic Laplacian operator that allows a different 
roughness vertically compared to horizontally in order to regularize the solution.  The forward 
problem uses the Vidale-Hole 3-D travel time calculator (Vidale 1990; Hole and Zelt, 1995) to form 
a linearized sensitivity matrix of  travel times with respect to medium parameters, and we use a 
constrained conjugate gradient least squares algorithm (Preston et al., 2020) to solve the system of  
equations including regularization.  This is a nonlinear inversion problem since the ray paths, and 
hence sensitivity, depend on the medium parameters we are solving for.  Thus, we must re-compute 
ray paths on each iteration, and we iterate the entire process until changes in the model are small.  
Note that these images are not meant for interpretation as we did not optimize regularization or 
other parameters.  These models are intended solely to compare and contrast uncertainty 
quantification methods.  See Preston et al. (2020) for further details on the inversion methodology. 

5.2. Monte Carlo 
The standard with which we will compare PCE-based approaches will be statistics derived from 
Monte Carlo inversions.  For the MC inversions we assumed that the travel time uncertainties were 
from independent Gaussian distributions with zero mean and standard deviations equal to the 
estimated pick error.  Thus, there are nearly 125,000 independent random variables in this inversion 
problem.  We randomly select error values for each travel time based on these distributions and add 
these random errors to the observed travel times.  We then run the inversion process until 
convergence.  We repeat this procedure 1,000 times in order to obtain estimates of  the means and 

variances of  the model 
parameters.  An example of  
the distribution of  medium P-
wave speeds for the 1,000 
simulations at a point in the 
model is shown in Figure 5-2, 
which shows that in this case 
the distribution of  Vp for this 
well-sampled node in the 
model has a quasi-Gaussian 
distribution.  The mean and 
standard deviation maps at a 
depth of  ~300 m below mean 
sea level derived from the MC 
results are shown in Figure 
5-3ab.  For comparison with 
standard practice, in Figure 
5-4 we show the Vp map at 
the same depth with a 
standard single inversion of  
the data using the observed 
travel time data without any 

18

Figure 5-2: Histogram of P-wave speed (Vp) at one node from 
the 1,000 Monte Carlo inversions.
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Figure 5-3b: Standard deviation of Vp at 300 m depth below sea level 
from 1,000 Monte Carlo inversions.

Figure 5-3a: Mean Vp at 300 m depth below sea level from 1,000 
Monte Carlo inversions.



randomized data error added.  The mean MC Vp in Figure 5-3a is very similar to that of  Vp in 
Figure 5-4.  Most differences between the two are in the details, but a notable difference is in the low 
Vp region in the northeast portion of  the models, where the imaged Vp is slower in the single 
inversion compared to the MC mean. 

5.3. Subsample of Monte Carlo 
For a computational reference point, we desired to know how well the mean and standard deviations 
of  the full 1,000 runs of  MC were matched by just using 20 random models and computing means 
and standard deviations from those 20 models.  Figures 5-5ab shows the results using 20 models.  
There are only very subtle differences in the mean Vp’s between the 1,000 and 20 MC runs, which is 
not overly surprising.  Although the overall pattern of  high and low standard deviations are the same 
between the two, there are more differences in the standard deviation estimate images with more 
high-wavenumber structure in the standard deviations when using 20 models instead of  1,000.  A 
mean-corrected cross-correlation coefficient (i.e. removing the mean Vp in this depth section based 
on the 1,000 MC runs from both models before cross-correlating) between the two yields 0.89.  
None of  this is surprising since it is well-known that Monte Carlo estimates converge as , 
where N is the number of  samples.  This provides a benchmark that has computational cost of  20 
inversion runs so that we can see how well PCE approaches, which we design to have roughly the 
same cost, perform in relation to both the 1,000 and 20 MC estimates. 

1/ N
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Figure 5-4: Vp at 300 m depth below sea level from single inversion 
of data without any randomized data error.
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Figure 5-5b: Standard deviation of Vp at 300 m depth below sea level 
from 20 Monte Carlo inversions.

Figure 5-5a: Mean Vp at 300 m depth below sea level from 20 Monte 
Carlo simulations.



5.4. Constructing PCE estimates 
The first issue is constructing the PCE and then how to use this to estimate statistical quantities 
such as mean and standard deviation.  Instead of  using quadrature to estimate the PCE coefficients 
like is typically done (e.g. in Dakota; Adams et al., 2019, dakota.sandia.gov), we use an L2 norm 
(Euclidean norm) fit to the values of  the random variable at specific points on the standard error 
axis.  For reference, the standard error axis (or value) specifies how many standard deviation units 
one is away from the mean with direction.  So, for example, a point is at -1.5 on this axis if  it is 1.5 
standard deviations smaller than the mean.  Typically, one plots the value on the standard error axis 
as the x-value and the output value as the y-value.  Using the L2 norm allows us to fit any probability 
distribution with PCE no matter where the samples lie on the standard error axis.  Also, even if  one 
uses the quadrature points, since they well-sample the standard error axis, we found that the L2 
norm was more stable and consistent with a variety of  input and output values.  We use Python 3.8 
with numpy’s implementation of  an L2 norm fit to probabilist Hermite polynomials (https://
numpy.org/doc/stable/reference/generated/numpy.polynomial.hermite_e.hermefit.html).  When 
the input standard error axis values are known, then one can use this numpy function directly.  
However, when the input standard error axis values are unknown, we must find an estimate of  their 
values before we can use this function.  If  it is known or can be reasonably assumed that the input 
standard error points are from a quasi-Gaussian distribution, we find that sorting the output values 
and using scipy’s normal distribution percent point function (https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.norm.html) works well.  This function returns the value on the 
standard error axis that corresponds to a given cumulative distribution probability value.  We assign 
the smallest output value as having a cumulative probability of  1/(N+1) and the largest output value 
as having a probability of  1-1/(N+1) and all ordered values being equally spaced in cumulative 

probability space between the two with spacing . 

As an example, in Figure 5-6a we show a Monte Carlo-derived non-Gaussian output distribution 
with 1,000 samples.  In Figure 5-6b we fit a 10th order Hermite polynomial to this random input 
using the above method.  We see a very good fit to the MC samples in this space.  The PCE 

1 − 2
N + 1

N − 1
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Figure 5-6: a) Non-Gaussian distribution histogram from 1,000 MC simulations. b) Blue line is 
the data in a) plotted in standard error units; orange line is L2 10th order PCE fit.

a) b)
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coefficients can then be used to rapidly simulate the expensive MC-derived distribution as long as 
the PCE sufficiently captures the distribution properties. 

Another use of  PCE coefficients is that they can provide an estimate of  the mean and standard 
deviation and higher moments of  the distribution.  The mean of  the distribution is simply the 0th 
order coefficient.  The standard deviation is: 

 (5-1) 

where  is the ith order polynomial coefficient and P is the maximum order of  the PCE.  Note that 
this sum does not include the 0th order term.  See Preston (2017) for a derivation. 

5.5. PCE Minimized Number of Random Variables 
For any of  the PCE approaches to have an opportunity to be faster than MC, the roughly 125,000 
random variables must somehow be reduced to a small number of  random variables.  This is due to 
the fact that each random variable is expanded via Equation 1-2, so a 4th order PCE expansion (5 
terms) with 10 random variables would require 510 terms.  There are methods to reduce this, such as 
sparse PCE expansion methods like Smolyak sparse grids (Smolyak, 1963; see also the Dakota 
theory manual for further possibilities: Adams et al, 2019).  However, PCE, even with these 
approaches, the “curse of  dimensionality” would be problematic with 125,000 random variables.   

5.5.1 Large Number Approximation 
We attempted multiple approaches, only some of  which will be outlined here.  The first approach 
attempts to reduce this dimensionality to the extreme by conglomerating all random variables into 
one single representative random variable.  We do this by using the fact that for a vary large number 
N of  samples, the sum of  the log of  the probabilities, , of  each random sample or: 

 (5-2) 

is a quasi-Gaussian distribution (it is not a true Gaussian because the values can only be positive) 
with a peak at  where  is the probability of  a standard Gaussian at one standard 
deviation, and a standard deviation of  .  What this means is that for a large number of  
samplings, a particular random sample will very likely be near one standard deviation away from its 
mean.  We then sample this distribution at the roots of  a 20th degree chaos probabilist Hermite 
polynomial and run tomographic inversions at each of  these 20 quadrature points.  Since there is 
only one random variable, all data points will be using the same value on the standard error axis for a 
given inversion (e.g. all will be sampling at -2.5 standard deviations, , from the mean 

).  Since the large number approximation assumption would only produce positive 
perturbations, the only variability is that half  the data points are randomly selected to have negative 
perturbations, so that the overall mean perturbation is zero.  Given this very restrictive sampling and 
variability, it is not surprising that the estimated standard deviations from this method are roughly 
3-10 times too small compared to full MC and has relatively poor correlation with the MC results 
(mean corrected cross-correlation coefficient of  0.12; Figure 5-7a). 

5.5.2 Using Full Standard Error per Observation 
In order to increase the variability, the next step is to assume that each observation has its own 
Gaussian probability distribution with a standard deviation equal to its individual estimated standard 

σest =
P

∑
i=1

p2
i

pi

pi
N

∑
i=1

ln pi

N ln (pG(1)) pG(1)
N /2

N /2
N ln (pG(1))
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pick error.  Again, since there is only one random variable here, all observations are sampling at the 
same point on their standard error axes for a given inversion (e.g. all are sampling at -2.5 standard 
deviations).  As before, in order to keep the mean perturbation zero regardless of  the current value 
of  the standard error axis being sampled, half  of  the samples are randomly selected to sample from 
the opposite side of  the Gaussian distribution.  For example, if  the current inversion is sampling at 
-2.5 standard deviations, then half  of  the data would sample at -2.5 and the other half  at +2.5 
standard deviations (the latter set we refer to as the “negated” set).  We performed 10 inversions 
using the 10-point Gauss-Hermite quadrature abscissa values for the standard axis evaluation points.  
These results were much better in terms of  bias in the standard deviation estimates and mean 
corrected cross-correlation coefficient with a bias of  about ~50-75% of  the full MC results and 
cross-correlation coefficient of  0.31 (Figure 5-7b). 

5.5.3 Fixed Sample for Negated Set 
One final test using one random variable for PCE evaluation is identical to the previous case except 
in how the observations are selected that are in the negated set.  Unlike the previous case, which 
makes the random selection independently for each standard error value, in this case once the set of  
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Figure 5-7: Standard deviation estimates for a) 5.5.1 Large number approximation, b) 5.5.2 
Using full standard error per observation, c) 5.5.3 Fixed sample for negated set, d) 5.6.2 

Using full standard error per observation with multiple groups.  Note that each panel has 
an independent colorbar.

a) b)

c) d)



observations are selected as being in the negated set, they remain so for all standard error values.  
This further improves the approximation to the full MC standard deviation estimate.  Although on 
average there is virtually no bias in the results, it has both over- and underestimates of  the standard 
deviation with a mean corrected cross-correlation coefficient of  0.49 (Figure 5-7c). 

5.6. PCE Two-Tier Randomization  
In an attempt to improve over the results in the previous section, we desired to explore more 
combinations of  which observation are in the negated set.  To do this we run multiple groups with 
each group being evaluated at the same standard error values but with different observations being 
in the negated set in each group.  Like in the last test, once we randomly choose which observations 
will be in the negated set, those observation will always use the negative standard error value for all 
evaluated standard error values in that particular group.  Unlike the last test, however, we redo the 
full suite of  standard error values multiple times, with, at the beginning of  each group, a new 
randomly selected set of  observations using the negative standard error value (i.e. negated set).  For 
example, if  we run 5 groups using 5-point Gauss-Hermite quadrature points for the standard error 
axis values, the initial group will first select which observations will be in that group’s negated set, 
and then it runs through all five standard error values for 5-point quadrature.  Next, the second 
group begins by independently and randomly selecting different observations to be in its negated 
set, and then it proceeds through all five standard error values for 5-point quadrature.  This is 
repeated for the third, fourth, and fifth groups: a total of  25 inversions.  To process these results 
into overall standard deviations, the standard deviation for each group is independently computed 
using Equation 5-1 and then the standard deviations from all five groups are averaged. 

5.6.1 Large Number Approximation 
We show two test cases using this method.  First, we try the large number approximation approach 
as presented in Section 5.5.1, where the mean standard deviation of  a large number of  random 
samplings is equal to unit standard error for that observation.  We compute 10 groups using 3-point 
Gauss-Hermite quadrature for a total of  30 inversions.  The results are in line with those of  Section 
5.5.1 with a mean corrected cross-correlation coefficient of  0.12, once again demonstrating that 
there is too little variability in the large number approximation approach to adequately represent the 
full MC standard deviation estimate. 

5.6.2 Using Full Standard Error per Observation 
In this case we use quadrature values for 5-point Gauss-Hermite quadrature in five groups, so 25 
total inversion runs.  Like in Sections 5.5.2 and 5.5.3, we use the estimated pick error for each 
observation as being one standard deviation from the picked observed time.  Using this approach 
greatly improved the results relative to those of  Section 5.6.1 and is on par, but slightly better than, 
the results of  Section 5.5.3.  We obtain a mean corrected cross-correlation coefficient in this case of  
0.51, but with generally overestimated standard deviations by up to a factor of  2 (Figure 5-7d). 

5.7. PCE Randomly Mixed Standard Error Values  
The final case evaluated in this report further builds on what we discovered in the previous two 
sections.  We extend the successes we found in Section 5.6.2 by randomizing the order of  the fixed 
set of  standard error values on a per observation basis.  For example, for 5-point Gauss-Hermite 
quadrature, there will be 5 standard error values that will be sampled for each group.  For 5 point 
quadrature for Hermite chaos polynomials, the quadrature points are at standard error values of  
approximately -2.86, -1.36, 0.00, +1.36, +2.86.  Since there are five values, there will be five 
inversions in a particular group.  On the first inversion in a group, each observation is randomly 
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evaluated at one of  the five possible standard error values.  On the second inversion in the group, 
each observation is evaluated at a different randomly selected value of  the four standard error values 
that remain for that observation.  This continues on the third through fifth inversions in that group, 
with the fifth inversion just using whatever of  the standard error values each observation hasn’t 
evaluated yet.  This way each observation will be evaluated at each of  the five possible standard 
error values but the ordering of  each is random.  Also, as in Section 5.6.2, we redo a full group 
multiple times independently, so once the first group of  five inversions are completed, the process 
begins again with a new group of  five inversions starting afresh with all five standard error values 
being evaluated in random orders per observation. 

For this test, we use the 5-point quadrature values for Hermite chaos polynomials in five groups for 
a total of  25 inversions.  Just as in Section 5.6, we compute the standard deviation for each group 
independently and then average the results over the five groups to obtain an overall estimate of  the 
standard deviation of  the Vp map.  Roughly, the broad-scale pattern and magnitude of  the standard 
deviations correspond to that of  the full MC results with a mean corrected cross-correlation 
coefficient of  0.69 (Figure 5-8a).  The mean model output from this test is visually extremely close 
to that of  the full MC mean model with only subtle differences between them; indeed, the mean 
corrected cross-correlation coefficient of  the mean models is > 0.99 (Figure 5-8b). 

5.8. Discussion  
We showed several different attempts at estimating standard deviations using PCE approaches.  
Several others were also attempted as variations on these basic schemes, but the ones in this report 
demonstrate the basic outcomes and results.  The large number approximation methods discussed in 
Sections 5.5.1 and 5.6.1 are clearly inferior to other results.  These approaches simply do not allow 
enough outliers to properly bracket the true variations seen in a large dataset like this.  Increasing the 
variability and sampling to use the full standard errors instead of  large number approximations 
greatly improved results.  Allowing each observation to have different standard error values while 
sampling its full spectrum of  standard error values clearly produced the best results. 

Although the final test evaluated in Section 5.7 is by far the best model we found using a PCE-based 
approach, it still was poorer in how well it matched the full MC standard deviation results for Vp 
compared to just using 20 MC runs.  In addition this final test required 25 inversions to obtain a 
poorer result than the 20 MC inversions, so it is also less computationally efficient. 
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Figure 5-8: a) Standard deviation estimate from test in Section 5.7, b) Mean 
estimate from Section 5.7.



Overall, the PCE approach failed because of  the sheer number of  random variables.  We were 
unable to find a means of  reducing this random dimensionality to a computationally efficient level 
while still maintaining sufficient accuracy to the primary statistics we were interested in.  In order to 
more efficiently estimate uncertainties in inversions with high random dimensionality other methods 
may offer better accuracy and efficiency such as multi-level or multi-fidelity uncertainty 
quantification models (e.g. Adams et al, 2019).  These approaches reduce the computational cost of  
performing UQ by combining information from a very limited number of  high-accuracy, costly 
simulations with many runs of  cheaper, lower fidelity simulations, such as using reduced order 
model approximations (e.g. simpler physics or making 1-D assumptions) or using lower resolution 
grids (e.g. Giles, 2013, 2015; Ng, 2013; Peherstorfer et al. 2016; Khan and Elsheikh, 2019; Jakeman 
et al., 2020). 
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6. SUMMARY 
We discussed two primary topics within this report: full waveform seismic moment tensor inversion 
and travel time structural inversion of  the earth’s material properties.  Full waveform seismic 
moment tensor inversion is a simpler inverse problem, being linear in the frequency domain and 
very fast to compute.  However, evaluating the uncertainty in moment tensor solutions due to 
uncertainty in the 3-D earth model is computationally expensive.  We discussed several methods that 
we attempted that progressively improved on each other and eventually formulated the KLMC 
method that provides excellent approximations to the mean and variance of  moment tensor 
solutions estimated from full MC simulations at 0.1% of  the cost.  This enormous cost reduction is 
made possible because only one expensive 3-D simulation is required in the method, with the 
remaining computations only requiring computationally inexpensive convolutions.  This success 
means that we can now very efficiently estimate the effects of  earth model uncertainty on our 
source characterization solutions.  Consequently, decision makers can have access to high-quality 
source characterization results with uncertainties attached that account for earth model error that is 
currently rarely available, grossly approximated, or computationally expensive to compute. 

Estimating the uncertainty in earth structure inversions in a computationally efficient manner was a 
much larger beast.  We attempted multiple PCE-based approaches, trying various means to reduce 
the dimensionality in the random domain.  However, even in our test with the best results compared 
to full MC, the results were subpar and required too much computational effort even to obtain the 
results we did.  Using a relatively small number of  MC simulations and estimating the uncertainty 
from those results were the best and most computationally efficient method that we tested.  Other 
promising methods such as multi-level or multi-fidelity uncertainty estimation techniques may offer 
a path forward for inverse problems with very high dimensional random spaces like in earth 
structural inversion problems. 
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