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We study the interplay between Mott physics, driven by Coulomb repulsion U, and Hund physics,
driven by Hund’s coupling J, for a minimal model for Hund metals, the orbital-symmetric three-band
Hubbard-Hund model (3HHM) for a lattice filling of 1/3. Hund-correlated metals are characterized
by spin-orbital separation (SOS), a Hund’s-rule-induced two-stage Kondo-type screening process,
in which spin screening occurs at much lower energy scales than orbital screening. By contrast,
in Mott-correlated metals, lying close to the phase boundary of a metal-insulator transition, the
SOS window becomes negligibly small and the Hubbard bands are well separated. Using Dynamical
Mean-Field Theory and the Numerical Renormalization Group as real-frequency impurity solver,
we identify numerous fingerprints distinguishing Hundness from Mottness in the temperature de-
pendence of various physical quantities. These include ARPES-type spectra, the local self-energy,
static local orbital and spin susceptibilities, resistivity, thermopower, and lattice and impurity en-
tropies. Our detailed description of the behavior of these quantities within the context of a simple
model Hamiltonian will be helpful for distinguishing Hundness from Mottness in experimental and

theoretical studies of real materials.

I. INTRODUCTION

The properties of multi-orbital metals with strong on-
site atomic-like interactions is governed by strong corre-
lation effects. In this paper, we study the interplay of
two distinct manifestations of local interactions: “Mott
physics”, driven by the Coulomb repulsion, U, govern-
ing charge dynamics; and “Hund physics”, driven by the
Hund’s rule coupling, J, affecting spin dynamics.

For many years, strong electronic correlations in metals
have mainly been associated with Mottness, well-known
from ordinary Mott-Hubbard systems — in the proxim-
ity of a Mott-insulating state, U is large (compared to
J) and slows down or even suppresses the electronic mo-
tion. This leads to characteristic spectral signatures like
well separated Hubbard sidebands and fairly flat bands
at the Fermi level at low energies and temperatures, re-
flecting strongly renormalized heavy Landau quasiparti-
cles (QPs). At high energies, typically, the quasiparticle
band vanishes and a gap or pseudogap opens between
the Hubbard sidebands. A well-known example is V503
[1-7].

However, many materials are multi-orbital systems far
from a Mott insulating state and the effect of U is consid-
ered to be too small to correlate the electrons. In particu-
lar, so-called “Hund metals” [7-28], like the 3d iron-based
superconductors [9-11] and ruthenates [8, 12, 16-19], are
multi-orbital metals with rather broad bands and thus
sizeable J compared to strongly screened U. In these
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materials, electronic correlations are mainly governed by
Hund physics, i.e. a sizeable Hund’s rule coupling, J, trig-
gers a new electronic correlation mechanism based on the
interplay between spin and orbital degrees of freedom:
“spin-orbital separation” (SOS) [7, 14, 20-24, 29, 30].

In an isolated atom, it is well known that J simply
aligns electronic spins in different orbitals according to
Hund’s first rule [31]. But if the atom is hybridized with a
metallic environment, as in many multi-orbital materials
or impurity models, the effect of J is much more intricate
and subtle (and was, with a few exceptions [32], largely
overlooked or underestimated until this decade). Here,
SOS emerges in a complex two-stage Kondo-type screen-
ing process, in which spin screening occurs at much lower
energies than orbital screening [20, 22]: Typin < Tom
(cf. Appendix A for precise definitions of these scales).
The low-energy regime below Ty, is a Fermi-liquid (FL)
governed by Landau QPs with heavy masses. By con-
trast, the intermediate energy window featuring SOS,
[Tipin, Torb), is governed by almost fully screened orbital
degrees of freedom weakly coupled to almost free spin de-
grees of freedom, leading to incoherent behavior. Its non-
Fermi-liquid (NFL) properties are caused by an underly-
ing novel NFL fixed point, described in detail in Refs. [24
and 29] for a 3-channel spin-orbital Kondo (3s0K) model
for Hund metals, as suggested in Ref. [21].

As a function of increasing temperature, SOS leads
to a coherence-incoherence crossover with a coherence
scale that is strongly suppressed by Hund’s coupling
[20]. The coherence-incoherence crossover was predicted
in material simulations of iron oxypnictides already in
2008 [9, 33]. It was observed a few years later in measure-
ments of the resistivity, heat-capacity, thermal-expansion



coeflicients, susceptibility and optical conductivity of the
122-iron pnictides [34-36]. Further, only recently [7], re-
alistic material simulations and model Hamiltonian stud-
ies of the temperature dependence of the local spectrum
and of the charge, spin and orbital susceptibilities of the
Hund metal SroRuO4 and the Mott material VO3 re-
vealed that, for Hund metals, SOS also occurs in the
onset (and completion) of screening of the orbital and
spin degrees of freedom: as the temperature is lowered in
Hund metals, the static local orbital and spin suscepti-
bilities show deviations from Curie behavior at different
scales: Towset < ToRet. By contrast, for Mott materials
we have T8t ~ Toprifft, since both these scales are equal
to the scale Ty; at which the Mott gap closes when the
temperature is lowered.

During the last years, many insights on SOS have been
gained in the context of a minimal 3-orbital Hubbard-
Hund model (3HHM) for Hund metals. In Refs. [20
22, 29] the focus has mainly been on zero-temperature
results, while some finite-temperature results were pub-
lished in Ref. [7]. In the present work, we build on and
extend the latter study by providing a full analysis of
the temperature dependence of ARPES spectra, the spec-
tral function and self-energy, static local spin and orbital
susceptibilities, the QP weight, scattering rate, resistiv-
ity, thermopower and entropy. We choose four different
sets of system parameters, which mimic the physics of a
Hund system (H1), a Mott system (M1), an intermedi-
ate system (I2) showing aspect of both Hund and Mott
physics, and a weakly correlated system (WO0). With
this we aim to clarify previously-proposed criteria and
also identify new ones for distinguishing the two distinct
routes of screening from atomic degrees of freedom to-
wards emerging quasiparticles, guided by either Mott or
Hund physics.

This paper is structured as follows. First we intro-
duce the 3HHM in Sec. II. In Sec. III we shortly review
the current state of research on the 3HHM and motivate
our choice of model parameters. Sections IV, V, and VI
present our results. Sec. IV concentrates on ARPES spec-
tra, as well as spectral functions and self-energies. In par-
ticular, we discuss the different temperature dependences
of these quantities for Hund and Mott systems. Based on
our discussion of the ARPES spectra, in Sec. V, we ex-
plain in detail the behavior of the static local orbital and
spin susceptibilities and the quasiparticle weight in terms
of the SOS screening process. In Sec. VI we analyze sig-
natures of Hund and Mott systems in various transport
properties (scattering rate, coherence scale, resistivity,
effective chemical potential, thermopower). Further, we
study the lattice entropy and demonstrate that it differs
from the impurity entropy. Remarkably, we are able to
calculate the lattice entropy directly from our numerical
data. We summarize our insights in Sec. VII by provid-
ing tables which highlight the most important features
for distinguishing Mott and Hund physics. Appendix A
additionally offers a detailed analysis of the particle-hole
asymmetry of the 3SHHM at 7" = 0 and of the frequency

and temperature dependence of the optical conductiv-
ity. Further, it contains elementary definitions of several
quantities discussed in Sec. VI.

II. MODEL AND METHOD

The minimal 3HHM model for Hund metals, first sug-
gested in Ref. [14], is described by the Hamiltonian

H:Z( ulN; + Hineld ) + Y tdld,, (1)
i (ijyv

Hildl,) =1 (U~ 3J) Ny(N; —1) — JS? +

The on-site interaction term incorporates Mott and Hund

physics through U and J respectively. CZT creates an
electron on site 4 of flavor v = (mo), composed of a spln

(o0 =1,1) and orbital (m = 1,2,3) index. 7y, = d d,

w v
counts the electrons of flavor v on site i. N; = Do, My s

-
8JN;.

the total number operator for site i and S; its total spin,
with components gﬁ = > oo djmgé M/d”m,, where
o are Pauli matrices. We take a uniform hopping am-
plitude, ¢t = 1, serving as energy unit in the 3HHM, and
a Bethe lattice in the limit of large lattice coordination.
The total width of each of the degenerate bands is W = 4.
We choose the chemical potential p such that the total
filling per lattice site is ng = (N;) = 2, i.e. the three
degenerate bands host two electrons. The effective bare
gap of this model is given by A, = U — 2J. (For a mo-
tivation of this definition, see Ref. [22].) We emphasize
that Hund’s coupling plays no role at filling ng = 1, un-
less the Hund’s coupling itself becomes so large that it
starts mixing orbitals with different occupation. In the
latter case, similar Hund’s signatures may be observed
even for a 2-orbital model with possible relevance to cer-
tain materials [37].

We have solved the 3HHM of Eq. (1) using dy-
namical mean-field theory (DMFT) [4] combined with
a state-of-the-art multi-band impurity solver, the full-
density-matrix numerical renormalization group (fdm-
NRG) [38, 39], while fully exploiting the model’s
U(1)eh xSU(2)spin X SU(3) o, symmetry using the QSpace
tensor library [40]. This approach has yielded valuable
insights into the complex interplay of spin and orbital de-
grees of freedom before [7, 20, 22, 29], because it delivers
high-quality results directly on the real-frequency axes
and for all physically relevant energies and temperatures.
Details of the DMFT+fdmNRG method are described in
Refs. [20, 22, 41]. Method-related parameters are given
in the supplementary material of Ref. [20].

III. BACKGROUND AND SETUP

This work is strongly based on the insights gained in
Ref. [22] for the 3HHM at 7" = 0. In the following, we
give a short overview of the most important facts es-
tablished there. These will be used later to analyze the



temperature dependence of various physical quantities in
the 3HHM.

Phase diagram. In Ref. [22] we explored the SHHM at
1/3 filling in a broad region of parameters at T'= 0 and
established the J-U phase diagram, replotted in Fig. 1(a).
It consists of three different phases, a metallic phase
(squares), a coexistence region (circles), and an insulat-
ing phase (triangles), separated by two phase transition
lines U, (solid red curve) and U.s (dashed black curve),
respectively. Thus, for fixed J, a Mott insulator tran-
sition (MIT) occurs with increasing U, discussed exten-
sively in Ref. [22]. The red color intensity of the symbols
reflects the strength of the quasiparticle weight, obtained
from the self-energy of the self-consistent lattice Green’s
function via

1 m

= e — 2
1 - d,ReX(w)|,_g m* @)

Z

with m the free electron mass and m* the renormalized
QP mass. Importantly, for sizeable J 2 1 (cf. Ref. [22] for
details), strong correlation effects, i.e. considerable mass
enhancements, Z !, occur not only close to the MIT lines
but also far from it (cf. e.g. faded red color for H1).

In Ref. [22] we aimed to identify the origin of strong
correlations far from and close to the MIT in Fig. 1(a).
To this end, we proposed several characteristic signatures
distinguishing Hund-correlated from Mott-correlated sys-
tems at T = 0. We briefly recapitulate the findings from
Ref. [22] in the following three paragraphs.

Hund system. The 3HHM shows behavior typical of
Hund metals at moderate and small U values, i.e. far
from a MIT phase boundary. As a prototypical example,
we choose the Hund system H1 [marked by a cross in
Fig. 1(a)] with J = 1 and a small bare gap, A, = 1. This
choice relies on the fact that H1 qualitatively reproduces
various physical properties of the Hund metal SroRuQOy4
[7]. At T = 0, Hund systems are characterized by the
following signatures.

The lowest bare atomic excitation scale, Fiomic =
Wel = —Wp = %U — J, is typically small due to the small
value of U and the sizeable value of J (e.g. Bl . =0.5
for H1). The bare atomic scales, wp, we1 and wes =
%U + 2J define the characteristic energy scales, i.e. the
peak positions, of the Hubbard bands in the local density
of states,

Aw) = —71m [Gimp (@), 3)

cf. yellow crosses in Fig. 1(b). Thus, for H1, the Hubbard
bands form a broad incoherent background.

In Hund systems, strong correlations are induced by
“Hund physics”: The spin Kondo scale is strongly re-
duced due to SOS, with Typin = 0.12 for H1 [cf. brown
curves Fig. 1(c)]. Accordingly, the QP mass, Z~! =
3.45 x Tepin ~ [22], is strongly enhanced. By con-
trast, Ty, = 1.20, is even larger than E,tomic = 0.5 for
H1. This leads to a very broad SOS frequency window
[Tipin, Torb] = 1.08 comparable in magnitude to A, = 1in

Hund systems (cf. yellow vertical bar in Fig. 1(c) for H1).
The incoherent regime is strongly particle-hole asymmet-
ric in frequency space [20, 22] and shows fractional power-
law behavior [29, 41-43]. At zero temperature, the two-
step SOS Kondo screening process is reflected in A(w) in
form of a two-tier QP peak on top of the broad incoherent
background. It consists of a thin spin Kondo peak related
to spin screening and a broader orbital Kondo peak re-
lated to orbital screening [cf. yellow curve in Fig. 1(b)]
[22].

Mott system. A Mott system is by definition close to
the MIT phase boundary. U is large compared to J.
We choose the Mott system M1 [marked by an asterisk
in Fig. 1(a)] with J = 1 and a large bare gap A, =
U—2J = 4.5 as a prototypical example. M1 qualitatively
reproduces various physical properties of the well-studied
Mott system V4Os3 [7]. The lowest bare atomic excitation
scales, +EM! . = £2.95 are large due to the large value
of U, and the Hubbard bands therefore well separated [cf.
black curve in Fig. 1(b)]. By contrast, with increasing
U, both Tq,, and Tgpi, are linearly reduced, while their
ratio remains constant [cf. brown curves in Fig. 1(c)]. As
a consequence the SOS window is strongly downscaled,
[Tipin = 0.04,Tor, = 0.39], becoming almost negligibly
small compared to A, = 4.5 [cf. black vertical bar in
Fig. 1(c) for M1]. Since both Kondo scales are small, the
QP peak is narrow altogether and well separated from
the Hubbard side bands [cf. black curve in Fig. 1(b)]. In
sum, Hund physics is only observable at very low energy
scales. Typical Mott physics, induced via the DMFT
self-consistency, dominates.

Absence of Hund’s coupling. For J = 0, SOS is ab-
sent: spin and orbital degrees of freedom are screened at
the same scale, Typin = Torp, [cf. blue curves in Fig. 1(c)].
Far from the MIT phase boundary, e.g. for W0 with
J = 0 and A, = 3.5 [marked by an open square in
Fig. 1(a)], Tipin = Torb = 0.7405 are rather large and
thus Z=! = 1.5134 not much enhanced: the system is
only weakly correlated. The QP peak has no substruc-
ture [cf. blue curve in Fig. 1(b)].

Temperature-dependence. The size and the properties
of the SOS window in frequency space has direct im-
plications for temperature dependent properties of the
3HHM. This was first demonstrated in Ref. [7]. In par-
ticular, it was shown that, in local spectra, the QP peak
persists up to very high temperatures in Hund systems,
exhibiting large charge fluctuations, whereas a pseudo-
gap develops with increasing temperature in all Mott
systems at a characteristic energy scale Ty, suppress-
ing charge fluctuations. This can be explained by the
fact far from the MIT boundary that the Hubbard bands
overlap, whereas close to the boundary they are well sep-
arated. Furthermore, onset scales for orbital and spin
screening, T4t and Tons*, were introduced as the scales
where decreasing temperature first causes deviations of
the respective static local orbital and spin susceptibili-
ties, Xorb and Xspin, from the Curie behavior, x « 1/T,
characterizing free local moments. In Hund metals, it
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FIG. 1. (a) The zero-temperature phase diagram of the 3HHM has three phases in the J-U-plane: a metallic phase (squares),
a coexistence region (circles), and an insulating phase (triangles). These are separated by two phase transition lines Ue; (solid
red curve) and U2 (dashed black curve), respectively. The color intensity of the symbols in the metallic and coexistence regions
indicates the value of Z € [0,1]: the lower Z the more faded is the red color. The phase diagram is adapted from Ref. [22].
We will present temperature-dependent results for a Hund system, H1, far away from the U1 phase transition line deep in the
metallic state (cross), a Mott system, M1, near the transition (asterisk), an intermediate system, 12, having both Hund and
Mott features (open diamond), and a weakly correlated system, WO, with J = 0 far from U.; (open square). (b) The local
density of states, A(w), for M1 (black), H1 (yellow), 12 (red), and WO (blue). Crosses mark the bare atomic excitation scales,
Wh, Wet, and wez (listed in increasing order), defined in Sec. I11. (¢) The spin and orbital Kondo scales, Tspin (solid) and Torb
(dashed), plotted as function of U for J = 0 (blue), J = 1 (brown), and J = 0 (blue); these scales are defined as the maxima
of the imaginary parts of the dynamic orbital and spin sysceptibilities, see App. A. The SOS window is marked by a vertical

yellow (black) bar for H1 (M1).

was found that Tt > Tonset with T as high as
FEatomic- In contrast, in Mott systems, spin and orbital
screening set in, simultaneously, below a much lower
scale, Towset ~ TOW ~ Ty < Fatomic, together with
the formation of the QP peak. A weakly correlated sys-
tem with J = 0 likewise does not exhibit any separation

of the onset scales of orbital and spin screening.

In addition, completion scales for orbital and spin
screening, TP and T57P, were defined as the temper-
ature scale below which Pauli behavior sets in with de-
creasing temperature. It was suggested that these scales
are also separated in the presence of finite J in both Hund

and Mott systems, while they are equal for J =0 [7].

Strategy. In the following, we analyze and compare
four different systems, H1, M1, W0 and 12, as presented
in Fig. 1(a), to further clarify the Hund and Mott route
towards strong correlations. The Hund system, H1, and
the Mott system, M1, are defined as in Ref. [7]. In addi-
tion, we also study the weakly correlated system W0 and
an intermediate system, 12, with J = 2 and Ay = 3.5
[marked by an open diamond in Fig. 1(a)], which has
both Hund and Mott features and thus demonstrates the
crossover between a Hund and Mott system. For all these
systems we summarize the physics in ARPES spectra at
T = 0 and study their temperature dependences. While
some of this data is already presented in the supplemen-
tary material of Ref. [7], we here analyze it in much more

detail and directly connect it to the temperature depen-
dence of various other physical quantities. In particular,
we revisit the static local susceptibilities and the idea of
completion and onset scales of spin and orbital screening.
Further insights are obtained by studying the quasiparti-
cle weight, the resistivity, the thermopower and the lat-
tice entropy. We will show that the latter differs from the
impurity entropy, studied before in Ref. [20]. In App. A,
we also offer a detailed discussion, for 12, of the impli-
cations of particle-hole asymmetry for various frequency-
dependent quantities at "= 0. All in all, these studies
lead to a deepened understanding of the nature of Hund
metals.

IV. ARPES, SPECTRAL FUNCTION AND
SELF-ENERGY

In this section we focus on ARPES spectra. We cal-
culate the structure factor, A(eg,w), for a Bethe lattice
as

Alep,w) = —1Im [wHp—ep—2w)] " (4)

Experimentally, the structure factor can be measured
by angle-resolved photoemission spectroscopy (ARPES).
For brevity, our A(ex,w) spectra will be called ARPES
spectra, too, although they are of course computed, not
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FIG. 2. A Hund system (H1) with parameters Ay = 1 and J = 1. (a,c,e-h) The structure factor, A(ex,w). (b,d) The dispersion
relation, F(e), (i) the spectral function, A(w), (j,k) the real and imaginary parts of the self-energy, Re¥(w) and Im ¥(w),
respectively, all plotted for various temperatures. (a,c,e-h) The colored curves highlight the dispersion relation, F(eg), the
white curves show the alternative definition of the dispersion relation, E*(w), respectively. Panels (a,b) are low-energy zooms
of panels (c,d). The FL regime, wp;, < w < wiy, lies between the dash-dotted red lines, running horizontally in (a,b) horizontal
and vertically in (i-k). The thick dashed red line in panel (a) denotes FL behavior of the low-energy dispersion relation. Its
slope, Z = m/m”, reflects the strength of local correlations. The yellow solid horizontal lines in (b) and vertical lines in (i-k)
denote, for w < 0, the energy scale wg, of the maximum in Re ¥7—¢(w < 0), and for w > 0, the energy scale wd; of the kink in

Re Er=o(w > 0).



measured. The four Figs. 2, 4, 5 and 6 show our re-
sults for A(ex,w), together with the corresponding spec-
tral function, A(w) and self-energy, ¥(w), for the four
systems H1, M1, 12, and WO, respectively. A(eg,w) is
plotted for different temperatures in panels (a),(c) and
(e-h). A(w) is plotted for several temperatures in panel
(i), analogously, Re ¥(w) in panel (j), and Im ¥ (w) in
panel (k). In the following, we are particularly interested
in how SOS is reflected in ARPES data at T = 0, and
how it develops with increasing temperature in Hund sys-
tems compared to Mott systems. How can the emerging
differences be explained and interpreted physically?

A. Hund system H1

Let us first analyze Fig. 2 for H1. Here, we start
with the T" = 0 results [Figs. 2(a,c)]. We reveal three
regimes with different behavior of the ARPES spectrum,
A(ex,w), due to SOS.

Fermi-liquid regime at T = 0. Fig. 2(a) is a zoom into
the FL regime, which at T = 0 sets in for |w| < Typin =
0.1221. The white curve shows the w-dispersion of the
QP band, defined as the maxima, E*(w), of A(eg,w) for
given w, and the blue curve the e-dispersion, defined as
the the maxima, F(e), of A(eg,w) for given g;. Both
definitions lead to the same low-energy linear FL disper-
sion relation (cf. thick dashed red line) of slope Z = 0.29
[with a Fermi surface crossing point E*(w = 0) = peg].
The mass enhancement of the Landau QPs in the Hund
system, H1, is thus fairly large, Z= = m*/m = 3.45. We
define wp;, and w;:L as the negative and positive crossover
scales between which FL behavior holds (as diagnosed
from a detailed analysis of the w-dependence of A(w)
and X(w), see App. A for a detailed discussion). Interest-
ingly, we find that the extent of the FL regime is different
for negative or positive frequencies, wg, # wf{L (cf. thin
dash-dotted red horizontal lines): the white (blue) QP
band dispersion deviates earlier from the thick dashed
red FL line on the positive frequency side, i.e. at a lower
scale wEFL ~ —%ng = 0.027. Notably, the ratio % is
equal to the filling ratio, ;Tdc’ of the lattice, indicating
that the asymmetry of the FL regime directly reflects the
particle-hole asymmetry of the model away from half-
filling. The asymmetry of the FL regime is discussed in
more detail in Appendix A. With w;L —wpp, = 0.109, the
FL regime is rather large in H1 (compared to the lowest
bare atomic excitation scale, EX! . = 0.5). We remark
that a similar asymmetric FL regime was found earlier
in a one-band hole-doped Mott insulator Ref. [44], i.e.
for a particle-hole asymmetric model with only one type
of degrees of freedom (spins). There, it was also shown
that a well-defined QP peak of “resilient” QP excitations
exists at temperatures above the FL scale, and that it
dominates an intermediate incoherent transport regime.

Crossover regime at T = 0. Above wi; and below wg;
the QP band starts to deviate from FL behavior and
crosses over into the NFL regime. In this regime, the
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FIG. 3. Refined schematic depiction of the two-stage Kondo
screening process of SOS at filling nq = 2 (based on Fig. 13
of Ref. [22]). With decreasing energy orbital screening sets
in first, roughly at the orbital Kondo scale, T,,. This
involves the formation of an orbital singlet by building a
large effective Hund’s-coupling induced 3/2 spin including
a bath spin degree of freedom. |wZ| approximately marks
the completion of orbital screening. Below |wZ| the 3/2 spin
is gradually screened by the three effective channels of the
3HHM. Well below the spin Kondo scale, Tspin, full screen-
ing of both orbital and spin degrees of freedom is reached
at the FL scale |wi, |, below which FL behavior occurs in
frequency-dependent quantities. Our schematic sketch ig-
nores the effects of particle-hole asymmetry on the crossover
scales, [wa| # [wi| and Jwp, | # wiky |

dispersion relation becomes highly particle-hole asym-
metric, as clearly visible in Fig. 2(c). For w > 0, E (and
E*) turn upwards with increasing €; into a steeper ap-
proximately linear function. This crossover is reflected in
a weak kink around a crossover scale wl, = 0.085 (solid
yellow line at w > 0). For w < 0, E develops into a
step-shaped curve for decreasing €, approximately at the
crossover scale w;; = —0.256 (solid yellow line at w < 0).
By contrast, E* essentially keeps following the red FL
line almost down to w,, before a jump signals the transi-
tion to a new type of transport regime, the HQP regime,
where HQP stands for “Hund quasiparticle”, explained
further below.

HQP regime at T = 0. For w below the abovemen-
tioned jump, i.e. well smaller than crossover scale —wg,,
the w-dispersion E*(w) (white line) approaches the steep
linear behavior of the ej-dispersion E(e) (blue line).
Thus, the dispersion in the HQP regime is again linear,
similar to the FL regime, but it is steeper than in the
latter, for both negative and positive w. This signals the
survival of resilient but lighter QPs in the HQP regime,
described in more detail below. Interestingly, the slope
of E (E*) is slightly larger for negative (w < —w_;) than
for positive (w > wg}) frequencies, indicating different
effective masses for electrons and holes.

SOS Kondo screening process. We can now establish a
connection between the three different frequency regimes



identified above in the ARPES spectrum, and the inter-
twined two-stage Kondo screening process of SOS (cf.
Fig. 3) analyzed in Ref. [7, 20, and 22]. Proceeding from
high to low frequencies (energies), orbital screening sets
in first. This involves the formation of an orbital singlet,
by binding one bath electron to the impurity to screen the
orbital hole. Due to Hund’s coupling, the extra bath elec-
tron couples ferromagnetically to the impurity, leading
to the emergence of a large effective 3/2 impurity spin.
This transport regime has NFL properties, but is charac-
terized by an ARPES spectrum with a surprisingly linear
band dispersion, having a much steeper slope, i.e. a much
smaller mass enhancement, than in the FL regime. It
might thus be described in terms of specific resilient QPs,
which are formed by gradually screened orbital degrees of
freedom coupled to quasi-free large spins. We dub these
resilient QPs “Hund quasiparticles” (HQPs). The steep
slope of this HQP band (especially at negative frequen-
cies) is reminiscent of the (inverted) waterfall structure
discovered in ARPES spectra and realistic density func-
tional theory (DFT) plus quantum Monte Carlo (QMC)
studies of SroRuOy [45]. We thus corroborate the sug-
gestion of Ref. [45] that the waterfall structure is a signa-
ture of resilient QPs in Hund metals. But we also remark
that a waterfall structure was also found in ARPES plots
for the hole-doped one-band Hubbard model in Ref. [44].
The “completion” of the orbital screening process is re-
flected in a (strong) change in the band dispersion around
wg, (step-shape) and w (kink), respectively. Notably,
subtle changes (kinks) at about 30meV were reported in
ARPES data of SroRuOy [12, 45, 46], presumably caused
by local electronic correlations [46], and therefore could
be associated with the crossover from the NFL to the
FL regime. For frequencies below w2, and above w_, spin
screening sets in: the large 3/2 spin is now screened by
the three channels of the 3HHM to additionally form a
spin singlet in the ground state. Figuratively speaking
the HQPs get additionally dressed by the spin degrees
of freedom. After completion, FL behavior characterizes
the low frequency regime. Here, the QP band can be
described in terms of Landau QPs with a heavy mass,
Z=Y = m*/m, reflected by the small slope, Z, of the
band dispersion in ARPES data. These Landau QPs are
more stable on the negative frequency side.

As has been discussed in Sec. IIT and Refs. [20 and
22], the two-step screening process of SOS is also re-
flected in A(w), and X(w). In A(w) a narrow SU(2) spin
Kondo peak sits on top of a broad SU(3) orbital Kondo
peak [cf. blue curve in Fig. 2(i)], resulting in a shoulder
for w < w;; and a subtle kink for w > w(; (cf. vertical
solid yellow lines). Correspondingly, —Im X(w) [cf. blue
curve in Fig. 2(k)] develops a shoulder below w;,; and a
regime above w] in which the slope of —Im X(w) becomes
smaller than for w < wd. The scattering rate in the
HQP regime is thus less energy dependent than in the FL
regime. The shoulder-like structure in —Im X (w < 0) di-
rectly translates to a sharp maximum in Re ¥(w < 0) [cf.
blue curve in Fig. 2(j)]. We use the position of this max-

imum to define w_, (vertical solid yellow line at w < 0).
The kink in Re X(w > 0) approximately marks w, (ver-
tical solid yellow line at w > 0), which turns out to lie at
%wc’r. While these scales are in principle heuristic choices,
their physical relevance can be motivated by the fact that
they directly reflect the energy scales of marked changes
in the band dispersion, E(gy): the latter is the solution to
the equation w+ p—e —Re X(w) = 0, as used in Ref. [6],
and thus directly connected to Re ¥(w). In Appendix A,
we complement this discussion by a detailed investiga-
tion of the frequency dependence of A(w), ¥(w) and the
dynamical spin and orbital susceptibilities, xspin(w) and
Xorb(w), at T = 0 for the system 12 and their interpreta-
tion in terms of the SOS screening process.

We remark that the SOS features described above,
in particular the shoulder below w;, in both A(w) and
—Im ¥(w), have also been predicted to occur for SroMoO4
in very recent DFT+DMRG studies [25].

Temperature dependence. In order to verify the idea
of robust HQPs governing the incoherent transport
regime, we study the evolution of the QP band and
its dispersion E with temperature in Figs. 2(c,e-h) and
Figs. 2(b,d), respectively. We find that, with increasing
temperature, first the SOS features in the dispersion, like
the step at w < 0 and the kink at w > 0, dissolve grad-
ually and very slowly, while the steep slope of the lin-
ear behavior characteristic of the HQP regime remains
unchanged [cf. Fig. 2(d)]. At T 2 0.2 the Landau-FL
QP band has fully disappeared and only a slight kink
at the Fermi level separates the linear parts of the re-
silient HQP band at w > 0 and w < 0 [cf. green curves in
Figs. 2(b,d) and Fig. 2(f)]. The slope of the HQP band
remains quite stable over a very broad range of frequen-
cies (especially for w < 0) up to the highest temperature
plotted [cf. Fig. 2(d)]. Thus the incoherent transport
regime for T = 0.2 is governed by a very robust, almost
temperature independent HQP band.

This evolution of the QP band with increasing tem-
perature is also reflected in A(w), Re ¥(w), and Im ¥ (w)
[cf. Figs. 2(i-k)]. In the FL temperature regime a sharp
SU(2) Kondo peak in A(w), a pronounced maximum in
Re ¥ (w), and a shoulder and dip in Im ¥(w) are clearly
visible (cf. blue curves). With increasing temperature
there is a gradual crossover to NFL behavior. The height
of the SU(2) Kondo resonance in A(w) decreases and
the two-tier structure of the QP peak disperses by re-
distributing spectral weight from the SU(2) Kondo peak
to the SU(3) Kondo resonance shoulder. However, the
width of the broad SU(3) Kondo resonance is essentially
unaffected by this redistribution. In fact, the robustness
of the HQP band is reflected in the stable form of the QP
peak flank of A(w), especially at negative frequencies [cf.
Fig. 2(i)]. Interestingly, this flank is stabilized by the
lower Hubbard band, which lies around wy, = —0.5, i.e.
the SU(3) Kondo resonance and atomic excitations merge
in H1, resulting in a robust ARPES spectrum with mixed
valence character at very high temperatures [7].

Next we consider the self-energy. Reflecting the tem-



perature dependence of A(w), also the maximum in
ReXY(w) and the dip and the shoulder in Im ¥ (w) get
first gradually smeared out with increasing temperature
for T < 0.2. Notably, the minimum of —Im ¥(w,T) is
shifted to positive frequencies within this process. This
hints towards long-lived electron-like excitations govern-
ing the incoherent transport of this crossover regime. The
minimum in —Im ¥(w,T) disappears at higher tempera-
tures and —Im X (w, T') becomes a monotonically increas-
ing function of frequency close to the Fermi level. This
might again be caused by mixed valence physics, which
becomes important at an energy scale of around 0.5.

Interestingly, very similar behavior of the minimum
of —Im ¥(w,T) is observed for the hole-doped one-band
Hubbard model of Ref. [44]. There, a well-defined QP
peak persists with increasing temperature above the co-
herence scale until it merges with the lower Hubbard
band at high temperatures.

Note that the temperature dependence of Re 3 (w) di-
rectly determines the temperature dependence of the dis-
persion relation E(eg) in A(ex,w) [cf. Fig. 2(d)]. Again,
the evolution of the QP band with temperature strongly
hints towards the existence of different types of QPs. At
very low T in the FL regime, the band is described by
a low-frequency FL-like QP band with a rather flat dis-
persion. Correspondingly, A(w) exhibits a sharp SU(2)
Kondo resonance. Then, with increasing temperature,
a crossover takes place: the low-frequency FL-like QP
band dissolves gradually, until, at higher temperatures,
we find a new QP regime, the HQP regime. There, a
much steeper (slightly particle-hole asymmetric) HQP
band exists and the two-tier QP peak in A(w) is reduced
to a single broad resilient SU(3) Kondo resonance.

B. Mott system M1

We now turn to the Mott system M1. Fig. 4 displays its
spectral properties using the same layout as Fig. 2 for H1.
At T = 0 we again find a particle-hole asymmetric FL fre-
quency regime and SOS features [cf. Figs. 4(a,c)]. How-
ever, these occur at much lower frequencies than in H1
(for instance, M1 has w;, = —0.15), as expected from the
insights given in Sec. III. The slope of the FL dispersion,
Z = 0.10, is clearly smaller for M1 than for H1, indicat-
ing much heavier electron masses. With increasing tem-
perature, the SOS features vanish very quickly (already
below T' = 0.08 for M1) [cf. Figs. 4(b,d)]. The emergent
HQP band [cf. Fig. 4(f)] is very unstable with increasing
temperature and already starts to disappear at around
T = 0.15 [cf. Figs. 4(d,g)]. Above T' 2 0.2 a pseudogap
has fully replaced the QP peak [cf. Figs. 4(h)]. Simi-
larly, the whole QP peak in A(w) becomes strongly sup-
pressed, eventually turning into a pseudogap at high tem-
peratures [red curve in Fig. 4(i)]. Consequently, Re X (w)
and Im ¥ (w) are strongly temperature dependent, as well.
While for T < 0.08 the minimum of —Im¥(w,T) is
shifted to positive frequencies, it is gradually shifted back

towards negative frequencies with increasing temperature
and finally turns over to a maximum in the presence of
a pseudogap [cf. Fig. 4(k)].

C. Intermediate system I2

Figs. 5 shows spectral data for the intermediate sys-
tem I12. At T = 0, the ARPES spectrum for 12 [cf.
Figs. 5(a,c)] shows SOS features similar to those of HI,
but occurring at smaller scales. Since J = 2 and the bare
gap, Ay, = 3.5 are both large, Typin is pushed down [22]
even compared to M1: Ty, = 0.021 and thus Z = 0.055
(cf. thick dashed red line) but also |w — and |wZ| take
approximately half the values of the respective scales
of M1, while T, = 0.42 for 12 is slightly larger than
Tor, = 0.3878 for M1. In sum, the zero-temperature
band dispersion of 12 is similar in its shape to H1 and
M1.

However, qualitative differences emerge in the temper-
ature evolution of the QP band and its dispersion F com-
pared to H1 and M1, respectively — again due to the spe-
cific relation [Tspin, Torb]/ A for 12. With increasing tem-
perature, first the band’s step-shaped structure gradually
dissolves, while its steep linear behavior in the HQP fre-
quency regime remains unchanged [cf. bright blue curve
for T'= 0.02 in Figs. 5(b,d) and Fig. 5(¢)]. In contrast
to M1, this HQP band is stable up to rather high tem-
peratures, T = 0.25, for 12 (similar to H1). Nevertheless,
above T = 0.25, we additionally find a crossover to a
pseudogap similar to M1 [cf. red curves in Figs. 5(b,d)
and Figs. 5(h,i)]. 12 is thus characterized by both a Hund
feature (HQP band) at intermediate temperatures and
a Mott feature (pseudogap) at very high temperatures.
This evolution of the QP band with temperature is again
reflected in A(w), Re ¥(w), and Im ¥ (w) [cf. Figs. 5(i-k)].

D. Weakly correlated system WO

For J = 0 the SOS features are fully absent in A(e,w),
A(w), Re¥(w), and Im X(w) (cf. Fig. 6). The FL behav-
ior holds for a rather large temperature regime (almost
up to T = 0.25) and is characterized by a very stable
large dispersion with Z = 0.6672 and thus a rather small
mass enhancement. Resilient HQPs do not exist.

E. Summary of spectral properties

To summarize, both H1 and M1 (and also 12) show
SOS features in the dispersion extracted from A(eg,w) at
T = 0: (i) a rather flat low-frequency Landau QP band
of slope Z; (ii) a NFL crossover behavior (in form of a
step-shaped band at w < 0 and a kink at w > 0); and (iii)
a HQP band which is extended in frequency space. The
latter consists of positive and negative frequency parts,
both of which exhibit linear dispersion relations with
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FIG. 4. Same quantities as in Fig. 2 for a Mott system (M1) with parameters Ay = 4.5 and J = 1.

large slopes, with the negative-frequency slope slightly
larger than the positive-frequency slope. However, these
SOS features occur at very different energy scales for the
three systems [22]: while in H1 they are extended over a
broad frequency range up to atomic energy scales, they
are compressed and lie at smaller frequency scales in M1.

Consequently, in H1, these features govern transport for
all temperatures. In particular, very robust HQPs exist
up to the highest (< t) temperatures. By contrast, in
M1, SOS physics only survives at very low temperatures,
whereas the behavior of A(ex,w) at higher temperatures
is dominated by typical Mott physics, i.e. the DMFT self-
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FIG. 5. Same quantities as in Fig. 2 for an intermediate system, 12, with paramters A, = 3.5 and J = 2.

consistency opens a (pseudo)gap and quickly destroys the
HQPs. For 12, the SOS features are also found at rather
low scales (due to the large Ap) at T' = 0, but the SOS
regime is more extended than for M1 (due to the large
J). Temperature dependent ARPES spectra thus show
both Hund and Mott features. If J = 0, SOS features

are absent and WO is governed by FL behavior in a broad
temperature range.
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FIG. 6. A weakly coupled system, W0, with parameters Ay, = 3.5 and J = 0. (a,c-f) The structure factor, A(ex,w). (b) The
dispersion relation, F(ex), (g) the spectral function, A(w), (h,i) the real and imaginary parts of the self-energy, Re ¥(w) and
Im ¥(w), respectively, all plotted for various temperatures. (h) Note that the difference in Re X (w = 0) between T" = 0 and
T > 0 arises from a 4% deviation of nq(T = 0) from ng = 2. FL and crossover scales are not shown. Note that the latter do

not exist for J = 0.

V. STATIC LOCAL ORBITAL AND SPIN
SUSCEPTIBILITY, QUASIPARTICLE WEIGHT.

Based on the above detailed analyzis of the ARPES
spectra, we now revisit the static local susceptibilities
for the orbital and spin degrees of freedom, to refine the
findings which we had reported in Ref. [7]. There we
introduced four temperature scales, characterizing the
onset and the completion of screening of the spin and
the orbital degrees of freedom. The concept of onset
and completion scales for screening was inspired by Wil-
son’s classic analysis of the static spin susceptibility of the

spin-1/2 one-channel Kondo model, reviewed in App. B.
We correspondingly derived these scales from the behav-
ior of the static local spin and orbital susceptibilities,
and also of the local spectral function. Our main re-
sult was that Hund and Mott systems show contrasting
behavior at intermediate to high energies. In Hund sys-
tems, we found a clear separation in the energy scales at
which the screening for orbital and spin fluctuations sets
in, respectively: Topset > Touset, with TPt very large
(2 Eatomic). By contrast, in Mott systems the strong
Coulomb repulsion localizes the charge at high temper-
ature. With decreasing temperature the onset of charge



12

T onset  -onset
St Tspin Torb
10°

FIG. 7. The static local orbital (dashed) and spin (solid) susceptibilities, (a,b,e,f) Tx°*™**P™ and (c,d,g,h) Xg‘b’spi", all plotted
as functions of temperature on a linear (left) and a logarithmic (right) scale, for M1 (black), H1 (yellow), 12 (red), and WO
(blue). In addition, the quasiparticle weight (dotted), Z(T'), is shown in (a,b,e,f). The squares mark the onset of orbital
screening, Toh°") below which T'x§™ deviates from a constant value, i.e. from Curie-like behavior. Note that Z(T') diverges
for T > TS%°t, The triangles mark the maxima of 5™ and also signal the onset of spin screening, T, below which Txgpin

deviates from Curie-like behavior. The crosses denote the FL scale, Tr1,, below which FL behavior is found. In M1, we observe

that Tomet ~ Tow®® = Ty In HI, we find Top®® > Tons*, as discussed in Ref. [7]. The data for the static susceptibilities
shown in panels (a-d) are adapted from Ref. [7]. A Curie-Weiss analysis of the data of panel (c) is presented in App. B.

localization triggers the simultaneous onset of the screen-
ing of the spin and orbital degrees of freedom, accom-
panied by the formation of the coherence resonance at
T = Topt = ToR®® < Fatomic- At low temperatures,
we suspected spin-orbital separation in the completion
of screening, T 3" > TP, both for Hund and Mott
systems, but considered this to be more pronounced for

Hund systems.

In this section we now reanalyze the static local sus-
ceptibilities of H1 and M1 of Ref. [7]. While we only
slightly refine the onset scales of screening quantitatively
to provide a clearer connection to corresponding ARPES

data and the quasiparticle weight, we suggest a revised
perspective on the completion scales. In sum, we estab-
lish a consistent physical picture of screening from the
atomic degrees of freedom at high energies to the quasi-
particles at low energies. We corroborate our findings by
studying the static local susceptibilities of 12 and WO.

The dynamical real-frequency spin and orbital suscep-



tibilities are defined as
P W) = 1) (S8, (5a)

P w) = 13T, (5b)

respectively [39, 47], where 7% =" czjmérglm/cim/g
are the impurity orbital operators with the SU(3) Gell-
Mann matrices, 7%, normalized as Tr[7%7%] = 254,. Be-
low the subscript 0 will be used to denote the static limit,
Xo = x(w = 0), i.e., the static local susceptibilities.

We plot TxJ™ "™ in Figs. 7(a,b,e,f) and xg™*™ in
Figs. 7(c,d,g,h) as functions of T, for H1 (yellow), M1
(black), 12 (red), and WO (blue). As a function of de-
creasing temperatures, these susceptibilities traverse four
regimes: first Curie-like behavior, where Ty is indepen-
dent of temperature; onset of screening, where Txg be-
gins to decrease; completion of screening, where xo be-
gins to saturate; and Pauli behavior, where yg is con-
stant. We will discuss these regimes in detail below.

We also plot the quasiparticle weight, Z(T'), as dotted
lines in Figs. 7(a,b,e,f) [and additionally in Figs. 9(a,b)].
In principle, the interpretation of Z(T) as quasiparticle
weight holds only in the FL regime. Nevertheless, for
temperatures in the NFL regime, it is still computation-
ally well-defined and we use it to interpret the physics on
a heuristic level.

A. Hund system H1

We begin with a discussion of the results for H1 in
Figs. 7(a-d). Tx§™® decreases with decreasing temper-
ature for all temperatures plotted [cf. dashed yellow
curves in Figs. 7(a,b)], i.e. the onset for orbital screen-
ing, T2%°* > 1, is on the order of bare excitations scales.
The onset of spin screening, T;)p‘}fft ~ 0.25, is signaled
by the deviation from Curie-like (constant) behavior of
Txf)pin with decreasing temperature, marked by the yel-
low triangle [cf. solid yellow curves in Figs. 7(a,b)]. Thus,
for H1, we find 7255t > Touset a5 shown in Ref. [7].

spin
Note, however, that here we have chosen T ~ 0.25
slightly smaller than in Ref. [7] (where we had chosen
Toweet = 0.4). This choice is motivated by the ARPES
data in Fig. 2. There the onset of spin screening is
reflected in the formation of a flat low-frequency band
in addition to the steep HQP band, resulting in a pro-
nounced step-like feature in the dispersion at T'= 0. In
Fig. 2(d) the onset of the step formation is visible for
T < 0.2. Furthermore, we motivate our choice in terms
of the behavior of x§™. With Tu" ~ 0.25, the on-
set scale of spin screening is equal to the temperature
scale for the completion of orbital screening: Xgrb shows
Pauli (constant) behavior for T < Toe* ~ TP [cf.
dashed yellow curve in Figs. 7(c,d)]. When the tempera-
ture is further lowered, x™", too, reaches Pauli behavior
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FIG. 8. (a) Schematic sketch of different temperature regimes
in a Hund metal. For T" > Tg1,, H1 is a NFL up to temper-
atures in the order of bare energy scales, where also mixed-
valence physics becomes important. The NFL regime, which
we dub Hund metal regime,reflects the complex SOS screening
process of Fig. 3. First orbitals get screened with decreasing
temperature for Ton? < T < T, In this regime transport
is governed by HQPs which are characterized by gradually
screened orbitals coupled to quasi-free spins. Only when the
orbital screening process is completed spins get screened be-
low To3® ~ T5hP, i.e., in this regime, the HQPs get gradually
dressed to form heavier Landau QPs. For T' < Tyr, = Tscg?rf’,
H1 is a FL and both orbital and spin degrees of freedom are
fully screened. (b) Schematic sketch of different temperature
regimes in a multi-orbital Mott-correlated metal. In a MS,
a pseudogap governs the physics in an extended temperature
regime, T > Towet ~ Tow* = T. For temperatures below
T, both orbital and spin degrees of freedom get screened
simultaneously with the onset of a Kondo resonance, which
is driven by the DMFT-self-consistency condition. The NFL
regime for Trr, < T < T is followed by a low-temperature
FL regime, T' < Trr < T,5Y ~ Ty1P, where both orbital and
spin degrees of freedom are fully screened.

at Tr, = Top (yvellow cross). Then spin screening is

completed and the system is a FL.

Fig. 8(a) summarizes these observations in a schematic
sketch. In a Hund system, the SOS screening process of
Fig. 3 is directly reflected in the temperature dependence
of the static local susceptibilities. For Towet < T <
Tonset HQPs, i.e. gradually screened (quasi-itinerant) or-
bitals coupled to quasi-free spins, dominate the physics
and lead to a robust HQP band in ARPES spectra and
a Curie-like spin susceptibility. At very high tempera-
tures mixed-valence physics additionally comes into play
[7], because the lower (and a part of the upper) Hub-
bard band merge at w, = —0.5 (and we; = +0.5) into
the QP peak in H1 [cf. Fig. 2(i)]. Due to the special
SOS screening process, the spins screening only sets in
once orbital screening has been completed 75", thus
Towet = TypP. As the temperature is lowered into the
regime Try, < T < T2%° also the spins get gradually
screened, eventually resulting in the full screening of both



spin and orbital degrees of freedom and thus in a FL be-
low Try,. The spin screening is signaled by the formation
of a step-like feature in ARPES spectra and by a Pauli-
like orbital susceptibility.

This screening route is also reflected in Z(T) [cf. dotted
yellow curve in Figs. 7(a,b)]. For Towset < T < Tope,
the existence of resilient HQPs leads to a plateau-like
feature in Z(T). As the temperature decreases into
the regime Trp, < T < Tf;}fft, Z(T) decreases and ap-
proaches a second plateau in the FL regime T < Tgy,.
The reduction of Z(T') shows that the HQPs are addi-
tionally “dressed” through spin screening, resulting in

heavier Landau QPs.

B. Mott system M1

The Mott system M1 behaves very differently. As
shown in Ref. [7], Ty = TR = Tt [cf. black trian-
gle and square in Figs. 7(a,b)]. For T' > Ty ~ 0.15, both
Tx5™ and Txg™™" exhibit a Curie plateau and the spectral
function is characterized by a pseudogap. Both spin and
orbital degrees of freedom get screened simultaneously
with the onset of a Kondo resonance [cf. Figs. 4(g,i)],
which is driven by the DMFT self-consistency condition,
in contrast to the Kondo screening in H1. Interestingly,
Tsopr;flet now corresponds to the position of a maximum
in g [cf. black triangle and black dashed curve in
Figs. 7(c,d)]: the orbital dynamics is strongly influenced
by the spin screening and true Pauli behavior is only
reached for T' < Tpy, in M1, thus Ty, = T;;?f ~ TP for
Mott systems.

The behavor described above is summarized in
Fig. 8(b). In M1, Mott physics dominates and with
increasing temperature essentially destroys SOS physics
by opening a pseudogap already at low temperatures.
Again, Z(T) reflects these findings [cf. dotted black curve
in Figs. 7(a,b)]. Similar to H1, Z(T) is small and con-
stant for T' < Tgy,. But instead of a second HQP plateau
as in H1, Z(T) has a maximum directly below Ty and
diverges for T > Ty;.

C. Intermediate system 12

To corroborate our picture above, we similarly study
12 and WO in Figs. 7(e-h). 12 is rather close to the
Mott boundary [cf. diamond in Fig. 1(a)]. Thus, we ob-
serve Mott signatures at high temperatures: for T' >
Tv = TO%t ~ 0.25, Tx5™ shows Curie behavior [cf.
red square in Figs. 7(e,f)] and a pseudogap exists [cf.
Figs. 5(g,i)]. However, due to the large J = 2, we find
Hund signatures, as well, at intermediate and low tem-
peratures: orbital and spin screening are slightly sepa-
rated, 7095t > Tonset and Z(T) features a plateau for

orb spin

Tonset < Tonset (hetween red triangle and square).

spin orb

Tt marks a maximum in XS [ef. Figs. 7(g,h)], which
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is however less pronounced than for M1. Full screening
with Pauli behavior of both x> and x¢™" is reached at
T < Trr. Due to the large Hund’s coupling, Trr, (and
accordingly Z(T = 0) [22]) is lowest in 12 compared to
H1, M1 and WO0. In sum, I2 exhibits an intermediate
system, showing a mixture of Hund and Mott features.

D. Weakly correlated system WO

Finally, we consider the weakly correlated system WO,
a system without Hund’s coupling, J = 0 (cf. also Fig. 6).
In Figs. 7(e-h), xg™ and x;™" behave similarly for WO,
up to a constant prefactor: xP"/xg® = 1.5. The FL
regime extends up to very high temperatures [Z(T) is
essentially constant in an extended regime in Figs. 7(e,f)].
Both Hund and Mott features are absent in WOQ.

VI. TRANSPORT PROPERTIES AND
ENTROPY

In this section we add further perspective to the differ-
ences and similarities of the four systems H1, M1, 12 and
WO by discussing the temperature dependence of various
transport properties and the entropy. For completeness,
Appendix D collects some elementary definitions and re-
lations involving the quantities discussed below.

A. Scattering rate at the Fermi level

Fig. 9 shows the temperature dependence of the quasi-
particle weight, the scattering rate, the coherence scale
and the resistivity. We now discuss them in turn.

The scattering rate, —ImYX(w = 0), is plotted as a
function of temperature in Figs. 9(c,d). For T" < Tpr,
—Im ¥(w = 0) follows FL behavior [cf. dashed grey guide-
to-the-eye line in Fig. 9(d)]. In HI, for T > Tpr, the
scattering rate is small and shows a crossover to a rather
flat behavior in the HQP regime. By contrast, in M1,
the scattering rate increases strongly [cf. Fig. 9(e)], sat-
urating at high temperatures due to the presence of a
pseudogap. 12 shows a mixture of both the Hund and
the Mott behavior. —Im¥(w = 0) first flattens some-
what for Ter, < T < TOU", but then increases strongly
for T > Tb?pl}?t, saturating as well at very high temper-
atures. Notably, —Im ¥(w = 0) is larger for 12 than for
M1 for T' < 0.1; this is caused by the larger J = 2 in I2.
The scattering rate in WO is small and FL-like. It keeps
growing slowly with increasing temperature.



15

onset onset_:
+TF|— 4Tspin I:ITorb _TM
7 T T T T
. @ — A,=45J=t:M1 | 10" [(b)
Ab=1, J=1: H1
. 5F —_ Ab=3.5, J=2:12
o _ —N-
ﬁ 41 —_ Ab—3.5, J=0: WO |
N 3l
2 L
)
1l
3
2
E
&
—=
o
1
3
W
E
E
N
1
E
~
10 +
o
=
-
QU

0.4 0.6
T

0 0.2

0.8 1

1072 10°

FIG. 9. (a,b) The quasiparticle weight, Z/Z(0) (replotted from Fig. 7 for reference), (c,d) the scattering rate at the Fermi level,
Im ¥ (w = 0), (e,f) the coherence scale, I'* /T, and (g,h) the resistivity, p, all plotted as functions of temperature on a linear
(left) and a logarithmic (right) scale for M1 (black), H1 (yellow), 12 (red) and WO (blue). Symbols are defined as in Fig. 7.
(d,h) The dashed grey guide-to-the-eye lines indicate FL behavior. (e,f) The horizontal dashed grey lines mark I'* /T = 1.
(g,h) The horizontal solid grey line marks the MRI limit defined via kplmin ~ 27.

B. Coherence scale

In Figs. 9(e,f) we plot I'* /T, with the inverse QP life-
time, defined as

r'T)=-ZT)ImX(w=0,T). (6)
In a FL, i.e. for T < Trr, one expects I'*(T) o< T2. The
coherence scale, T*, is defined as I'*/T* = 1 (cf. inter-
cepts with horizontal dashed grey line). Above T* coher-
ent Landau QPs become short-lived and the FL picture
breaks down.

H1 is characterized by a very broad maximum of I'* /T
in the NFL regime around Ty, This behavior is remi-
niscent of DET+DMFT results for SroRuOy4, where I'* /T
keeps increasing in a FL-to-NFL crossover regime above

T* ~ 100K and finally reaches a plateau above 350K [12].
By contrast, M1 shows only a narrow plateau in I'*/T
around ToHe" before it diverges [due to the divergence of
Z(T)]. Again, 12 features a mixture of both the Hund
and the Mott behavior. I'*/T first exhibits a maximum
at Tonse*, but then diverges above T9¥. Tn WO, I'™*/T
is very small and grows linearly with increasing temper-

ature, implying I'* oc T°2.

C. Resistivity

The resistivity, p(T), is shown in Figs. 9(g,h). In the
FL regime, we find 72 behavior (though this is hard to re-
solve very accurately). Equivalently to the findings for a



hole-doped Mott insulator [44], we observe for H1 and 12
that in the regime Ty, < T < To®, p(T') first increases
approximately linearly with a negative intercept, then it
shows a slope-decreasing knee-like feature, above which a
linear increase with positive intercept sets in. The inset
of Fig. 9(i) highlights this for 12 using grey dashed lines
which approximate the behavior of the red curve. For
Hl(yellow curve), p(T) keeps increasing linearly up to
the highest temperature plotted, and thus behaves quali-
tatively in the same way as the hole-doped Mott insulator
of Ref. [44]. This is an intriguing similarity, considering
that both systems are assumed to be governed by resilient
QPs in their NFL regime. Moreover, our findings for H1
are reminiscent of the DFT4+DMFT simulations [9] and
measurements [34] of the resistivity in iron pnictides. In
contrast to H1, for 12 a second (slope-increasing) knee
occurs at Towse®, beyond which p(T') grows rapidly with
increasing temperature until it saturates above T4t in
the presence of a stable pseudogap. For M1 (black curve),
we do not observe a slope-decreasing knee, but instead a
slope-increasing knee at T ~ 0.08, above which p(T) in-
creases rapidly with growing temperature [cf. Fig. 9(h)].
WO is again characterized by a large FL regime, reaching
up to very high temperatures. p(7') is much smaller for
the J = 0 than for finite J systems. We remark that
for all systems p(T') crosses the Mott-Ioffe-Regel (MIR)
limit, pyir [cf. horizontal solid grey line in Figs. 9(g,h)
and Sec. D1 for a definition of pyr] and continues to
grow above this limit. As expected, M1 crosses the MIR,
limit at a smaller temperature scale than H1. Notably,
12 crosses the MIR limit at an even lower scale although
Coulomb interactions are larger in M1 than in I12. This
strong correlation effect is due to Hundness, i.e. large J.

To conclude this subsection, we remark that an analy-
sis of the temperature dependence of the optical conduc-
tivity, o(w), for 12 is presented in App. C.

D. Effective chemical potential of quasiparticles

We now turn to Fig. 10. We first study the evolu-
tion of the effective chemical potential for QPs, peg =
@ — ReX(w = 0), in Figs. 10(a,b). For T < TrL, pof
is constant, i.e. Luttinger pinning holds (cf. Sec. 3.10.2
of Ref. [41] for details). Interestingly, for the finite-J
systems peg increases towards 0 with increasing tem-
perature, Try, < T < Tfpr;flet, i.e. towards an effective
half-filling of the system. In HI, this trend is retained
above Tonse until jie approaches a plateau in the mixed-
valence regime. This behavior fits to the SOS screening
picture (cf. Fig. 3 and Fig. 8) where, above TFy,, spins are
gradually unscreened to form an effective 3/2 spin (which
implies effective half filling), while the orbitals are still
in an orbital singlet for T < Towet. For T' > Towet,
the orbitals start to get unscreened while large quasi-free
spins persist. In M1, peg drastically reduces for T" > Ty,
reflecting the formation of a pseudogap. In 12, peg first

increases markedly almost up to 0 and then decreases for
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T > Tg;{fet, similarly to M1. By contrast, for J =0, W0
directly decreases above Tgy,. The substantial continuous
increase of peq(T) with increasing temperature towards
half-filling, i.e. an inflating Fermi volume, is clearly con-
nected to the existence of a finite J in the 3HHM, while
the decrease of pes(T) with increasing temperature is a

Mott feature.

E. Thermopower

In Figs. 10(c,d) we show the thermopower (Seebeck
coefficient), «(T) [as defined in Eq. (D5)], and compare
the 3HHM results to the thermopower of SroRuQO4 re-
ported in Ref. [28]. In the FL regime, the thermopower
of the 3BHHM at ngy = 2 shows an electron-like decrease,
i.e. a(T) < 0. This is qualitatively consistent (modulo a
particle-hole transformation) with the hole-like increase,
a(T) > 0, observed for SroRuQOy4, which in a SHHM-type
description would correspond to ngy = 4. However, our
data is not accurate and dense enough to unveil FL be-
havior, a(T') o< T. Similar to the (broad) maximum in
a(T) of SraRuOy4 around 300K — 500K, we observe a min-
imum in the crossover regime Try, < T < ToHet. In HI,
we further find a saturation (broad maximum) well above
Toweet. In 12 and M1, a maximum occurs above Top>*,
as well. Overall, the behavior of a(T) is similar for all
systems with finite J. However, the minimum is much
more extended and lies at higher energies in H1 com-
pared to M1 [cf. Fig. 10(c)]. In contrast, WO with J =0
does not exhibit any minimum (or maximum) in a(T).
Here, the thermopower decreases in a FL-like fashion in
an extended temperature range.

In sum, we conclude that H1 reflects the findings of
Ref. [28]. Using ¢ ~ 5000K (a value which is esti-
mated from a comparison of the model bandwidth with
the realistic bandwidth of SroRuOy4 [7]), the minimum
of o(T) of H1 is indeed in the same temperature range
(300K — 500K) as the maximum observed for SroRuQOy.
Our results support the suggestion made in Ref. [2§]
that this unusual feature in a(7T') can be associated with
quenched orbitals and fluctuating spins as present in the
two-stage SOS screening process. To be more precise,
the minimum of «(T") in the 3HHM corresponds to the
crossover regime, where the spins get gradually screened
to form coherent Landau QPs. Thus, this minimum in
a(T) is observed together with the formation of the step-
like ARPES feature [cf. Fig. 2(d)].

F. Entropy

We conclude our study of Hund and Mott features in
the 3HHM by calculating the lattice entropy for H1, M1,
12 and WO. For 12, we additionally calculate the impurity
contribution to the entropy [cf. Fig. 10(e,f)]. We start our
discussion with 12. For the computation of the lattice en-
tropy, Siast(T'), we use Eq. (D8). The impurity contribu-
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FIG. 10. (a,b) The effective chemical potential pes, (c,d) the thermopower «, and (e,f) the lattice entropy Siatt (solid) and the
impurity contribution to the entropy Simp (dashed), all plotted as functions of temperature on a linear (left) and logarithmic
(right) scale for M1 (black), H1 (yellow), 12 (red) and WO (blue). Symbols are defined as in Fig. 7. In (f), the grey dash-dotted
curves indicate FL behavior for Simp and Siatt, respectively. We remark that wiggles in Siats are an artefact due to few data

points used in its computation.

tion to the entropy, Simp(T), is obtained with Eq. (D7).
Remarkably, we find that Sia (T) is larger than Simp (1)
in the whole temperature range 0 < 7' < 1, while both
entropies behave qualitatively in the same way. The dif-
ference between Siapt(T7) and Simp(T) already arises in
the FL regime, where the entropy is given as

S(T)=~T (7a)
2N, 72
talarya (7b)

When computing the lattice or impurity entropies, Syt
or Simp, the parameter Z should be equated to the mass
renormalizations, Zjatt Or Zimp, derived from the lat-
tice of impurity Green’s functions, respectively. The for-
mer is given by Za = [1 — d,ReZ(w)|,_oJ~". The
latter, found by a first-order expansion of Gimp(w) =
W —eq — A(w) — XZ(w)]™!, where A(w) is the self-
consistent hybridization function, is given by Zin, =
(Z 4 — 0uRe A(w)],_o) " (cf. Sec. 3.9 in Ref. [41] for de-
tails). Obviously, DMFT generically yields Ziaty < Zimp
in the FL regime (when using a Bethe lattice). This
implies that Siaet > Simp, as found numerically above.

Although this insight can be simply derived, we are
not aware of any previous results that explicitly demon-
strated this quantitative difference of the impurity and
the lattice entropy. Its implication is that Sjmp can not
be regarded as a quantitatively reliable proxy for Sjatt.

Nevertheless both entropies for 12 reveal the two-stage
SOS screening process. For T > To4set 12 is charac-
terized by a pseudogap and both the spin and orbital
degrees of freedom are unscreened, resulting in Si.¢p >
In(9). (St slightly exceeds In(9) because of remain-
ing active charge fluctuations in the pseudogap regime.)
Simp crosses In(9) at slightly higher temperatures. For
T < T2%° Siate(T) and Simp(T) decrease continuously
with decreasing temperature, reflecting the screening of
orbital degrees of freedom, while spin degrees of freedom
are still quasi-free. We observe that Sjat (7)) crosses In(3)
below Toise*, while Siyp(T') crosses In(3) at about Tayis*.
The value In(3) is associated with a spin triplet and an
orbital singlet. For T' < Ty, we find FL behavior for
both Siatt and Simp, indicated by the dash-dotted grey
fits, respectively [cf. Fig. 2(f)].

Overall, we clearly observe that the two-stage SOS



screening process is a continuous process: the entropy
continuously decreases with decreasing temperature, i.e.
no stable NFL fixed point is reached in the system
(this was already pointed out in the Supplementary of
Ref. [20]). Instead, we are faced with an intriguingly
complex crossover behavior.

The two-stage SOS screening process is also manifest
in Sp.¢ for H1 and M1. While the qualitative behavior
is similar, quantitative details differ. In the FL-regime,
Slatt is smaller for H1 than for M1, since Sjatt < T/ Zass
(and H1, having smaller U, has less mass enhancement,
i.e. larger Zjat). Above Tgr, Siat increases strongly for
H1, leading to a very large entropy (> In(9)) above
Ts"prifft. We interprete this as a consequence of large
charge fluctuations due to small Coulomb interactions.
By contrast, Siat for M1 approaches In(9) above Ty and
only slightly exceeds In(9) for very high temperatures.

Very recently, a detailed study of the temperature de-
pendence of the entropy and specific heat of a three-band
Hubbard model has been performed [48]. This study is
much more comprehensive than ours. Their results are
not directly comparable to ours, though, since their in-
teraction term contained only density-density terms but
no spin-flip terms.

VII. CONCLUSION

In this work we have used DMFT+NRG to investigate
the normal state properties of the degenerate three-band
Hubbard-Hund model (3HHM) with focus on 1/3 fill-
ing, a minimal model with relevance for Hund metals.
Our study has been based on the following key question:
What are the decisive fingerprints of a Hund metal as op-
posed to a Mott-correlated metal? We conclude by giving
a summary-style overview of the fingerprints found in the
present paper.

At T = 0, finite J induces an intertwined two-stage
SOS Kondo-type screening process in the 3HHM at ng =
2, in which orbital and spin degrees of freedom are ex-
plicitly coupled: below Ty, the orbital degrees of free-
dom form an orbital singlet through the formation of
a large effective Hund’s-coupling-induced impurity spin
of 3/2 — including a bath spin degree of freedom; and
below Tipin, the spin-3/2 is fully screened by the three
bath channels of the 3HHM. In the frequency domain this
screening process results in three characteristic regimes:
a FL regime, a NFL crossover regime and a NFL. HQP
regime. At zero temperature, clear signatures of SOS
include: (i) a low-frequency FL regime with a narrow
“needle”-formed SU(2) Kondo peak in the local density
of states, a low-frequency Landau QP band with a small
slope given by Z in ARPES spectra, FL scaling of the
self-energy, a Drude peak in the optical conductivity (cf.
App. C); (ii) a NFL crossover regime signaling the devia-
tion from FL behavior characterized by a step-like feature
in the dispersion at w < 0 and a kink at w > 0 [accord-
ingly, Re¥(w < 0) exhibits a pronounced maximum)];
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and (iii) an intermediate-frequency NFL “Hund quasi-
particle” (HQP) regime with a SU(3) Kondo resonance
in the local density of states, also identifiable as excess
spectral weight in the optical conductivity (cf. Sec. C)
and as a resilient slightly particle-hole asymmetric steep
“HQP band” in ARPES spectra (waterfall structure),
which is extended over a large frequency range, where
the scattering rate is only weakly energy dependent [e.g.
there is a shoulder in Im¥(w < 0)]. We remark that
the particle-hole asymmetry of the 3HHM leads to two
distinct FL scales in the frequency domain and to very
different features in the SOS window at negative and pos-
itive frequencies (e.g in ARPES spectra). These SOS
features (cf. Fig. 11 for an overview) are generic and are
found for both the metallic H1 and the metallic M1, since
SOS physics is essentially impurity physics [20]. However,
there is an important difference.

A Hund metal, such as H1, lies far from any MIT phase
boundary. Strong correlations are primarily induced by
the two stage SOS Kondo-type screening, which leads to
the localization of spins rather than charges. The inco-
herent SOS window is extended over a broad range of
energies, reaching up to bare excitation scales. In the
3HHM, at high frequencies, the SU(3) Kondo resonance
(shoulder) merges with the Hubbard bands. At very low
temperatures, the local density of states exhibits a two-
tier quasiparticle peak on top of a broad incoherent back-
ground.

By contrast, Mott-correlated metals with ~ 1/3 fill-
ing such as V203 [7], represented in our study by MI,
are close to the MIT phase boundary. Thus, at zero
temperature, both To,p, (and Typin) are strongly reduced
compared to bare excitation scales and the SOS window
is very small, i.e. a narrow QP peak exists between well-
separated pronounced Hubbard bands.

In Hund metals, the SOS screening process also gov-
erns the temperature dependence of Hund metals, up to
highest temperatures. Most importantly, we argue that
the nature of the incoherent transport regime is governed
by resilient HQPs, while the FL regime is described in
terms of Landau QPs. In Ref. [7], we have identified two
different temperature scales for the onset of orbital and
spin screening in Hund metals, T3¢t and T3¢, respec-

orb spin

tively. For Towet < T < Tope', HQPs dominate the
high temperature physics and lead to a Curie-like static
spin susceptibility (while the static orbital susceptibility
is a decreasing function of temperature) and a resilient
QP peak (without substructure) in the local density of
states. In the 3HHM, we find a robust HQP band in
ARPES spectra, an additional HQP plateau in Z(T'), a
rather flat (electron-like) scattering rate, a linear resis-
tivity exceeding the MIR limit, and an inflated Fermi
volume (pefr increases with increasing temperature). At
very high temperatures, mixed-valence physics addition-
ally comes into play. Due to the special SOS screening
process, the spins can only get screened as soon as the or-
bitals are fully screened at T_;,°, thus Tows®* ~ T 1P, For

Tr, < T < Tfpr;iet also the spins are gradually screened,
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eventually resulting in the full screening of both degrees
of freedom and thus in a FL below Tyr, = T;;?If . The spin
screening is signalled by the formation of a step-like fea-
ture in ARPES spectra, while the completion of orbital
screening is characterized by a Pauli-like orbital suscep-
tibility. In this regime, the thermopower has a minimum.
A corresponding feature in the thermopower is observed
in experiments for ruthenates. [28].

By contrast, in Mott-correlated metals, with increas-
ing temperature, SOS features (and HQPs) only sur-
vive at very low temperatures, whereas the behavior at
higher temperatures is fully governed by classical Mott
physics (as known from the one-band Hubbard model):
the DMFT self-consistency condition opens up a pseu-
dogap in the local spectrum by localizing the charges.
Conversely, with decreasing temperature, spin and or-
bital degrees of freedom get screened simultaneously at
the temperature scale, Tyy = TO55" ~ Tom¢t with the
onset of a Kondo resonance, driven by DMFT. Only be-
low Trr, = T, ~ T55,° both the spin and the orbital
degrees of freedom get fully screened.

All important temperature-dependent signatures for
H1 and M1 are summarized in Fig. 12.

In sum, we shed light on two qualitatively different
screening routes from the atomic degrees of freedom to
the emerging heavy QPs in strongly correlated systems,
driven by Hundness or Mottness, and corroborated that
Hundness, i.e. SOS Kondo-type screening, dominates the
anomalous physics of Hund metals in terms of resilient
HQPs.

Experimentally, possible signatures of such a two-stage
screening of electrons have meanwhile been observed,
for instance, in infrared spectroscopy [49], in resistiv-
ity, heat-capacity, thermal-expansion, and susceptibility
measurements of the 122-iron pnictides [34, 35], in the

optical response of SroRuQOy4 in terms of unusual excess
spectral weight [45], in ARPES spectra of iron-based su-
perconductors [50], in the thermopower of ruthenates
[28], and in optical conductivity measurements [36] of
KFQQASQ.

Numerous signatures of Hund metal behavior have
been noticed in experimental studies. For example, they
were identified in various members of the iron pnictides
and chalcogendies by means of infrared spectroscopy [36,
49], resistivity, heat-capacity, thermal-expansion, suscep-
tibility measurements [34, 35], and ARPES [50, 51]. A
second prototypical system of a Hund metal is SroRuQOy,
where optical conductivity [45], thermopower [28] and
ARPES [46] provide multiple signatures of Hund metal
behavior. We hope that the present study of a minimal
three-band model, containing the minimal ingredients to
yield Hund and/or Mott physics, will assist future exper-
imental studies in attributing observed features to either
Hund rule effects (Hundness) or charge-blocking effects
(Mottness).
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Appendix A: Asymmetry of frequency-dependent
quantities at zero temperature

In this appendix, we investigate in more detail the
particle-hole asymmetry of the SHHM at zero temper-
ature discussed in the main text. In particular, we look
at the frequency-dependence of the self-energy, the local
spectral function, the dynamical spin and orbital suscep-
tibility, the optical conductivity and the kinetic energy.

A first detailed temperature-dependent study of the

ibed as functions of decreasing temperature.

implications of particle-hole asymmetry in Hubbard-type
models was given in Ref. [44] for a one-band hole-doped
Mott insulator, i.e. for a model with only one type of de-
grees of freedom (spins). It was shown that a well-defined
QP peak of “resilient” QP excitations exists above the FL.
scale, Ty, and that it dominates an intermediate inco-
herent transport regime up to Tyr. Above this temper-
ature the resistivity exceeds the MIR limit (cf. Sec. D1
for a definition) and the resilient QPs eventually dis-
appear, or more specifically, the QP peak merges with
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FIG.13. (a,b) The imaginary part, Im ¥(w), and (c,d) the real part, Re X(w), of the self-energy; (e,f) the local spectral function,
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indicates a systematic error in Im X (w) (cf. Sec. 3.2 of Ref. [41] for details).



the lower Hubbard band. Interestingly, the resilient QPs
are longer-lived for electron-like than for hole-like excita-
tions, due to the particle-hole asymmetry in the model.
This asymmetry further leads to different scales, wg, and
w;L, below which FL behavior is found at negative and
positive frequencies at T = 0.

In Fig. 13 we revisit the self-energy, ¥(w), the spectral
function, A(w), and the orbital and spin susceptibilities,
Xorb(w) and Xspin(w) [Egs. (5)], at T = 0. We consider
system 12 (A, = U — 2J = 3.5, J = 2) which features
a broad SOS window, well separated from the Hubbard
side bands. We start with a detailed investigation of the
FL regime (cf. left panels of Fig. 13) and then concentrate
on the SOS window (cf. right panels of Fig. 13). Due to
the universal behavior of the model with respect to A,
(respectively U) (cf. Fig. 10 of Ref. [22]) the following
findings are generic in the metallic regime of the 3SHHM,
but can occur on very different energy scales (depending
on the value of Ay).

Asymmetry in the FL regime. The left panels of
Fig. 13 zoom into the frequency regime below Tipin
(marked by open squares in the right panels). Similar
to the results of Ref. [44] we observe in Figs. 13(a,c,e)
that FL behavior holds up to different frequency scales,
wpp, and wity, at w < 0 and w > 0 (cf. vertical red dash-
dotted lines), respectively. These FL scales have been
identified in A(eg,w) in the main text. The FL behavior
is indicated by the red dashed curves in Figs. 13(a,c,e):
a parabola for —Im ¥(w) in panel (a), a linear fit for
ReX(w) in panel (c) and a parabola for A(w) in panel
(e). Clearly, the black DMFT+NRG results deviate ear-
lier from the red FL curves on the positive frequency side,
i.e. at a lower scale w;L R~ %wEL. As pointed out in the
main text, this ratio is equal to the filling ratio, 53, of
the lattice. Furthermore, we find that the position of the
maximum of A(w) approximately coincides with wy .

In Figs. 13(g,i) we show the imaginary and the real
parts of the dynamical orbital and spin susceptibilities,
Xorb(w) and xspin(w) [cf. Eq. (5)], respectively. The
imaginary part of the dynamical susceptibility is de-
fined as x”(w) = —1Imx(w), the real part as x/'(w) =
Rex(w). In contrast to X(w) and A(w) these quanti-
ties are particle-hole symmetric. The imaginary parts of
both the orbital and spin susceptibilities follow the red
dashed linear FL fit only for |w| < wiy . Accordingly, the
real part of the spin susceptibility, xg,;,(w), also exhibits
parabolic FL scaling in this regime, while the real part of
the orbital susceptibility, x/ ., (w), is essentially constant.

In this paper we define the orbital and spin Kondo
scales, Tor, and Typin (cf. open squares and filled circles
in Fig. 13), below which Kondo screening of the local
orbital or spin degrees of freedom sets in, as the peak
positions of x(,,(w) and x&;, (w), respectively. As usual
for crossover scales, other definitions are possible, which

would differ from ours by constant prefactors.
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Appendix B: On the definition of crossover scales

Unlike a phase transition occurring at a well-defined
critical temperature, spin screening is a crossover phe-
nomenon which cannot be describe in terms of just a
single number. This was understood very early in the
classic work of K. Wilson [52]. To set the stage for the
discussion of the Hund-Mott problem discussed in the
main text, we here summarize some of Wilson’s results
for the temperature dependence of the impurity spin sus-
ceptibility, xo(T). (For a detailed discussion, see Section
IX of Ref. [52] or Section 4.6 in Hewson’s book [53].)

Wilson studied the single-impurity Kondo model, in-
volving a single spin—% impurity coupled to a conduction
band with a featureless (flat) density of state. He con-
sidered the weak-coupling limit, where the impurity-bath
exchange coupling, Jk, is much smaller than the band-
width, D. He showed that in this limit the tempera-
ture dependence of physical quantities can be described
in terms of a crossover scale, the Kondo temperature Tk,
and a universal scaling function, F(T/Tx). For example
Xo(T) has the form [54-56]

_ F(T/Tx)

xo(T) = ———-

L (B1)

The meaning of Eq. (B1) is that as long as the temper-
ature is much smaller than the bandwidth, T' < W, the
dependence of xo(7T') on the model parameters Jx and
W enters only via the scale Tk . Still, this does not mean
that spin screening “occurs at Tk”, as is sometimes as-
serted in the literature. Both the scale Tk and the scaling
function F' are needed to characterize the full crossover
from an unstable high-temperature fixed point to a stable
low-temperature fixed point.

Wilson computed the scaling function F' numerically
using his newly-developed numerical renormalization
group approach. Fitting his numerical results, he found
that xo(T") is well described by the following three func-
tional forms, applicable for high, intermediate and low
temperatures, respectively (cf. Eq. (4.53) of Ref. [53]):

In[In(T/T;
ﬁ [17 ln(Tl/TK) + 2[1[11(51/%5]);
Xo(T') =~
Rt e, (Ty <T<T>), (B2b)

(T<T).  (B2c)

2

1o (£)],
Several comments are in order. First, Wilson defined Tk
via a high-temperature condition, namely that the expan-
sion (B2a) of T'xo(T) should not contain a [In(T/Tk)] ™2
term. Notice, however, that the definition of Tk in terms
of bare parameters is not unique, as it depends on the
cutoff procedure, as discussed by Wilson himself or in
Hewson’s book [53]. Indeed, a change in the definition of
Tk can always be compensated by a change in the scaling
function F.



Second, T and T3 are the scales where deviations from
the high- or low-temperature forms, (B2a) or (B2c), first
become noticeable when T is decreased below 15 or in-
creased above T7, respectively. Their values depend on
the definition of Tk; for that of Wilson, they are given by
Ty = 16Tk and Ty = 0.5Tk (see Eq. (IX.99) in Ref. [52]
and Hewson [53]). In the parlance of the main text of this
paper, they may be viewed as the onset and completion
of spin screening scales, Tons** and T0P, respectively.

Third, we discuss the three functional forms given
above. The high-temperature fixed point describes an es-
sentially free local moment. Correspondingly, the high-
temperature susceptibility, Eq. (B2a), shows Curie be-
havior, xo ~ 1/T, with logarithmic corrections due to
a marginally relevant operator. The crossover regime
of intermediate temperatures shows Curie-Weiss behav-
ior, Eq. (B2b). The overall prefactor, 0.68/4, is about
30% smaller than the prefactor 1/4 of the pure Curie
law (B2a), reflecting the renormalization of the impu-
rity magnetization due to the onset of screening with
lowering temperature. The low-temperature fixed point
describes FL excitations scattering off a fully screened
impurity. Correspondingly, the low-temperature suscep-
tibility, Eq. (B2c), approaches a constant for T//Tx — 0,
with a (T//Tk)? correction caused by a leading irrelevant
operator. The zero-temperature value of 4Tk xo(0) =
0.4132, known as the Wilson number, is a characteristic
property of the crossover function, linking properties of
the high-and low-temperature fixed points.

Fourth, we note that an exact expression for the scal-
ing function F was later obtained using the Bethe Ansatz,
[57-59]. In particular, Andrei and Lowenstein obtained
an analytical expression for the Wilson number [57]. The
definitions of Tk used in the Bethe Ansatz papers differ
from that of Wilson, but the universal behavior of the
susceptibility agrees with Wilson’s solution. The univer-
sality results from two facts: first, the impurity model is
studied at very weak coupling (Jx < D), and second,
there is only one (marginally) relevant operator perturb-
ing the unstable fixed point [53].

Fifth, we note for completeness that Wilson’s version
of our Eq. (B2b), namely his (IX.99), contains a factor 2
instead of v/2 in the denominator. That is a typo, first
noticed by Melnicov [60], see p. 503 of [59], and also [53],
below Eq. (4.60).]

To conclude our summary of Wilson’s results on x(7),
we emphasize again that spin screening is a gradual
crossover phenomenon, even in the simple context of the
Kondo impurity model. To describe the crossover quanti-
tatively, it does not suffice to specify just a single number
for the crossover scale, even when only a single scale is
dynamically generated. Instead, one also has to specify
which observable and which scaling function was used,
and the precise criteria used to define the crossover scale.

Now let us discuss the relevance of the above argu-
ments for the present paper. DMFT maps the Hund-
Hubbard lattice model that we consider in the main text
to a quantum impurity model with a self-consistent bath.
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The bath is described by a hybridization function which,
in contrast to the pure Kondo model studied by Wilson,
has a non-trivial structure. Moreover, this structure de-
pends on temperature. Nevertheless Wilson’s NRG ap-
proach for solving impurity models has been generalized
to accommodate these complications, and indeed is now
a widely-used impurity solver for DMFT.

Some of the terminology introduced by Wilson and re-
viewed above can also be used to understand some as-
pects of the solution of the DMFT equations and to il-
luminate the physics of the problem. For Hund met-
als, we have shown in Ref. [20] that an impurity with
a rigid (not self-consistent) bath is a good guide to the
full DMFT solution. Moreover, we argued there that
Hund metals can be characterized by the criterion that
the crossover scales for spin and orbital screening differ
strongly, Tspin < Torb, implying spin-orbital separation,
to identify a Hund metal. In that work, as here, we de-
fined Tipin and T, as the energy scales at which the
imaginary parts of the zero-temperature dynamical spin
and orbital susceptibilities are maximal. We emphasize,
though, that the occurrence or not of spin-orbital separa-
tion does not depend on the criteria used to define these
crossover scales. For example, the onset-of-screening
scales discussed in Sec. V A likewise yield Tonset < TRt
for the Hund system H1.

In Ref. [7], we refined our discussion of crossover scales
by analyzing the temperature dependence of the spin
and orbital susceptibilities, xspin(T) and xorn(T). We
introduced onset-of-screening scales TS, T below
which deviations (say by x1%) from pure Curie behav-
for set in, and completion-of-screening scales T, ¥, Ty P
above which deviations (say by z2%) from pure Pauli
behavior set in. They correspond to Wilson’s T5 and T}
scales, respectively. These operational definitions have
some degree of arbitrariness (through the choices of x;
and zo; in fact, these were not even specified in Ref. [7]).
However, they have the advantage that they can also
be applied when the crossover function in the intermedi-
ate temperature regime does not have a simple analytical
form, a situation generally encountered for self-consistent
DMFT impurity models. We argued in Ref. [7] that
the onset temperatures are useful to distinguish Mott
systems from Hund systems: in Hund systems we have
Toweet < Topet, but in Mott systems Tonse® o~ Toet,
since the onset of spin and orbital screening with de-
creasing temperature occurs around the same tempera-
ture, Ty, at which a quasiparticle peak begins to emerge
from the Mott pseudogap. Again, this distinction be-
tween Hund and Mott systems does not depend on the
precise criteria used to define the onset scales.

In the main text of the present paper, we refined our
discussion of crossover scales somewhat more. We ex-
ploited the freedom in the choice of definition of the on-
set and completion scales (i.e. of o and z1) to reduce
the number of parameters by defining T3P o~ Touset
for Hund systems and 75" ~ To 2" for Mott systems.
These choices, compatible with our data for H1 and M1,
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FIG. 14. Testing the applicability of a Curie-Weiss (CW)
form for various susceptibilities by replotting the data from
Fig. 7(c) as 1/xo(T) vs. T. The top row shows the spin sus-
ceptibilities of M1 (left) and H1 (right) using solid lines, the
bottom row the same for the orbital susceptibilities, using
dashed lines. Dotted lines show Curie-Weiss fits to those data
points (shown using crosses) for temperatures higher than the
temperature at which xo(7") is maximal.

have simple physical interpretations: For Hund systems,
featuring spin-orbital separation, spin screening sets in
once orbital screening is complete. By contrast, for Mott
systems, spin and orbital screening go hand in hand:
just as both onset-of-screening scales coincide with the
emergence of a quasiparticle peak from the Mott pseu-
dogap and therefore match, ToWset o~ Tohset ~ Ty, the
completion-of-screening scales match, too, Ty’ = Tscg?f .

As a final remark, we note that one may attempt
to [28, 61, 62] to characterize the spin susceptibility
Xo(T') of Hund systems using the Curie-Weiss (CW) form
X6V (T) = /(T +6), with 0 serving as a crossover scale.
The CW form applies if a plot of 1/xo(T) vs. T yields
a straight line. Figs. 14(a,b) show such plots for the
spin susceptibilities of M1 and H1. The resulting curves
show clear deviations from linear behavior, in particular
for large T. Therefore, CW fits (dotted lines) charac-
terize these susceptibilities only fairly crudely (see also
Refs. [61, 62]). For completeness, Figs. 14(c,d) show anal-
ogous plots of the orbital susceptibilities. These curves
are strongly nonlinear in the low-temperature regime cor-
responding to the completion of orbital screening, where
the CW form is not applicable at all.

Appendix C: Temperature dependence of optical
conductivity

We next study the optical conductivity, o(w) I[cf.
Eq. (D1)], again for system I2. o(w) is plotted on a
linear and a logarithmic frequency scale in Figs. 15(a,b),
respectively. For comparison, we also show data for W0
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(Ap, = 3.5, J = 0), computed at T = 0.15, which is
still in the FL temperature regime. At T'= 0 we expect
a FL Drude peak for 12. However, the data (cf. blue
curve) is not accurate enough to resolve the FL behavior
at very low frequencies, w < w;L (cf. discussion of blue
and red curve in Fig. 3.1(b) in Sec. 3.2 of Ref. [41]). In the
low-frequency NFL crossover regime, here approximately
given by wif; < w < |ws|, we observe a power-law flank
in o(w), x w™*, with « = 7/5 at T = 0. Notably, for
w > |wg,| a broad HQP shoulder develops around T,pat
T=0.

With increasing temperature but below 7' < Tt =
0.1, spin degrees of freedom are gradually unscreened in
the system while the orbitals are still screened. This
process is reflected in o(w): with increasing temperature
spectral weight is shifted from low frequencies into the
HQP shoulder, while the high-frequency flank of o(w)
remains unaffected. Note that the HQP shoulder is ab-
sent for J = 0 [cf. black curve in Figs. 15(a,b)]. At higher
temperatures (7' > Tow*") the HQP shoulder gradually
decreases in height, reflecting the unscreening of the or-
bital degrees of freedom in 12. The second shoulder at
bare energy scales is a Hubbard-band feature, which is
also present for J = 0. We suspect that the HQP shoul-
der at w > |w,;| is an optical fingerprint of the HQP
band [SU(3) Kondo resonance in A(w)] and can indeed be
interpreted as Hund’s-coupling-induced excess spectral
weight, caused by resilient QPs, as suggested in Ref. [45].
Further, we remark that our results (for 7' < Tous*)
are reminiscent of recent optical conductivity measure-
ments [36] for KFeyAs,.

In Figs. 15(c,d) the kinetic energy, K(Q2) [as defined
in Eq. (D3)], is plotted as a function of frequency, 2, for
various temperatures. In Ref. [49] an unusual spectral
weight transfer from low to high energies was observed
at low temperatures in K () for iron pnictides. This
observation would correspond to line crossings of different
K(Q,T) curves for J = 2 in Figs. 15(c,d), which is yet
not found in our data. We remark that this might be due
to the rather large A, = 3.5.

Appendix D: Elementary definitions and relations

1. Optical conductivity, kinetic energy, resistivity
and the Mott-Ioffe-Regel (MIR) limit

Optical conductivity. The (real part of the) optical
conductivity (per spinful band), computed in linear re-
sponse, is given by Ref. [44],

ot =22 [ M) =S 2

w

h
></ds@(e)A(a,w’)A(E,w—&—w’), (D1)

where f(w) is the Fermi function, A(e,w) the structure
factor as defined in Eq. (4), and ®(g) the transport ve-
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FIG. 15. (a,b) The optical conductivity, o(w), and the kinetic energy, K(£2), are plotted for various temperatures on (a,c) a
linear and (b,d) a logarithmic frequency scale for 12 (A, = 3.5, J = 2). In addition, data for WO (A, = 3.5 and J = 0) at
T = 0.15 is shown in black. (b,d) |wi; |, below which FL behavior should set in, is marked by vertical dash-dotted red lines.
The vertical solid yellow lines denote \wéﬂ Filled dots and open squares mark the orbital and spin Kondo scales, respectively.

locity kernel,

(D2a)
(D2b)

The latter is here expressed through the band velocity
in z-direction, vy = )%%7 and Eq. (D2b) follows for the
Bethe lattice.

Kinetic energy. The kinetic energy, K (), is the in-
tegral of the optical conductivity, o(w), up to a cutoff
value  [49]:

(D3)

We normalize K (§2) to K(00).

Resistivity. The temperature-dependent optical resis-
tivity is given as the inverse of the optical conductivity
evaluated at the Fermi level, w = 0,

(D4)

Mott-Ioffe-Regel (MIR) limit. In conventional metals
p(T) increases with temperature. This behavior can be
explained in a QP picture: the mean-free path [ of a

QP gradually decreases because thermally-induced scat-
tering events become more frequent. For phonon scat-
tering at higher temperatures, i.e. above a small temper-
ature below which electron-electron scattering is domi-
nant, this leads to a linear growth of p(T') ~ T. How-
ever, this QP picture breaks down approximately when
l becomes shorter than the interatomic spacing, leading
to the Mott-Ioffe-Regel (MIR) limit, kplpnin =~ 27 [63—
65] (another popular definition is kplpmin ~ 1). As a
consequence, above a corresponding MIR temperature,
T, the resistivity saturates in conventional metals, ap-
proaching a maximum value, pyr. While for most good
metals, I > a holds up to their melting temperatures,
there is a vast number of metals for which the MIR re-
sistivity saturation is observed [66]. Interestingly, most
strongly correlated metals, like cuprate HTSCs, heavy
fermions, Hund metals (including iron-based HTSCs),
and also several organic compounds, exceed the MIR
limit and p(T) does not saturate with increasing tem-
perature. Due to this unconventional but common fea-
ture, which is generically assumed to be induced by some
kind of NFL behavior, all these materials are collectively
referred to as “bad metals” in the literature [66, 67].

In Fig. 15 o(w) is measured in units of opir = %.

This is the MIR limit derived in Ref. [44] for a free
2 2 2

parabolic band in two dimensions, (k) = %ﬁfkﬂ, us-

ing the criterion kpplyniy, = 27. Accordingly, in Fig. 9 we
plot p in units of pyr = 1/0MIR-



2. Thermopower

The thermopower (Seebeck coefficient) is defined as
a(T) = —AV/AT, where —AV is the electric field gen-
erated when a a thermal gradient, AT, is established in a
material under conditions which are such that no electri-
cal current flows [28]. We calculate o(T) with the Kubo
formula of Ref. [28],

kp [ dw T (w)Bw (—%)

a(T) = —— : (D5)
¢ [dwT(w) (—g—i)

where 8 = 1/kgT, and the transport function, T(w),

given here for transport in z-direction, reads

a‘k
T(w) = 27re2/ 2n)? (v2)? A (w)?
2

_ 2re? / de B(e) Az, w)?. (D6)

3. Entropy

Within DMFT, where a lattice system is mapped self-
consistently onto an impurity system, we can both calcu-
late the impurity contribution to the entropy, as usually
done within NRG [68], and the lattice entropy. Impor-
tantly, these entropies differ (quantitatively but not qual-
itatively), as is discussed in detail in Sec. VIF.

Impurity contribution. The impurity contribution to
the entropy, Simp, is introduced in Eq. (48) and Eq. (53)
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of Ref. [68] as the difference,

Sinp(T) = Siot(T) — St (T), (D7)

between the entropy of the total Wilson chain, Sio4, and

the entropy of a reference system, Stot, which is the bare
conduction Hamiltonian without impurity. In practice,
it is thus necessary to perform two independent NRG
runs, one for the full Hamiltonian and one for the same
Hamiltonian without impurity.

Lattice entropy. Starting from the thermodynamic re-
lation T(0S1at4/0T) = O0&att/OT between the entropy
and the total internal energy of the lattice, the lattice
entropy can be expressed as an integral involving the spe-
cific heat, C(T') = (0&att/OT),

T C T’
Statt (1) = State (To) +/ a7’ C(T’ ) )
To

(D8)

following Eq. (238) of Ref. [4]. Siw(To) is a constant
offset, in principle unknown. In the case of a FL, how-
ever, Siatt(Tp) can be determined exactly [cf. Eq. (7)].
For Hubbard-type models in the limit of large lattice co-
ordination, the total internal energy is given by Eq. (7)
of Ref. [69], which we apply in the form,

Sjl\z;t‘t —/dwf( )(w—f—u)A( ) (D9a)
—|—2t2/dw1/dw2f o1 )_(S‘:Q)
_ / dw F(w)(w + 1) A(w) (D9b)
o2

/dwf )JRe G(w)Im G(w).

Here f(w) is the Fermi function, and the second equal-
ity follows via the Kramers-Kronig relation, Re G(w) =

ledw’ImG(w Pfdw'A“’).
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