

1
2
3
4

5 **Architected Mesoporous Crystalline Magnesium Silicates with** 6 **Ordered Pore Structures**

7 Xun Gao,¹ Hassnain Asgar,¹ Ivan Kuzmenko,³ and Greeshma Gadikota^{1,2*}
8
9

10 ¹School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853

11 ²Smith School of Chemical and Biological Engineering, Cornell University, Ithaca, NY 14853

12 ³Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439

13

14

15

16

17

18

19

20

21

22

23

24

25 * Corresponding Author. Phone: +1 607-255-4796. E-mail: gg464@cornell.edu

1 **Abstract**

2 Novel approaches to harness earth abundant silicates as building blocks for carbon dioxide
3 removal, capture, utilization, and storage are gaining increasing attention in the context of
4 sustainable and low carbon energy and resource recovery. Advancing a calibrated
5 understanding of these fluid-silicate interactions is essential for developing scalable
6 processes. One of the challenges in developing predictive controls over these interactions is
7 the compositional and morphological heterogeneity of naturally occurring, heterogeneous
8 magnesium silicate minerals. To address this challenge, the synthesis of architected
9 mesoporous crystalline magnesium silicate (Mg_2SiO_4) is proposed. While synthesis routes
10 for producing amorphous mesoporous magnesium silicates have been developed via sol-gel
11 synthesis routes, approaches to synthesize crystalline magnesium silicates with well-
12 controlled pore size distributions have not been explored. The conventional approaches of
13 converting matter that is amorphous to crystalline states at elevated temperatures results in a
14 heterogeneous pore size distribution. To develop controls on pore size distribution,
15 amorphous mesoporous magnesium silicates are coated with carbon. This approach preserves
16 the pore size distributions during the amorphous to crystalline transformations of Mg-
17 silicates at elevated temperatures. The carbon coating is removed on heating. Magnesium
18 silicate particles produced using this approach have highly ordered pores around 2.58 nm and
19 a specific surface area of 124.25 m²/g. In this study, we report the chemical compositions,
20 morphologies, phase transitions, and pore structures of the intermediate materials produced
21 during the synthesis of crystalline mesoporous magnesium silicates. The synthesis routes
22 discussed in this study can be applied translationally to produce metal silicates with ordered
23 mesoporous structures.

1

2 **Keywords:** crystalline mesoporous magnesium silicate, sol-gel synthesis, carbon coating,

3 sucrose

4

1 **1. Introduction**

2 As we transition to sustainable and renewable energy resources, our dependence on metals
3 is expected to increase significantly. The need for metal-based electrodes for electrolysis to
4 produce fuels and clean water, catalysts for energy and resource conversion, and rare earths
5 for electronic materials is the societal basis for exploring earth-abundant and low-value
6 substrates for metal recovery and utilization. In this context, naturally occurring magnesium
7 silicates are receiving increasing attention since they are a source of nickel and iron, and are
8 a source of magnesium for CO₂ capture, storage, and removal [1-8]. Earth-abundant
9 magnesium silicate minerals include (Mg, Fe)₂SiO₄ (olivine) and serpentine
10 (Mg,Fe)₃Si₂O₅(OH)₄. Without any pre-treatment, olivine is considered to be more reactive
11 compared to serpentine. The magnesium end member of olivine is Mg₂SiO₄ (forsterite) and
12 the iron end member is Fe₂SiO₄ (fayalite). Olivine is being extensively investigated for CO₂
13 removal via weathering [9-11] and carbon mineralization [1-8,12-18].

14 In enhanced weathering, the dissolution of magnesium silicates releases Mg²⁺ ions. Each
15 Mg²⁺ ion can capture two molecules of CO₂ from air to produce two bicarbonate ions in soils
16 and enhance soil fertility for crop production and growth. In carbon mineralization,
17 magnesium (or calcium) silicates are reacted with CO₂ to produce magnesium (or calcium)
18 carbonates [1,2,4,5,6,7,8,12,13,14,15,16,17,18]. The chemical and morphological
19 heterogeneity of naturally occurring Mg-silicates, anomalous speciation behavior that is
20 highly sensitive to pH, temperature, gas compositions, and ionic strength, and the ambiguous
21 role of precipitated silica on the reactivity of Mg-silicates [1,12,19,20,21,22]. These
22 challenges motivate the synthesis of mesoporous magnesium silicates with well-ordered pore
23 structures to advance a calibrated understanding of the synthesis of magnesium silicates.

1 These studies will have a translational impact on the use of magnesium silicates for several
2 industrial and medical applications. First, silicate materials are ideal adsorbents for
3 wastewater filtration systems. For example, silicate materials can be used to adsorb
4 phosphate, fluoride, cobalt salt, ammonia nitrogen, heavy metal ions, and organic pollutants
5 [23,24,25,26,27,28]. Silicate materials also play important roles in manufacturing long-
6 lasting phosphor and plasma display panels (PDPs) [29,30]. Moreover, because of the
7 extremely low electrical conductivities and dielectric constants of some silicate materials,
8 they are often used in electrical or micro-wave devices. In the medical industry, magnesium
9 silicates are used in drug delivery, protein adsorption, and bone regeneration [31,32,33].
10 These widespread applications of magnesium silicates motivate the design of novel synthesis
11 routes for producing crystalline magnesium silicates with mesoporous structures.

12 Prior work has been focused on the synthesis of magnesium silicates such as Mg_2SiO_4 and
13 $MgSiO_3$ using sol-gel, hydrothermal, and ball-milling methods. Sanosh and coworkers [34]
14 reported a sol-gel method to synthesize amorphous Mg_2SiO_4 nanoparticles with a narrow
15 particle size distribution of approximately 27 nm. Magnesium nitrate hexahydrate
16 ($Mg(NO_3)_2 \cdot 6H_2O$, MNH) and tetraethyl ortho-silicate (TEOS) were used as sources of
17 magnesium and silicate, respectively. The reaction was performed in an acid environment,
18 and the final product has a prolate spheroidal structure [34]. Ni and coworkers [35]
19 synthesized forsterite ceramics with high bending strength and fracture toughness using sol-
20 gel methods. This study used magnesium nitrate hexahydrate ($Mg(NO_3)_2 \cdot 6H_2O$) and
21 colloidal SiO_2 as starting materials to produce a gel that was subsequently calcined [35].
22 Similarly, Kharaziha and coworkers [36] used the same starting materials of sucrose and

1 polyvinyl alcohol polymer (PVA) to form bioactive forsterite ceramic with a high surface
2 area [36].

3 A template-assisted hydrothermal method was used to generate mesopores magnesium
4 silicate with a hierarchical structure [37]. In this approach, carbon-coated SBA-15 was used
5 as a template. The pore walls of the template were transformed into crystalline magnesium
6 silicate ($Mg_3Si_4O_9(OH)_4$) [37] on heating. As an alternative to chemical routes, nanosized
7 magnesium silicates [38] were synthesized using mechanical activation approaches without
8 the liquid phase. Tavangarian and coworkers [39] synthesized single-phase nanocrystalline
9 forsterite via two different ball-milling methods. In the first route, moderate talc
10 ($Mg_3Si_4O_{10}(OH)_2$) and magnesium carbonate ($MgCO_3$) powders were mixed in a steel vial
11 with steel balls and calcined after milling. By adjusting the ball-to-powder weight ratio,
12 rotation speed, and calcination temperature, nanocrystalline forsterite powder with a particle
13 size of approximately 40 nm was obtained [39]. The other ball-milling method replaces
14 magnesium carbonate ($MgCO_3$) powder with periclase (MgO), producing a single-phase
15 nanocrystalline forsterite [40].

16 Further, approaches to synthesize $MgSiO_3$ (enstatite) were reported. Tsai and coworkers [41]
17 developed a nanocrystalline enstatite fiber via the sol-gel method. In a typical synthesis
18 procedure, they mixed tetraethoxysilane (TEOS) and a methanol solution of magnesium
19 methoxide ($Mg(OCH_3)_2$), followed by DI-water and acetic acid to promote the hydrolysis.
20 After drying and calcination, the enstatite fibers were obtained [41]. In addition, Song and
21 coworkers [42] reported the synthesis of $MgSiO_3$ ceramics with good microwave dielectric
22 properties via the ball-milling method. In this pathway, MgO and SiO_2 powder were added
23 to a nylon vial with zirconia balls for ball milling. The mixed powder was then calcined and

1 ball-milled again. The final product was obtained by sintering the hydraulically pressed
2 pellets from secondary ball milling [42].

3 In addition to amorphous Mg_2SiO_4 and $MgSiO_3$ materials, the synthesis of magnesium
4 silicate hydroxide ($Mg_3Si_2O_5(OH)_4$) and talc ($Mg_3Si_4O_{10}(OH)_2$) has been explored.
5 Magnesium silicate hydroxide ($Mg_3Si_2O_5(OH)_4$) can be used as a lubricant additive. Zhuang
6 and coworkers [43] synthesized $Mg_3Si_2O_5(OH)_4$ with different morphologies via the
7 hydrothermal method. The researchers mixed $Mg(NO_3)_2$, ethanol, and PEG200, and added
8 the mixture to Na_2SiO_3 solution to precipitate $Mg_3Si_2O_5(OH)_4$. The precipitates were
9 hydrothermally treated with $NaOH$ solution to obtain the final product. By adjusting the
10 concentration of $NaOH$, the morphology of the final product evolved from a hollow sphere
11 to a core-shell sphere. Magnesium silicate nanotubes are produced by adding ethylene glycol
12 at the end of the synthesis route [43]. Wang and coworkers[44] also produced magnesium
13 silicate hydroxide with different morphologies and structures by hydrothermally treating
14 MgO and SiO_2 in $NaOH$ solution. Talc ($Mg_3Si_4O_{10}(OH)_2$) which is widely used to
15 manufacture ceramics, paper, and paints was synthesized with varying morphologies to meet
16 industrial requirements [45]. Wang and coworkers [27] successfully used colloidal silica as
17 a chemical template to synthesize $Mg_3Si_4O_{10}(OH)_2$ hollow spheres. Moreover, Golubeva et
18 al. [46] used the hydrothermal method to synthesize $Mg_3Si_4O_{10}(OH)_2 \cdot nH_2O$ with an
19 approximate particle size of 100 nm [46].

20 The application and performance of silicate materials greatly depend on the chemical
21 compositions, structures, and morphologies of the particles. Mesoporous silicates are among
22 the most attractive materials because of their excellent performance in adsorption, catalysis,
23 molecular sieving, sensors, and electrochemistry [47]. According to IUPAC classification,

1 mesoporous materials have a pore size between 2 nm to 50 nm [48]. Unlike traditional
2 microporous materials synthesized by a single molecular template, the synthesis of
3 mesoporous materials requires the participation of aggregated surfactant molecules as a
4 template[49]. This type of aggregated molecular template is known as micelles, which form
5 spontaneously when the surfactant concentration attains a critical value [50]. With templates,
6 the desired materials can be synthesized outside, and the mesoporous structure is obtained
7 after removing the micelles template by calcination or chemical extraction [47]. By applying
8 proper surfactant concentrations, the size and structure of micelles can be controlled, which
9 gives control over the shape and size of the pores in the final product. The wide-ranging
10 applications and controllable structures of mesoporous magnesium silicate materials have
11 attracted scientific attention. Specific examples are discussed below.

12 Lu and coworkers synthesized a crystalline $Mg_3Si_4O_9(OH)_4$ using mesoporous silica as a
13 template. In their study, they used SBA-15 as a template and silica source to form magnesium
14 silicate via the hydrothermal method [51]. Zhu and coworkers synthesized amorphous
15 mesoporous Mg_2SiO_4 via the sol-gel method with surfactants [52]. These studies indicate
16 that several varieties of magnesium silicate materials can be manufactured in a mesoporous
17 structure. However, these approaches produce either amorphous magnesium silicates
18 mesoporous materials or crystalline magnesium silicates that are not Mg_2SiO_4 . Crystalline
19 materials with mesoporous structures are preferred because of their better performance in
20 targeted applications. Compared to amorphous products, crystalline materials possess better
21 mechanical and thermal stabilities because of the long-range order of the molecules and the
22 lattice defects [53]. Crystalline phases enhance optical, electronic, and photocatalytic
23 activities in mesoporous materials [54]. Amorphous materials are typically transformed into

1 crystalline matter using heat. Nevertheless, the mesoporous structure tends to collapse when
2 amorphous Mg-silicate is heat-treated to produce crystalline phases. For this reason, prior
3 studies have not attempted to tackle the challenge of producing crystalline Mg_2SiO_4 with
4 ordered pore structures.

5 To address this challenge, we developed a novel synthesis method to produce crystalline
6 mesoporous forsterite (Mg_2SiO_4) with narrow pore size distribution. This method generates
7 an amorphous mesoporous magnesium silicate precursor initially, followed by the
8 amorphous-crystalline transition of the precursor in the presence of sucrose which is coated
9 on the pore walls to maintain the pore structure. This sucrose coating inside the pores
10 prevents the collapse of the mesopores during the thermal treatment. The resulting crystalline
11 matrix preserves the highly ordered pore structure.

12 To test the hypothesis that high purity mesoporous crystalline Mg_2SiO_4 materials with
13 ordered mesoporous structures can be synthesized using this route, we addressed the
14 following research questions in this study: **(i)** Starting from amorphous Mg_2SiO_4 gels, what
15 is the chemical and morphological evolution of the materials as crystalline Mg_2SiO_4 phases
16 are formed? **(ii)** How do the pore volume and pore size distribution evolve during the various
17 stages involved in the synthesis approaches? **(iii)** What are the mechanisms underlying the
18 transition of amorphous to crystalline transition of Mg_2SiO_4 in the presence of sucrose for
19 maintaining the mesoscale porosity in these materials? To address these questions, the
20 detailed material synthesis approaches, and the results from the characterization of these
21 materials are discussed in the following sections.

22

1 2. **Materials and Method**

2 2.1. *Synthesis of Crystalline Mesoporous Magnesium Silicate*

3 The reagents used in the study, Pluronic® P123 (EG₂₇PG₆₁EG₂₇), magnesium nitrate
4 hexahydrate (Mg(NO₃)₂.6H₂O), and tetraethylorthosilicate (TEOS) was purchased from
5 Sigma Aldrich and 12 M hydrochloric acid (HCl) was acquired from Fisher Scientific.
6 Sucrose was supplied by VWR, and sulfuric acid (H₂SO₄) was procured from Ricca.
7 Crystalline mesoporous magnesium silicates with highly ordered pores were developed using
8 a multi-step synthesis route as shown in **Figure 1**. The first step involves the synthesis of
9 amorphous magnesium silicate via a sol-gel approach, followed by the preservation of pores
10 using a carbon-coating approach, and finally, the removal of carbon and the formation of
11 crystalline magnesium silicate.

12 In the first step, amorphous magnesium silicate was prepared by adding 3 g of P123 to 120
13 mL of 2 M HCl and 30 mL of DI water. The mixture was then stirred at 38°C for 1 hour,
14 followed by the addition of 8.5 g of TEOS and 10.3 g of Mg(NO₃)₂.6H₂O. This mixture was
15 further stirred for 24 hours at 38°C. The precipitates generated during the first step were dried
16 at 100°C in the air for 24 hours. P123 from within the pores was removed by calcining the
17 dried sample at 600°C at a ramping rate of 1°C/min for 6 hours in a benchtop muffle furnace
18 (Thermo Scientific Thermolyne FB1410 M, Asheville, NC).

19 In the second step, the pores inside the amorphous mesoporous magnesium silicate obtained
20 from Step 1 were coated and preserved using a carbon-coating approach. Typically, the direct
21 thermal treatment of amorphous magnesium silicate produces crystalline magnesium
22 silicates at temperatures higher than 800°C which results in the collapse of the mesopores.

1 Since the overarching goal of this work is to develop the crystalline magnesium silicate with
2 ordered pores, the carbon-coating route was chosen. In a typical coating procedure, 2 g of
3 sucrose was dissolved in 0.224 g of H₂SO₄ and 9.756 g of DI water. 1 g of amorphous
4 magnesium silicate powder was added to this mixture and mixed at 120°C for 12 hours. In
5 the next step, the sucrose coated magnesium silicate was calcined at 900 °C in nitrogen (N₂)
6 for 2 hours at a ramp rate of 1°C/min in the tube furnace (Lindberg Tube Furnace, 1000-C-
7 1) to obtain crystalline magnesium silicate. The calcination step resulted in the carbon coating
8 of pores and amorphous to the crystalline transformation of pore walls. In the final step, the
9 carbon-coated sample was heated at 650°C in the air for 3 hours at a ramping rate of 20°C/min
10 using the benchtop muffle furnace to remove carbon from the pores [55]. As a reference, the
11 as-synthesis amorphous magnesium silicate was calcined at 900 °C in nitrogen (N₂) for 2
12 hours at a ramp rate of 1°C/min in the tube furnace to obtain the crystalline product without
13 carbon coating.

14 2.2. *Characterization of Synthesized Powders*

15 The changes in the chemical composition and structure of synthesized samples were
16 evaluated using infrared (IR) spectroscopy collected in an Attenuated Total Reflection (ATR)
17 mode using an Attenuated Total Reflection-Fourier Transform Infrared spectrometer (ATR-
18 FTIR, NicoletTM iS50, Waltham, MA) and the X-ray photoelectron spectroscopy (XPS,
19 Scienta Omicron ESCA-2SR, Al K α). The crystalline phases in the synthesized materials
20 were obtained from X-ray diffraction (XRD, Bruker D8 Advance ECO powder diffractometer,
21 Bruker). The morphology and particle size were determined by using field emission scanning
22 electron microscopy (FESEM, LEO 1550 FESEM, Bruker) and field emission high
23 resolution transmission electron microscope (FEI F20 TEM STEM) at 120 kV. Finally, the
24 pore size distributions (PSD) were determined from N₂ adsorption-desorption isotherms

1 using the Brunauer–Emmett–Teller technique (BET) (Quantachrome Autosorb iQ Analyzer,
2 Boynton Beach, FL). Before measuring the adsorption-desorption isotherms, the synthesized
3 samples were outgassed at 120°C for 18 hours.

4 Finally, the structural transitions during calcination in N₂ were determined using *in-situ* wide-
5 angle X-ray scattering (WAXS) measurements between 30°C and 906°C in an N₂
6 environment. The measurements were performed in sector 9-ID-C at the Advanced Photon
7 Source (APS), Argonne National Laboratory (ANL). The details about the instrument were
8 reported in previous publications [56,57]. The sucrose-coated magnesium silicate sample was
9 loaded into a quartz capillary (I.D. = 1.3 mm and O.D. = 1.5 mm) to acquire the scans. The
10 background was taken from the empty capillary and subtracted from the data. During the
11 acquisition, N₂ was also purged through the capillary. The X-ray energy was set to 21.0 keV
12 which corresponds to the X-ray wavelength of 0.59 Å. The total X-ray flux during the
13 measurements was 10¹³ photon mm⁻² s⁻¹. The calibrations for sample-to-detector distance and
14 instrument were performed using LaB₆.

15 **3. Result and Discussion**

16 **3.1. Chemical and Structural Changes during Synthesis**

17 As discussed in the previous section, the synthesis of crystalline magnesium silicate proceeds
18 via sol-gel synthesis of amorphous Mg-silicate, followed by the coating of sucrose to
19 maintain the pores in mesoporous in Mg-silicate, the transformation of amorphous Mg-
20 silicate to crystalline Mg-silicate, and the removal of carbon which preserves the pores.

21 **Figure 1** is a schematic representation of this approach. To evaluate the hypothesis that high
22 purity crystalline magnesium silicate can be synthesized using this approach, the as-
23 synthesized amorphous magnesium silicate, sucrose-coated magnesium silicate, carbon-

1 coated magnesium silicate, and crystalline magnesium silicate are characterized in detail. For
2 comparison, the as-synthesized magnesium silicate heat-treated without carbon-coating is
3 also prepared and characterized.

4 The changes in the chemical bonding of these materials are determined using ATR FT-IR
5 spectroscopy. The IR spectra identifying Si-O coordination are shown in **Figure 2**. The peak
6 corresponding to the asymmetric stretching vibrations of Si-O bonds around 1000 cm^{-1}
7 appeared in all the samples [58]. The peak representing Si-O-Si bending vibration around
8 650 cm^{-1} is also noted in sucrose-coated magnesium silicate, carbon-coated magnesium
9 silicate, and crystalline magnesium silicate [59]. Further, in the high wavenumber range
10 ($>2500\text{ cm}^{-1}$), the as-synthesized amorphous sample shows the Si-OH peak around 3200 cm^{-1}
11 and the peak of residual C-H bond from P123 at around 2980 cm^{-1} [60],[61]. The very low
12 intensity indicates the small amount of the residual Si-OH bond and C-H in the sample. For
13 the sucrose-coated sample, the strong OH peak appears around 3300 cm^{-1} due to the hydroxyl
14 (OH) functional groups in the sucrose molecules. Additionally, after the calcination in N_2 and
15 air, the C-H bond are eliminated. However, a weak signal from -OH bands around 3200 cm^{-1}
16 appears in the carbon-coated and crystalline samples, which could indicate the adsorbed
17 moisture on the particles. On the other hand, the reference sample without a sucrose coat
18 shows Si-O stretching peak at around 1050 cm^{-1} and a Si-O-Si bending peak at around 850 cm^{-1} ,
19 which can be a hint of the existence of MgSiO_3 [63]. Besides, the Si-O-Si peak around
20 950 cm^{-1} , and Si-OH peak around 880 cm^{-1} are also noted [58]. Based on the IR spectra of
21 the Si-O coordination, it can be noted that the peaks corresponding to the vibrations from Si-
22 O linkages vary significantly across the different samples. To delineate the changes in the
23 silica environment as the synthesis proceeds, the peaks that correspond to the Si-O bond

1 between 1250 – 800 cm⁻¹ were deconvoluted (**Figure 3**) using the Levenberg Marquardt
2 algorithm with a Gaussian model embedded in Origin Pro software (OriginLab Corp.). The
3 deconvolution provides information about the Qⁿ coordination in silica during the synthesis.
4 The Qⁿ notation (n = 0, 1, 2, 3, 4) represents the number of bridging oxygens per Si
5 tetrahedron in silicate-based materials [64]. Q⁴ corresponds to SiO₂ species with 0 non-
6 bridging oxygens (NBOs), while Q⁰ represents 4 NBOs in [SiO₄]⁴⁻-related species. The
7 silicate species, corresponding Qⁿ notations, NBOs, and wavenumber ranges (cm⁻¹) are
8 reported in **Table 1**.

9 For as-synthesized amorphous Mg-silicate, the main peaks corresponding to the amorphous
10 silica (SiO₄) with 0 non-bridging oxygens are expected due to the hydrolysis of TEOS in the
11 acidic solution and condensation to form ≡Si-O-Si≡ linkages (**Figure 3 (a)**) [65–68]. Since
12 the sol-gel synthesis conditions used in this study lead to the formation of amorphous silica
13 linkages with Mg²⁺ cations (from Mg(NO₃)₂) randomly distributed in the matrix, we noted a
14 slight shift in the main peak, which appears ~1015 cm⁻¹ instead of the typical ~1080 cm⁻¹
15 peak for amorphous silica systems (SBA-15, Stöber silica particles, etc.) [63,64]. The
16 presence of these cations could affect the NBOs in amorphous silica, as noted by a peak
17 around 907 cm⁻¹ in **Figure 3 (a)**, corresponding to 3 NBOs with Q¹ coordination. In silicate-
18 based materials, the segregation of [SiO₄]⁴⁻ tetrahedra upon sharing of an oxygen atom can
19 lead to [SiO₃ – O – SiO₃]⁶⁻ species and free O²⁻ ions that coordinate with Mg²⁺ cations in the
20 matrix and form MgO-based regions [71]. This observation is consistent with the formation
21 of crystalline MgO peaks in the XRD patterns of as-synthesized Mg-silicate (**Figure 4**).

22 After sucrose-coating on mesoporous Mg-silicate, the position of the Si-O-Si remains
23 unchanged around ~1015 cm⁻¹ while a new peak is noted around 981.68 cm⁻¹, which can

1 result from the distortion in $[\text{SiO}_4]^{4-}$ tetrahedra coordination during treatment in the presence
2 of H_2SO_4 and sucrose. Moreover, the MgO peaks in the XRD pattern of sucrose-coated Mg-
3 silicate (**Figure 4 (b)**) are also diminished, which may result from the distortion of Mg-O
4 coordination upon exposure to H_2SO_4 -based solution. Thermal treatment of sucrose-coated
5 Mg-silicate in the presence of N_2 results in a significant change in the IR spectra and
6 deconvoluted peaks, as depicted by the carbon-coated Mg-silicate sample (**Figure 3 (c)**). As
7 a result of thermal treatment, the amorphous silica (SiO_2) linkages are transformed to a
8 relatively high number of NBOs, which is an indication of $[\text{Si}_x\text{O}_y]^{n-}$ species coordination with
9 Mg^{2+} cations [71,72]. Finally, upon removal of carbon from Mg-silicate in the final heating
10 stage, the number of peaks for $[\text{Si}_x\text{O}_y]^{n-}$ species are significantly increased (**Figure 3 (d)**),
11 which may indicate increased coordination of Mg^{2+} cations with silicate species upon
12 removal of carbon from the matrix. The higher peak counts in the XRD pattern of crystalline
13 Mg-silicate after carbon removal compared to carbon-coated Mg-silicate also indicates the
14 increased bonding between these species. Moreover, the shoulder peak for ‘out-of-phase’ Si-
15 O stretching vibrations [73] noted for as-synthesized amorphous Mg-silicate at 1167.49 cm^{-1}
16 (blue curve, **Figure 3 (a)**) is shifted to lower wavenumbers at 1121.35 cm^{-1} , 1112.98 cm^{-1} ,
17 and 1087.78 cm^{-1} for sucrose-coated Mg-silicate (**Figure 3 (b)**), carbon-coated Mg-silicate
18 (**Figure 3 (c)**), and crystalline Mg-silicate (**Figure 3 (d)**), respectively. This shift of the out-
19 of-phase shoulder peak to significantly lower wavenumber (cm^{-1}) upon formation of
20 completely crystalline Mg-silicate is consistent with the observation of the shoulder band for
21 amorphous silica [67,68] and crystalline magnesium silicate products [75].
22 To further determine the variations in the chemical states during the synthesis, X-ray
23 photoelectron spectroscopy (XPS) is also applied to magnesium silicate samples. The survey

1 scans (**Figure 5**) show O 1s, Si 2p, and Mg 2s peaks in the samples, which indicate the
2 existence of O²⁻, Si⁴⁺, and Mg²⁺ in these samples. The sucrose-coated and carbon-coated
3 magnesium silicate samples have C 1s peaks, originating from sucrose and carbon,
4 respectively, in these samples. Further, the high-resolution scans for individual elements
5 (magnesium, silicon, oxygen, and carbon) are analyzed, which reveal the variations in the
6 chemical states during synthesis of crystalline mesoporous magnesium silicate (**Figure 6 &**
7 **Figure S1**). In the deconvoluted high-resolution spectra, the Mg 2s spectrum shows
8 consistency with the others. The as-synthesized amorphous sample (**Figure 6 (a-1)**) has Mg
9 2s peaks of Mg-O bond at 90.55 and Mg-O-Si bond at 92.16 eV [76], [77]. And the crystalline
10 magnesium silicate sample shows three different Mg 2s peaks at 88.98, 91.21, 92.55 eV,
11 which represent the Mg-O bond, and the Mg-O-Si in different phases of Mg₂SiO₄ (i.e., α -
12 Mg₂SiO₄ and γ -Mg₂SiO₄), respectively. The Si 2p spectrum of as-synthesized amorphous
13 (**Figure 6 (b-1)**) sample can be identified as the Si-O-Si peak at 105.04eV and the Mg-O-Si
14 peak at 103.53eV, respectively. After sucrose coating (**Figure 6 (b-2)**), the Si 2p is not noted,
15 which could be an indication of complete covering of particles resulting in diminishing of
16 signals from Si 2p. After the calcination in N₂, the crystalline magnesium silicate with carbon
17 coating shows SiO₂ peak at 100.81 eV [78], α -Mg₂SiO₄ peak at 101.57 eV, and γ -Mg₂SiO₄
18 peak at 102.64eV, where the γ -Mg₂SiO₄ is transferred from α -Mg₂SiO₄ at high temperatures
19 [79],[80],[81]. Furthermore, the Si 2p spectrum of the final crystalline product also shows
20 the α -Mg₂SiO₄, and γ -Mg₂SiO₄ peaks at 103.84, and 105.26 eV, respectively. On the other
21 hand, the O 1s spectrum for the as-synthesized amorphous sample shows the Si-O peak at
22 534.43eV, the Mg-O peak at 532.22 eV, which is consistent with the XRD results
23 [79],[82],[83],[84]. And for the O 1s spectra of the sucrose coated sample (**Figure 6 (b-3)**),

1 there are also C-O-C peak at 532.53eV and C-OH peak at 533.02eV other than the Si-O peak
2 at 533.33 eV, and a very weak band of Mg-O bond at 531.33eV [85],[86]. After the
3 calcination in N₂, the carbon-coated sample (**Figure 6 (c-3)**) shows different peaks at 533.05,
4 530.67, and 531.88eV, correspond to the peak of SiO₂, α -Mg₂SiO₄, and γ -Mg₂SiO₄,
5 respectively [79]. This result is consistent with Si 2p spectra we've discussed before. Then,
6 the O 1s spectrum of the crystalline magnesium silicate sample also can be deconvoluted into
7 α -Mg₂SiO₄ peak at 534.25 eV, and γ -Mg₂SiO₄ at 535 eV. The positive binding energy shift
8 in the crystalline sample (**Figure 6 (d-3)**) can result from the increasing oxidation state of the
9 atoms in the sample, which is caused by the calcination in an oxidizing atmosphere [87].
10 Furthermore, the C 1s high-resolution deconvoluted peaks are presented in **Figure S1**. As-
11 synthesized amorphous Mg-silicate (**Figure S1 (a)**) and crystalline Mg-silicate (**Figure S1**
12 (**d**)) have signals from adventitious carbon, which is a carbonaceous layer outside the sample
13 formed by the exposure to air [88]. In the case of sucrose-coated Mg-silicate (**Figure S1 (b)**),
14 peaks from the C-O-C bond, C-C bond, and C-OH bond are noted at 287.63, 284.58, and
15 286.14 eV, respectively [85],[89]. Additionally, the carbon-coated Mg-silicate (**Figure S1 (c)**)
16 shows a strong C-C peak at 284.16 eV, which is deconvoluted into sp² bonded, sp³ bonded
17 peaks. The shoulder peak around 285.56 eV is identified as the C-O-C peak.
18 Combined with the FTIR data, the XPS results provide detailed variations of the
19 compositions and chemical bonds in the Mg-silicate samples. For the as-synthesized
20 amorphous sample, the Si-O-Si linkages from amorphous SiO₂ are verified by both of the
21 characterizations, while the XPS peak also indicates the existence of the Mg-O bond,
22 supported by the crystalline MgO characteristic peaks in the XRD curve. For the sucrose-
23 coated sample, the XPS signal of the Si and Mg peak is too weak to analyze due to the excess

1 of sucrose in the sample, while the C 1s peaks of this sample reveal the presence of the
2 sucrose coat. On the other hand, the FTIR results indicate the presence of H_2SO_4 can distort
3 the Mg-O and $[\text{SiO}_4]^{4-}$ coordination. Then, during the calcination in N_2 , the FTIR peaks show
4 that the Mg^{2+} cations started to coordinate with $[\text{Si}_x\text{O}_y]^{n-}$ ligands and form crystalline
5 magnesium silicate, which is confirmed by the Si 2p peak of the crystalline Mg_2SiO_4 in
6 different phases. Finally, after the removal of the carbon coat, the increasing peak number of
7 the $[\text{Si}_x\text{O}_y]^{n-}$ species represents more Mg cations coordinate with $[\text{Si}_x\text{O}_y]^{n-}$ and higher
8 crystallinity, supported by the shifted Si 2p peaks and O 1s peaks of the α - Mg_2SiO_4 and γ -
9 Mg_2SiO_4 .

10 The structural features of crystalline magnesium silicates are determined using XRD as
11 shown in **Figure 4**. In the as-synthesized amorphous magnesium silicate (**Figure 4 (a)**), the
12 characteristic peaks of magnesium oxide (MgO) are noted [90], along with the wide peak
13 between 15° and 35° , indicating the presence of amorphous SiO_2 [91]. The MgO could be
14 formed in the as-synthesized Mg-silicate upon calcination (at 600°C) due to the coordination
15 between Mg^{2+} cations and $[\text{Si}_2\text{O}_7]^{6-}$ species. To reveal the morphology of the as-synthesized
16 Mg-silicate sample further, the crystallite size of the generated MgO is calculated from the
17 XRD data by the Scherrer equation [92],[93]:

$$18 \quad D = \frac{K \cdot \lambda}{B(2\theta) \cdot \cos \theta} \quad (1)$$

19 Where D is the average crystallite size, K is the Scherrer constant, which is equal to 0.94 for
20 spherical crystals with cubic symmetry, λ is the wavelength of the applied X-ray, which is
21 0.154 nm in our case, 2θ is the Bragg angle, and B(2θ) is the Full Width at Half Maximum
22 (FWHM) in radians of the selected diffraction peak. In this work the (200) peak of MgO is

1 selected to calculate the crystallite size. From the peak center (42.89°) and the FWHM
2 (0.0047 rad) of the diffraction peak (**Figure S2**), the estimated crystallite size of the MgO in
3 the as-synthesized Mg-silicate sample is 33.32 nm. After coating with sucrose, the
4 characteristic peaks of MgO disappear (**Figure 4 (b)**) which is attributed to the dissolution
5 of MgO in the presence of H₂SO₄ [94]. The broad peak around 22° indicates the presence of
6 a complete amorphous phase in the sucrose-coated magnesium silicate sample. Furthermore,
7 after the calcination in N₂, the characteristic peaks of Mg₂SiO₄ emerge in the carbon-coated
8 magnesium silicate sample (**Figure 4 (c)**) [95]. The appearance of these characteristic peaks
9 can be explained by the amorphous-to-crystalline transition of Mg₂SiO₄. During the thermal
10 treatment, the bonds in amorphous magnesium silicate matrix rearrange to form crystalline
11 and well-ordered Mg₂SiO₄. The thermal treatment in the presence of N₂ serves two purposes
12 here. First, it helps keep the carbon preserved inside the pores and avoids pore collapse during
13 thermal treatment. Second, it results in the amorphous-to-crystalline transition of Mg₂SiO₄.
14 In the final stage, after calcination at 650 °C and removal of carbon from the pores, the
15 crystalline structure of Mg₂SiO₄ is preserved (**Figure 4 (d)**) [95]. For comparison, the XRD
16 pattern of the crystalline sample without sucrose coating is also presented (**Figure 4 (e)**). The
17 characteristic peaks indicate that the sample consists of crystalline periclase (MgO) and
18 enstatite (MgSiO₃) instead of forsterite [96],[97]. The persistence of MgO in this sample after
19 thermal treatment can be explained by the absence of sulfuric acid, present in the sucrose
20 coating solution, which causes the dissolution of MgO. As a result, the MgO particles remain
21 unaffected in the system and rest of the matrix crystallizes as MgSiO₃ [97]. The conclusion
22 is also supported by the FTIR peaks of the crystalline sample without sucrose coat we've
23 discussed previously.

1 3.2. *Particle and Pore Morphology of Synthesized Powders*

2 To understand the morphological evolution during the synthesis process, the scanning

3 electron micrographs shown in **Figure 7** are analyzed. The amorphous magnesium silicate

4 forms cylindrical particles after the removal of P123 surfactant (**Figure 7 (a)**), which is

5 typical of particles prepared from similar sol-gel approaches [98]. After the sucrose coating,

6 the particles are covered with the sucrose (**Figure 7 (b)**). Upon calcination in N_2 , the

7 carbonization of sucrose resulted in the shrinkage of carbon around the particles in the

8 carbon-coated magnesium silicate sample, resulting in cylindrical particles (**Figure 7 (c)**).

9 Based on the XRD pattern of the carbon-coated magnesium silicate sample, the particles after

10 the calcination in N_2 are crystalline and have similar morphology as the amorphous

11 magnesium silicate. The morphology of crystalline magnesium silicate particles, after the

12 final step of calcination in the air to remove the carbon, is also cylindrical (**Figure 7 (d)**).

13 With the comprehension of the particle morphology, we delineate the changes in the

14 mesopores inside these cylindrical particles using the N_2 adsorption-desorption

15 measurements, as discussed below.

16 To verify that the final product has highly ordered pore sizes and reveal the variation in the

17 pore sizes during the synthesis process, the BET N_2 adsorption-desorption isotherms were

18 measured at 77 K. The isotherms of the samples are shown in **Figure S3**, and the pore size

19 distribution curves of different samples are shown in **Figure 8**. The pores size distributions

20 from the isotherms are estimated using the non-local density functional theory (NLDFT)

21 model, which is applied to the adsorption isotherm [99],[100],[101]. The as-synthesized

22 amorphous magnesium silicate sample exhibits a type IV(a) isotherm having an H1 hysteresis

23 (**Figure S3 (a)**), typical of the uniform mesopores with a delayed condensation on the

1 adsorption branch because of the capillary condensation in the pores [102]. The sucrose-
2 coated magnesium silicate sample exhibited a random isotherm (**Figure S3 (b)**). This can be
3 explained by the occupation of pores by the sucrose molecules, which remain suspended in
4 the pores and interrupt the capillary condensation phenomenon. However, the carbon-coated
5 magnesium silicate shows type IV(a) isotherm with H2(a) hysteresis (**Figure S3 (c)**) [102].
6 The type H2 hysteresis is exhibited by complex pore structures. The steep trend noted in the
7 desorption branch can be attributed to pore-blocking in narrow pore necks or cavitation-
8 induced evaporation [102]. The narrowing of the pore neck occurs due to carbon-coating of
9 the pores. After the removal of carbon to produce the final crystalline magnesium silicate
10 product, type H3 hysteresis loop is noted as shown in **Figure S3 (d)**. The crystalline
11 magnesium silicate without sucrose coating also exhibits a similar isotherm (**Figure S3 (e)**).
12 The distinctive features associated with the type H3 hysteresis loop are: (i) the resemblance
13 of the adsorption branch to a type II isotherm and (ii) the lower limit of the adsorption branch,
14 which is located at the cavitation-induced relative pressure (P/P_0). Moreover, we did not
15 observe any plateau at high P/P_0 values, indicating that the isotherm for the crystalline
16 magnesium silicate is not identified as type IV [102,103]. Besides having a resemblance to
17 type II isotherm, the isotherm for crystalline magnesium silicate deviates from a true type II
18 and can be characterized as pseudo-type II isotherm caused by the delayed capillary
19 condensation. These features are characteristics of the presence of non-rigid aggregates, a
20 low degree of pore curvature, and slit-like pores [102,104].
21 The surface areas of the amorphous magnesium silicate, sucrose-coated magnesium silicate,
22 carbon-coated magnesium silicate, and crystalline magnesium silicate are $276.35\text{ m}^2/\text{g}$, $0.27\text{ m}^2/\text{g}$,
23 $384.43\text{ m}^2/\text{g}$, and $124.25\text{ m}^2/\text{g}$, respectively. The higher surface area exhibited by the

1 as-synthesized amorphous magnesium silicate is attributed to the availability of pores
2 resulting from surfactant removal from the mesoporous particles, and the high surface area
3 of the carbon-coated sample comes from the porous carbon structure around the magnesium
4 silicate particles. On the other hand, the pore volume for the as-synthesized amorphous
5 magnesium silicate (0.43 cc/g) is also larger than the sucrose coated (0.001 cc/g), carbon-
6 coated (0.14 cc/g), and crystalline magnesium silicate (0.12 cc/g) samples. A significant
7 decrease in the pore volume is noted after sucrose-coating, indicating the complete filling of
8 mesopores. Conversely, carbon-coating via calcination in N₂ increases the pore volume to
9 0.14 cc/g. This increase can be explained by the pyrolysis of sucrose and the formation of
10 carbon-coating along the pore walls (**Figure 1**, step 4). Finally, after the removal of carbon
11 from the pores by heating in air, the pore volume from the carbon structure is eliminated and
12 the pore volume from the magnesium silicate decreases slightly, and the total pore volume
13 reached a value of 0.12 cc/g. The total pore volume and surface area of the crystalline
14 magnesium silicate is lower than that of as-synthesized amorphous magnesium silicate. This
15 observed decrease in the surface area and pore volume in crystalline magnesium silicate can
16 be attributed to the densification of pore walls during amorphous-to-crystalline phase
17 transformation. To be specific, the changes in the molecular attractions on heating to 900°C
18 cause amorphous phases to transform into crystalline phases [34]. The aggregation of
19 particles causes the specific surface area to decrease during this amorphous to crystalline
20 transformation. In mesoporous materials, heat treatment or sintering involves the collapse of
21 the pore structure and aggregation of particles to decrease the surface free energy during
22 calcination [105]. To prevent the collapse of the pore structure, magnesium silicate is coated
23 with carbon. The mesoporous structure shrinks and densifies on heating instead of being

1 eliminated which causes a small decrease in the pore volume.

2 The average pore sizes of as-synthesized amorphous magnesium silicate, carbon-coated

3 magnesium silicate, and crystalline magnesium silicate are 6.56 nm, 4.89 nm, 1.87 nm, and

4 2.58 nm, respectively. The pore size distributions for as-synthesized amorphous magnesium

5 silicate, sucrose-coated magnesium silicate, carbon-coated magnesium silicate, crystalline

6 magnesium silicate, and crystalline magnesium silicate without sucrose coating are shown in

7 **Figures 8 (a), (b), (c), (d), and (e)**, respectively. For as-synthesized amorphous magnesium

8 silicate and crystalline magnesium silicate samples, narrow pore size distributions are noted,

9 which are characteristic of highly ordered mesopores. As a precedent, Lu and coworkers have

10 synthesized crystalline mesoporous $Mg_3Si_4O_9(OH)_4$ with highly ordered pores around 3.8nm

11 by sucrose coating. However, they synthesized a magnesium silicate product via the

12 hydrothermal method and the yield of the final product is relatively limited [51]. In the case

13 of carbon-coated magnesium silicate, when the sucrose pyrolysis coats carbon along with the

14 pores of mesoporous structure, a variety of pore sizes (**Figure 8 (c)**) are noted with an average

15 value of 1.87 nm. This highlights a complex pore network formed in the mesoporous

16 structure due to the carbon-coating, which is also indicated by the H2 type hysteresis for the

17 carbon-coated magnesium silicate sample. On the other hand, the pore size distribution of

18 the reference crystalline magnesium silicate without sucrose coating exhibits an average pore

19 size and surface area of 4.89 nm, and $9.53\text{ m}^2/\text{g}$, respectively. However, the pore volume

20 (0.03 cc/g) of this samples is significantly lower compared to other samples (**Figure 8 (e)**),

21 which indicates that most of the mesopores collapse during the calcination without the

22 support of a carbon coat.

23 The pore size and crystalline arrangement of the pore walls in crystalline magnesium silicate

1 sample is visualized using high resolution transmission electron microscopy (HR-TEM) as
2 presented in **Figure 9**. The pore sizes around 2.6 nm are identified in the HR-TEM image.
3 Moreover, the crystal orientation in the pore walls is observed from the lattice fringes and a
4 d-spacing of 0.25 nm is noted, which corresponds to (311) plane of Mg_2SiO_4 ($\sim 2\theta = 36^\circ$)
5 [95].

6 *3.3. In-situ Phase Transitions During the Transformations of Amorphous to Crystalline*
7 *Mg-Silicates*

8 The structural changes during the calcination of amorphous sucrose-coated magnesium
9 silicate in N_2 were evaluated using synchrotron-based *in-situ* WAXS measurements. These
10 measurements provide real-time insights into the phase transformations of the mesoporous
11 matrix as a function of temperature. To reveal the phase transition process of the sucrose
12 coated magnesium silicate sample during calcination, the evolution of (311) and (121)
13 orientations of crystalline Mg_2SiO_4 [95] are shown in **Figure 10**. The entire WAXS patterns
14 are shown in **Figure S4**.

15 Initially, a relatively flat curve is noted at 30 °C, indicating an amorphous mesoporous matrix.
16 The amorphous character of the matrix persists at higher temperatures (> 500 °C), and the
17 first emergence of the crystalline structure is noted at 779 °C. A continuous increase in the
18 peak intensities of (331) and (121) orientations of crystalline Mg_2SiO_4 [95] is noted till
19 906 °C. These observations are consistent with the transformation of amorphous to crystalline
20 transformations of crystalline magnesium silicate. To summarize, the crystalline phases of
21 magnesium silicate appear once temperatures higher than 779 °C are achieved.

22

1 **4. Conclusion**

2 In this study, we report a novel route to synthesize crystalline magnesium silicate (Mg_2SiO_4)
3 with highly ordered mesopores starting from amorphous mesoporous magnesium silicate.
4 The key challenge of preserving the pore diameter inside the mesopores range is resolved by
5 coating the pores of amorphous magnesium silicates with sucrose followed by transforming
6 these amorphous materials into crystalline phases and removing carbon by applying heat.
7 The end product is crystalline and is composed of 100% Mg_2SiO_4 . These particles have
8 cylindrical morphologies, and the pore diameter is 2.58nm. The highly ordered pore
9 structures and large surface area of these materials make them ideal candidates for developing
10 a calibrated understanding of the reactivity of these materials with CO_2 for applications
11 related to carbon capture, utilization, storage, and removal.

12

1 **Acknowledgements**

2 X. G. and G. G. are supported by the CAREER grant by the US Department of Energy, Office
3 of Science, Basic Energy Sciences under the Award #DE-SC0020263. H. A. is supported by
4 the EFRC-MUSE, an Energy Frontier Research Center funded by the U.S. Department of
5 Energy, Office of Science, Basic Energy Sciences under Award #DE-SC0019285. The use of
6 the Advanced Photon Source, an Office of the Science User Facility operated for the U.S.
7 Department of Energy (DOE) Office of Science by Argonne National Laboratory, is
8 supported by the U.S. DOE under Contract DE-AC02-06CH11357. The authors gratefully
9 acknowledge the support of Jan Ilavsky at APS and Akanksha Srivastava at Cornell
10 University for assisting this effort.

11

1 **References**

2 [1] G. Gadikota, J. Matter, P. Kelemen, A.H.A. Park, Chemical and morphological
3 changes during olivine carbonation for CO₂ storage in the presence of NaCl and
4 NaHCO₃, *Phys. Chem. Chem. Phys.* 16 (2014) 4679–4693.
5 <https://doi.org/10.1039/c3cp54903h>.

6 [2] Q.R.S. Miller, H.T. Schaeff, J.P. Kaszuba, G. Gadikota, B.P. McGrail, K.M. Rosso,
7 Quantitative Review of Olivine Carbonation Kinetics: Reactivity Trends,
8 Mechanistic Insights, and Research Frontiers, *Environ. Sci. Technol. Lett.* 6 (2019)
9 431–442. <https://doi.org/10.1021/acs.estlett.9b00301>.

10 [3] G. Gadikota, K. Fricker, S.-H. Jang, A.-H.A. Park, Carbonation of Silicate Minerals
11 and Industrial Wastes and Their Potential Use as Sustainable Construction Materials,
12 (2015) 295–322. <https://doi.org/10.1021/bk-2015-1194.ch012>.

13 [4] G. Gadikota, A. hyung A. Park, Accelerated Carbonation of Ca- and Mg-Bearing
14 Minerals and Industrial Wastes Using CO₂, Elsevier B.V., 2015.
15 <https://doi.org/10.1016/B978-0-444-62746-9.00008-6>.

16 [5] G. Gadikota, E.J. Swanson, H. Zhao, A.H.A. Park, Experimental design and data
17 analysis for accurate estimation of reaction kinetics and conversion for carbon
18 mineralization, *Ind. Eng. Chem. Res.* 53 (2014) 6664–6676.
19 <https://doi.org/10.1021/ie500393h>.

1 [6] G. Gadikota, J. Matter, P. Kelemen, P. V. Brady, A.H.A. Park, Elucidating the
2 differences in the carbon mineralization behaviors of calcium and magnesium
3 bearing aluminosilicates and magnesium silicates for CO₂ storage, *Fuel*. 277 (2020)
4 117900. <https://doi.org/10.1016/j.fuel.2020.117900>.

5 [7] G. Gadikota, Carbon mineralization pathways for carbon capture, storage and
6 utilization, *Commun. Chem.* 4 (2021) 1–5. <https://doi.org/10.1038/s42004-021-00461-x>.

8 [8] M. Liu, G. Gadikota, Chemo-morphological coupling during serpentine heat
9 treatment for carbon mineralization, *Fuel*. 227 (2018).
10 <https://doi.org/10.1016/j.fuel.2018.04.097>.

11 [9] L.L. Taylor, J. Quirk, R.M.S. Thorley, P.A. Kharecha, J. Hansen, A. Ridgwell, M.R.
12 Lomas, S.A. Banwart, D.J. Beerling, Enhanced weathering strategies for stabilizing
13 climate and averting ocean acidification, *Nat. Clim. Chang.* 6 (2016) 402–406.
14 <https://doi.org/10.1038/nclimate2882>.

15 [10] D.J. Beerling, J.R. Leake, S.P. Long, J.D. Scholes, J. Ton, P.N. Nelson, M. Bird, E.
16 Kantzas, L.L. Taylor, B. Sarkar, M. Kelland, E. DeLucia, I. Kantola, C. Müller, G.
17 Rau, J. Hansen, Farming with crops and rocks to address global climate, food and
18 soil security /631/449 /706/1143 /704/47 /704/106 perspective, *Nat. Plants*. 4 (2018)
19 138–147. <https://doi.org/10.1038/s41477-018-0108-y>.

1 [11] Originally published as : Frings , P ., Buss , H . L . (2019): The Central Role of
2 Weathering in the Geosciences . - DOI : <http://doi.org/10.2138/gselements.15.4.229>
3 The Central Role of Weathering in the Geosciences, (2019).

4 [12] G. Gadikota, Multiphase carbon mineralization for the reactive separation of CO₂
5 and directed synthesis of H₂, Nat. Rev. Chem. 4 (2020) 78–89.
6 <https://doi.org/10.1038/s41570-019-0158-3>.

7 [13] G. Gadikota, Commentary: Ex Situ Aqueous Mineral Carbonation, Front. Energy
8 Res. 4 (2016). <https://doi.org/10.3389/fenrg.2016.00021>.

9 [14] W. Zhu, F. Fusseis, H. Lisabeth, T. Xing, X. Xiao, V. De Andrade, S.I. Karato,
10 Experimental evidence of reaction-induced fracturing during olivine carbonation,
11 Geophys. Res. Lett. 43 (2016) 9535–9543. <https://doi.org/10.1002/2016GL070834>.

12 [15] P.B. Kelemen, G. Hirth, Reaction-driven cracking during retrograde metamorphism:
13 Olivine hydration and carbonation, Earth Planet. Sci. Lett. 345–348 (2012) 81–89.
14 <https://doi.org/10.1016/j.epsl.2012.06.018>.

15 [16] A.N. Paukert, J.M. Matter, P.B. Kelemen, E.L. Shock, J.R. Havig, Reaction path
16 modeling of enhanced in situ CO₂ mineralization for carbon sequestration in the
17 peridotite of the Samail Ophiolite, Sultanate of Oman, Chem. Geol. 330–331 (2012)
18 86–100. <https://doi.org/10.1016/j.chemgeo.2012.08.013>.

19 [17] P.B. Kelemen, N. McQueen, J. Wilcox, P. Renforth, G. Dipple, A.P. Vankeuren,

1 Engineered carbon mineralization in ultramafic rocks for CO₂ removal from air:
2 Review and new insights, *Chem. Geol.* 550 (2020) 119628.
3 <https://doi.org/10.1016/j.chemgeo.2020.119628>.

4 [18] P.B. Kelemen, R. Aines, E. Bennett, S.M. Benson, E. Carter, J.A. Coggon, J.C. De
5 Obeso, O. Evans, G. Gadikota, G.M. Dipple, M. Godard, M. Harris, J.A. Higgins,
6 K.T.M. Johnson, F. Kourim, R. Lafay, S. Lambart, C.E. Manning, J.M. Matter, K.
7 Michibayashi, T. Morishita, J. Noël, K. Okazaki, P. Renforth, B. Robinson, H.
8 Savage, R. Skarbek, M.W. Spiegelman, E. Takazawa, D. Teagle, J.L. Urai, J.
9 Wilcox, In situ carbon mineralization in ultramafic rocks: Natural processes and
10 possible engineered methods, *Energy Procedia*. 146 (2018) 92–102.
11 <https://doi.org/10.1016/j.egypro.2018.07.013>.

12 [19] D. Daval, O. Sissmann, N. Menguy, G.D. Saldi, F. Guyot, I. Martinez, J. Corvisier,
13 B. Garcia, I. Machouk, K.G. Knauss, R. Hellmann, Influence of amorphous silica
14 layer formation on the dissolution rate of olivine at 90°C and elevated pCO₂, *Chem.*
15 *Geol.* 284 (2011) 193–209. <https://doi.org/10.1016/j.chemgeo.2011.02.021>.

16 [20] H. Béarat, M.J. McKelvy, A.V.G. Chizmeshya, D. Gormley, R. Nunez, R.W.
17 Carpenter, K. Squires, G.H. Wolf, Carbon sequestration via aqueous olivine mineral
18 carbonation: Role of passivating layer formation, *Environ. Sci. Technol.* 40 (2006)
19 4802–4808. <https://doi.org/10.1021/es0523340>.

1 [21] R. Hellmann, D. Daval, R. Wirth, Formation of Amorphous Silica Surface Layers by
2 Dissolution-Reprecipitaton During Chemical Weathering: Implications for CO₂
3 Uptake, *Procedia Earth Planet. Sci.* 7 (2013) 346–349.
4 <https://doi.org/10.1016/j.proeps.2013.03.154>.

5 [22] D. Daval, R. Hellmann, G.D. Saldi, R. Wirth, K.G. Knauss, Linking nm-scale
6 measurements of the anisotropy of silicate surface reactivity to macroscopic
7 dissolution rate laws: New insights based on diopside, *Geochim. Cosmochim. Acta*.
8 107 (2013) 121–134. <https://doi.org/10.1016/j.gca.2012.12.045>.

9 [23] A. Renman, G. Renman, Long-term phosphate removal by the calcium-silicate
10 material Polonite in wastewater filtration systems, *Chemosphere*. 79 (2010) 659–
11 664. <https://doi.org/10.1016/j.chemosphere.2010.02.035>.

12 [24] C.E. Choong, K.T. Wong, S.B. Jang, I.W. Nah, J. Choi, S. Ibrahim, Y. Yoon, M.
13 Jang, Fluoride removal by palm shell waste based powdered activated carbon vs.
14 functionalized carbon with magnesium silicate: Implications for their application in
15 water treatment, *Chemosphere*. 239 (2020) 124765.
16 <https://doi.org/10.1016/j.chemosphere.2019.124765>.

17 [25] G. Qi, X. Lei, L. Li, C. Yuan, Y. Sun, J. Chen, J. Chen, Y. Wang, J. Hao,
18 Preparation and evaluation of a mesoporous calcium-silicate material (MCSM) from
19 coal fly ash for removal of Co(II) from wastewater, *Chem. Eng. J.* 279 (2015) 777–

1 787. <https://doi.org/10.1016/j.cej.2015.05.077>.

2 [26] Q. Si, Q. Zhu, Z. Xing, Design and Synthesis of a Novel Silicate Material from Red
3 Mud for Simultaneous Removal of Nitrogen and Phosphorus in Wastewater, ACS
4 Sustain. Chem. Eng. 5 (2017) 11422–11432.
5 <https://doi.org/10.1021/acssuschemeng.7b02538>.

6 [27] Y. Wang, G. Wang, H. Wang, C. Liang, W. Cai, L. Zhang, Chemical-template
7 synthesis of micro/nanoscale magnesium silicate hollow spheres for waste-water
8 treatment, Chem. - A Eur. J. 16 (2010) 3497–3503.
9 <https://doi.org/10.1002/chem.200902799>.

10 [28] S. Zhang, W. Xu, M. Zeng, J. Lii, J. Li, J. Xu, X. Wang, Superior adsorption
11 capacity of hierarchical iron oxide@magnesium silicate magnetic nanorods for fast
12 removal of organic pollutants from aqueous solution, J. Mater. Chem. A. 1 (2013)
13 11691–11697. <https://doi.org/10.1039/c3ta12767b>.

14 [29] K.Y. Jung, K.H. Han, Y.C. Kang, H.K. Jung, Preparation of CaMgSi₂O₆:Eu blue
15 phosphor particles by spray pyrolysis and its VUV characteristics, Mater. Chem.
16 Phys. 98 (2006) 330–336. <https://doi.org/10.1016/j.matchemphys.2005.09.032>.

17 [30] K.Y. Jung, J.H. Kim, Y.C. Kang, Luminescence enhancement of Eu-doped calcium
18 magnesium silicate blue phosphor for UV-LED application, J. Lumin. 129 (2009)
19 615–619. <https://doi.org/10.1016/j.jlumin.2009.01.001>.

1 [31] A. Bigham, S.A. Hassanzadeh-Tabrizi, M. Rafienia, H. Salehi, Ordered mesoporous
2 magnesium silicate with uniform nanochannels as a drug delivery system: The effect
3 of calcination temperature on drug delivery rate, *Ceram. Int.* 42 (2016) 17185–
4 17191. <https://doi.org/10.1016/j.ceramint.2016.08.009>.

5 [32] T.W. Sun, Y.J. Zhu, C. Qi, F. Chen, Y.Y. Jiang, Y.G. Zhang, J. Wu, C. Wu,
6 Templatized solvothermal synthesis of magnesium silicate hollow nanospheres with
7 ultrahigh specific surface area and their application in high-performance protein
8 adsorption and drug delivery, *J. Mater. Chem. B* 4 (2016) 3257–3268.
9 <https://doi.org/10.1039/c5tb02632f>.

10 [33] W. Zhai, H. Lu, L. Chen, X. Lin, Y. Huang, K. Dai, K. Naoki, G. Chen, J. Chang,
11 Silicate bioceramics induce angiogenesis during bone regeneration, *Acta Biomater.* 8
12 (2012) 341–349. <https://doi.org/10.1016/j.actbio.2011.09.008>.

13 [34] K.P. Sanosh, A. Balakrishnan, L. Francis, T.N. Kim, Sol-gel synthesis of forsterite
14 nanopowders with narrow particle size distribution, *J. Alloys Compd.* 495 (2010)
15 113–115. <https://doi.org/10.1016/j.jallcom.2010.01.097>.

16 [35] S. Ni, L. Chou, J. Chang, Preparation and characterization of forsterite (Mg_2SiO_4)
17 bioceramics, *Ceram. Int.* 33 (2007) 83–88.
18 <https://doi.org/10.1016/j.ceramint.2005.07.021>.

19 [36] M. Kharaziha, M.H. Fathi, Synthesis and characterization of bioactive forsterite

1 nanopowder, Ceram. Int. 35 (2009) 2449–2454.

2 <https://doi.org/10.1016/j.ceramint.2009.02.001>.

3 [37] J. Zhang, L. Dang, M. Zhang, Q. Lu, S. Zhao, Characterization of mesoporous
4 magnesium silicate with hierarchical structure and its adsorption performance for
5 dye and lead ion, Surfaces and Interfaces. 8 (2017) 112–118.
6 <https://doi.org/10.1016/j.surfin.2017.05.005>.

7 [38] V. Šepelák, S. Bégin-Colin, G. Le Caér, Transformations in oxides induced by high-
8 energy ball-milling, Dalt. Trans. 41 (2012) 11927–11948.
9 <https://doi.org/10.1039/c2dt30349c>.

10 [39] F. Tavangarian, R. Emadi, Mechanical activation assisted synthesis of pure
11 nanocrystalline forsterite powder, J. Alloys Compd. (2009).
12 <https://doi.org/10.1016/j.jallcom.2009.06.051>.

13 [40] F. Tavangarian, R. Emadi, Synthesis of nanocrystalline forsterite (Mg_2SiO_4) powder
14 by combined mechanical activation and thermal treatment, Mater. Res. Bull. 45
15 (2010) 388–391. <https://doi.org/10.1016/j.materresbull.2009.12.032>.

16 [41] M.T. Tsai, Synthesis of nanocrystalline enstatite fiber via alkoxide sol-gel process, J.
17 Am. Ceram. Soc. 88 (2005) 1770–1772. <https://doi.org/10.1111/j.1551-2916.2005.00359.x>.

19 [42] M.E. Song, J.S. Kim, M.R. Joung, S. Nahm, Y.S. Kim, J.H. Paik, B.H. Choi,

1 Synthesis and microwave dielectric properties of MgSiO₃ ceramics, *J. Am. Ceram.*
2 *Soc.* 91 (2008) 2747–2750. <https://doi.org/10.1111/j.1551-2916.2008.02499.x>.

3 [43] Y. Zhuang, Y. Yang, G. Xiang, X. Wang, Magnesium silicate hollow nanostructures
4 as highly efficient absorbents for toxic metal ions, *J. Phys. Chem. C.* 113 (2009)
5 10441–10445. <https://doi.org/10.1021/jp9014756>.

6 [44] B. Wang, Q.Y. Chang, K. Gao, H.R. Fang, T. Qing, N.N. Zhou, The synthesis of
7 magnesium silicate hydroxide with different morphologies and the comparison of
8 their tribological properties, *Tribol. Int.* 119 (2018) 672–679.
9 <https://doi.org/10.1016/j.triboint.2017.11.020>.

10 [45] F. Dellisanti, G. Valdré, On the high-temperature structural behaviour of talc (Mg₃Si
11 4O₁₀(OH)₂) to 1600C: Effect of mechanical deformation and strain, *Philos. Mag.* 90
12 (2010) 2443–2457. <https://doi.org/10.1080/14786431003772991>.

13 [46] O.Y. Golubeva, E.N. Korytkova, V. V. Gusalov, Hydrothermal synthesis of
14 magnesium silicate montmorillonite for polymer-clay nanocomposites, *Russ. J.*
15 *Appl. Chem.* 78 (2005) 26–32. <https://doi.org/10.1007/s11167-005-0225-z>.

16 [47] Z.A. Alothman, A review: Fundamental aspects of silicate mesoporous materials,
17 *Materials (Basel)*. 5 (2012) 2874–2902. <https://doi.org/10.3390/ma5122874>.

18 [48] X.S. Zhao, G.Q. Lu, G.J. Millar, Advances in mesoporous molecular sieve MCM-41,
19 *Ind. Eng. Chem. Res.* 35 (1996) 2075–2090. <https://doi.org/10.1021/ie950702a>.

1 [49] C. Perego, R. Millinib, Porous materials in catalysis: Challenges for mesoporous

2 materials, *Chem. Soc. Rev.* 42 (2013) 3956–3976.

3 <https://doi.org/10.1039/c2cs35244c>.

4 [50] F. Di Renzo, A. Galarneau, P. Trens, F. Fajula, *Micelle-Templated Materials*,

5 *Handb. Porous Solids.* (2002) 1311–1395.

6 <https://doi.org/https://doi.org/10.1002/9783527618286.ch21a>.

7 [51] Q. Lu, Q. Li, J. Zhang, J. Li, J. Lu, Facile mesoporous template-assisted

8 hydrothermal synthesis of ordered mesoporous magnesium silicate as an efficient

9 adsorbent, *Appl. Surf. Sci.* 360 (2016) 889–895.

10 <https://doi.org/10.1016/j.apsusc.2015.11.081>.

11 [52] Y. Zhu, D. Jian, S. Wang, Synthesis of mesoporous magnesium silicate particles and

12 their adsorption property, *Micro Nano Lett.* 6 (2011) 671–674.

13 <https://doi.org/10.1049/mnl.2011.0265>.

14 [53] H. Tüysüz, F. Schüth, *Ordered Mesoporous Materials as Catalysts*, 2012.

15 <https://doi.org/10.1016/B978-0-12-385516-9.00002-8>.

16 [54] J.N. Kondo, K. Domen, Crystallization of mesoporous metal oxides, *Chem. Mater.*

17 20 (2008) 835–847. <https://doi.org/10.1021/cm702176m>.

18 [55] S. Jun, Sang Hoon Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O.

19 Terasaki, Synthesis of new, nanoporous carbon with hexagonally ordered

1 mesostructure [5], *J. Am. Chem. Soc.* 122 (2000) 10712–10713.

2 <https://doi.org/10.1021/ja002261e>.

3 [56] J. Ilavsky, F. Zhang, A.J. Allen, L.E. Levine, P.R. Jemian, G.G. Long, Ultra-small-
4 angle X-ray scattering instrument at the advanced photon source: History, recent
5 development, and current status, *Metall. Mater. Trans. A Phys. Metall. Mater. Sci.*
6 44 (2013) 68–76. <https://doi.org/10.1007/s11661-012-1431-y>.

7 [57] U. Bonse, M. Hart, Tailless x-ray single-crystal reflection curves obtained by
8 multiple reflection, *Appl. Phys. Lett.* 7 (1965) 238–240.
9 <https://doi.org/10.1063/1.1754396>.

10 [58] O.H. Teresa, C.K. Choi, Comparison between SiOC thin films fabricated by using
11 plasma enhance chemical vapor deposition and SiO₂ thin films by using fourier
12 transform infrared spectroscopy, *J. Korean Phys. Soc.* 56 (2010) 1150–1155.
13 <https://doi.org/10.3938/jkps.56.1150>.

14 [59] S. Grangeon, F. Claret, C. Roosz, T. Sato, S. Gaboreau, Y. Linard, Structure of
15 nanocrystalline calcium silicate hydrates: Insights from X-ray diffraction,
16 synchrotron X-ray absorption and nuclear magnetic resonance, *J. Appl. Crystallogr.*
17 49 (2016) 771–783. <https://doi.org/10.1107/S1600576716003885>.

18 [60] P. Post, L. Wurlitzer, W. Maus-Friedrichs, A.P. Weber, Characterization and
19 applications of nanoparticles modified in-flight with silica or silica-organic coatings,

1 Nanomaterials. 8 (2018) 1–19. <https://doi.org/10.3390/nano8070530>.

2 [61] L.M. Johnson, L. Gao, C.W. Shields, M. Smith, K. Efimenko, K. Cushing, J. Genzer,
3 G.P. López, Elastomeric microparticles for acoustic mediated bioseparations, *J.*
4 *Nanobiotechnology*. 11 (2013) 1–8. <https://doi.org/10.1186/1477-3155-11-22>.

5 [62] S. Musić, N. Filipović-Vinceković, L. Sekovanić, Precipitation of amorphous SiO₂
6 particles and their properties, *Brazilian J. Chem. Eng.* 28 (2011) 89–94.
7 <https://doi.org/10.1590/S0104-66322011000100011>.

8 [63] C. Vancea, M. Mihailescu, A. Negrea, G. Mosoarca, M. Ciopec, N. Duteanu, P.
9 Negrea, V. Minzatu, Batch and fixed-bed column studies on palladium recovery
10 from acidic solution by modified mgsio₃, *Int. J. Environ. Res. Public Health*. 17
11 (2020) 1–17. <https://doi.org/10.3390/ijerph17249500>.

12 [64] C. Karlsson, E. Zanghellini, J. Swenson, B. Roling, D.T. Bowron, L. Börjesson,
13 Structure of mixed alkali/alkaline-earth silicate glasses from neutron diffraction and
14 vibrational spectroscopy, *Phys. Rev. B - Condens. Matter Mater. Phys.* 72 (2005) 1–
15 12. <https://doi.org/10.1103/PhysRevB.72.064206>.

16 [65] H. Asgar, V. Semeykina, M. Hunt, S. Mohammed, I. Kuzmenko, I. Zharov, G.
17 Gadikota, Thermally-Induced morphological evolution of spherical silica
18 nanoparticles using in-operando X-ray scattering measurements, *Colloids Surfaces A*
19 *Physicochem. Eng. Asp.* 586 (2020). <https://doi.org/10.1016/j.colsurfa.2019.124260>.

1 [66] H. Asgar, S. Seifert, I. Kuzmenko, M. Bartl, G. Gadikota, Mechanistic Insights into
2 the Colloidal Assembly of Mesoporous Silica using in-operando Cross-Scale X-ray
3 Scattering and Spectroscopic Measurements, *Materialia*. 12 (2020) 100764.

4 [67] K. Kim, J. Kim, W. Kim, Influence of Reaction Conditions on Sol-Precipitation
5 Process Producing Silicon Oxide Particles, *Ceram. Int.* 28 (2002) 187–194.

6 [68] C.J. Brinker, G.W. Scherer, *Sol-Gel Science: The Physics and Chemistry of Sol-Gel*
7 Processing, Academic Press, San Diego, 1990.

8 [69] F. Azimov, I. Markova, V. Stefanova, K. Sharipov, Synthesis and characterization of
9 SBA-15 AND Ti-SBA-15 nanoporous materials for DME catalysts, *J. Univ. Chem.*
10 *Technol. Metall.* 47 (2012) 333–340.

11 [70] Y. Song, L.Y. Yang, Y. guang Wang, D. Yu, J. Shen, X. kun Ouyang, Highly
12 efficient adsorption of Pb(II) from aqueous solution using amino-functionalized
13 SBA-15/calcium alginate microspheres as adsorbent, *Int. J. Biol. Macromol.* 125
14 (2019) 808–819. <https://doi.org/10.1016/j.ijbiomac.2018.12.112>.

15 [71] A.M. Escatllar, T. Lazaukas, S.M. Woodley, S.T. Bromley, Structure and Properties
16 of Nanosilicates with Olivine $(\text{Mg}_2 \text{SiO}_4)\text{N}$ and Pyroxene $(\text{MgSiO}_3)\text{N}$
17 Compositions, *ACS Earth Sp. Chem.* 3 (2019) 2390–2403.
18 <https://doi.org/10.1021/acsearthspacechem.9b00139>.

19 [72] S.S. Physics, F.S.U. Jena, Steps Toward Interstellar Silicate Mineralogy. V. Thermal

1 Evolution of Amorphous Magnesium Silicates and Silica, Astron. Astrophys. 364
2 (2000) 282–292.

3 [73] I. Prasad, A.N. Chandorkar, Spectroscopy of silicon dioxide films grown under
4 negative corona stress, J. Appl. Phys. 94 (2003) 2308–2310.
5 <https://doi.org/10.1063/1.1593222>.

6 [74] P. Innocenzi, P. Falcaro, D. Grosso, F. Babonneau, Order-disorder transitions and
7 evolution of silica structure in self-assembled mesostructured silica films studied
8 through FTIR spectroscopy, J. Phys. Chem. B. 107 (2003) 4711–4717.
9 <https://doi.org/10.1021/jp026609z>.

10 [75] M. Ghoorah, B.Z. Dlugogorski, H.C. Oskierski, E.M. Kennedy, Study of thermally
11 conditioned and weak acid-treated serpentinites for mineralisation of carbon dioxide,
12 Miner. Eng. 59 (2014) 17–30. <https://doi.org/10.1016/j.mineng.2014.02.005>.

13 [76] L. Sharma, R. Kakkar, Hierarchical Porous Magnesium Oxide (Hr-MgO)
14 Microspheres for Adsorption of an Organophosphate Pesticide: Kinetics, Isotherm,
15 Thermodynamics, and DFT Studies, ACS Appl. Mater. Interfaces. 9 (2017) 38629–
16 38642. <https://doi.org/10.1021/acsami.7b14370>.

17 [77] E. Talik, W. Zarek, M. Kruczak, S. Ganschow, D. Skrzypek, E. Popiel,
18 Characterization of olivine single crystals grown by the micro-pulling-down method
19 and terrestrial olivine by XPS, Mössbauer, magnetic and EPR methods, Cryst. Res.

1 Technol. 41 (2006) 979–987. <https://doi.org/10.1002/crat.200610708>.

2 [78] R. Gustus, W. Gruber, L. Wegewitz, U. Geckle, R. Prang, C. Kübel, H. Schmidt, W.

3 Maus-Friedrichs, Decomposition of amorphous Si₂C by thermal annealing, Thin

4 Solid Films. 552 (2014) 232–240. <https://doi.org/10.1016/j.tsf.2013.12.033>.

5 [79] L. Kang, J. Gao, H.R. Xu, S.Q. Zhao, H. Chen, P.H. Wu, Epitaxial Mg₂SiO₄ thin

6 films with a spinel structure grown on Si substrates, J. Cryst. Growth. 297 (2006)

7 100–104. <https://doi.org/10.1016/j.jcrysgro.2006.09.036>.

8 [80] V.P. Zakaznova-Herzog, H.W. Nesbitt, G.M. Bancroft, J.S. Tse, X. Gao, W.

9 Skinner, High-resolution valence-band XPS spectra of the nonconductors quartz and

10 olivine, Phys. Rev. B - Condens. Matter Mater. Phys. 72 (2005) 1–13.

11 <https://doi.org/10.1103/PhysRevB.72.205113>.

12 [81] Z. Li, Y. Yuan, X. Jing, Effect of current density on the structure, composition and

13 corrosion resistance of plasma electrolytic oxidation coatings on Mg-Li alloy, J.

14 Alloys Compd. 541 (2012) 380–391. <https://doi.org/10.1016/j.jallcom.2012.06.139>.

15 [82] J.S. Corneille, J. He, D.W. Goodman, MgO XPS, 6028 (1994).

16 [83] X. Zhu, D. Wu, W. Wang, F. Tan, P.K. Wong, X. Wang, X. Qiu, X. Qiao, Highly

17 effective antibacterial activity and synergistic effect of Ag-MgO nanocomposite

18 against Escherichia coli, J. Alloys Compd. 684 (2016) 282–290.

19 <https://doi.org/10.1016/j.jallcom.2016.05.179>.

1 [84] Y. Zhang, L. Zhu, L. Chen, L. Liu, G. Ye, Influence of Magnesia on Demoulding
2 Strength of Colloidal Silica-Bonded Castables, *Rev. Adv. Mater. Sci.* 58 (2019) 32–
3 37. <https://doi.org/10.1515/rams-2019-0008>.

4 [85] B.P. Vinayan, Z. Zhao-Karger, T. Diemant, V.S.K. Chakravadhanula, N.I.
5 Schwarzburger, M.A. Cambaz, R.J. Behm, C. Kübel, M. Fichtner, Performance
6 study of magnesium-sulfur battery using a graphene based sulfur composite cathode
7 electrode and a non-nucleophilic Mg electrolyte, *Nanoscale*. 8 (2016) 3296–3306.
8 <https://doi.org/10.1039/c5nr04383b>.

9 [86] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S.
10 Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Chemical analysis of
11 graphene oxide films after heat and chemical treatments by X-ray photoelectron and
12 Micro-Raman spectroscopy, *Carbon N. Y.* 47 (2009) 145–152.
13 <https://doi.org/10.1016/j.carbon.2008.09.045>.

14 [87] J. Radnik, C. Mohr, P. Claus, On the origin of binding energy shifts of core levels of
15 supported gold nanoparticles and dependence of pretreatment and material synthesis,
16 *Phys. Chem. Chem. Phys.* 5 (2003) 172–177. <https://doi.org/10.1039/b207290d>.

17 [88] S. Evans, Correction for the effects of adventitious carbon overlayers in quantitative
18 XPS analysis, *Surf. Interface Anal.* 25 (1997) 924–930.
19 [https://doi.org/10.1002/\(SICI\)1096-9918\(199711\)25:12<924::AID-SIA1096>3.0.CO;2-1](https://doi.org/10.1002/(SICI)1096-9918(199711)25:12<924::AID-SIA1096>3.0.CO;2-1)

1 SIA317>3.0.CO;2-2.

2 [89] L. Chen, Z. Xu, J. Li, B. Zhou, M. Shan, Y. Li, L. Liu, B. Li, J. Niu, Modifying
3 graphite oxide nanostructures in various media by high-energy irradiation, RSC Adv.
4 4 (2014) 1025–1031. <https://doi.org/10.1039/c3ra46203j>.

5 [90] V.G. Tsirelson, A.S. Avilov, Y.A. Abramov, E.L. Belokoneva, R. Kitaneh, D. Feil,
6 X-ray and Electron Diffraction Study of MgO, Acta Crystallogr. Sect. B Struct. Sci.
7 54 (1998) 8–17. <https://doi.org/10.1107/S0108768197008963>.

8 [91] R.K. Biswas, P. Khan, S. Mukherjee, A.K. Mukhopadhyay, J. Ghosh, K.
9 Muraleedharan, Study of short range structure of amorphous Silica from PDF using
10 Ag radiation in laboratory XRD system, RAMAN and NEXAFS, J. Non. Cryst.
11 Solids. 488 (2018) 1–9. <https://doi.org/10.1016/j.jnoncrysol.2018.02.037>.

12 [92] S. Speakman, Estimating Crystallite Size Using XRD (MIT Center for Materials
13 Science and Engineering, Estim. Cryst. Size Using XRD (MIT Cent. Mater. Sci.
14 Eng. (2008) 5–15.

15 [93] X. Li, X. Lian, F. Liu, Rear-End Road Crash Characteristics Analysis Based on
16 Chinese In-Depth Crash Study Data, CICTP 2016 - Green Multimodal Transp.
17 Logist. - Proc. 16th COTA Int. Conf. Transp. Prof. (2016) 1536–1545.
18 <https://doi.org/10.1061/9780784479896.140>.

19 [94] K. Sangwal, K. Ramakrishna Rao, A note on the dissolution mechanism of MgO

1 crystals in acids, *J. Mater. Sci.* 15 (1980) 2673–2675.

2 <https://doi.org/10.1007/BF00550779>.

3 [95] J.R. Smyth, R.M. Hazen, The Crystal Structures of Forsterite and Hortonolite at
4 Several Temperatures Up to 900 °C., *Am. Mineral.* 58 (1973) 588–593.

5 [96] R.M. Hazen, Effects of temperature and pressure on the cell dimension and X-ray
6 temperature factors of periclase, *Am. Mineral.* 61 (1976) 266–271.

7 [97] H. Yang, S. Ghose, High temperature single crystal X-ray diffraction studies of the
8 ortho-proto phase transition in enstatite, Mg₂Si₂O₆ at 1360 K, *Phys. Chem. Miner.*
9 22 (1995) 300–310. <https://doi.org/10.1007/BF00202770>.

10 [98] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky,
11 Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom
12 pores, *Science* (80-.). 279 (1998) 548–552.
13 <https://doi.org/10.1126/science.279.5350.548>.

14 [99] M. Thommes, B. Smarsly, M. Groenewolt, P.I. Ravikovitch, A. V. Neimark,
15 Adsorption hysteresis of nitrogen and argon in pore networks and characterization of
16 novel micro- and mesoporous silicas, *Langmuir*. 22 (2006) 756–764.
17 <https://doi.org/10.1021/la051686h>.

18 [100] J. Landers, G.Y. Gor, A. V. Neimark, Density functional theory methods for
19 characterization of porous materials, *Colloids Surfaces A Physicochem. Eng. Asp.*

1 437 (2013) 3–32. <https://doi.org/10.1016/j.colsurfa.2013.01.007>.

2 [101] A. V. Neimark, Y. Lin, P.I. Ravikovitch, M. Thommes, Quenched solid density

3 functional theory and pore size analysis of micro-mesoporous carbons, *Carbon* N. Y.

4 47 (2009) 1617–1628. <https://doi.org/10.1016/j.carbon.2009.01.050>.

5 [102] M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodrigues-Reinosa, J.

6 Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the

7 evaluation of surface area and pore size distribution (IUPAC Technical Report), *Pure*

8 *Appl. Chem.* 87 (2015) 1051–1069.

9 [103] F. Rouquerol, J. Rouquerol, K. Sing, *Adsorption by Powders and Porous Solids*,

10 Academic Press, London, 1999.

11 [104] T. Kjellman, N. Reichhardt, M. Sakeye, J.H. Smaïstt, M. Lindén, V. Alfredsson,

12 Independent fine-tuning of the intrawall porosity and primary mesoporosity of SBA-

13 15, *Chem. Mater.* 25 (2013) 1989–1997. <https://doi.org/10.1021/cm4009442>.

14 [105] Y. Zhao, S. Sun, X. Cai, Y. Fan, W. Jiang, B. Zhou, S. Gu, N. Shi, W. Luo, L.

15 Wang, Enhancement in sintering driving force derived from in situ ordered structural

16 collapse of mesoporous powders, *J. Am. Ceram. Soc.* 103 (2020) 5654–5663.

17 <https://doi.org/10.1111/jace.17343>.

18

19

1 **Tables**

2 **Table 1.** Classification of different silicate units and corresponding Q^n notations, non-
3 bridging oxygens (NBOs), and wavenumber ranges.

Q^n notation	Non-Bridging Oxygens (NBOs)	Unit	Wavenumber (cm⁻¹)
Q^4	0	SiO_2	1300 – 1051
Q^3	1	$[\text{Si}_2\text{O}_5]^{2-}$	1050 – 981
Q^2	2	$[\text{SiO}_3]^{2-}$	980 – 951
Q^1	3	$[\text{Si}_2\text{O}_7]^{6-}$	950 – 901
Q^0	4	$[\text{SiO}_4]^{4-}$	900 – 850

4

5

1 **Table 2.** Parameters extracted from N₂ adsorption-desorption measurements using non-local
 2 density functional theory (NLDFT) model on the adsorption branch.

Sample ID	Average Pore Width (nm)	Surface Area (m ² /g)	Pore Volume (cc/g)
As-synthesized amorphous Mg-silicate	6.56	276.35	0.43
Sucrose coated Mg-silicate	4.89	0.27	0.001
Carbon coated Mg-silicate	1.87	384.43	0.14
Crystalline Mg-silicate	2.58	124.25	0.12
Crystalline Mg-silicate without sucrose coating	4.89	9.53	0.03

3

1 **List of Figures**

2 **Figure 1.** Schematic representation of different stages of crystalline mesoporous magnesium
3 silicate synthesis

4 **Figure 2.** Identification of different functional groups using Attenuated Total Reflection-
5 Fourier Transform Infrared (ATR-FTIR) spectroscopy measurements in different
6 mesoporous magnesium silicate samples

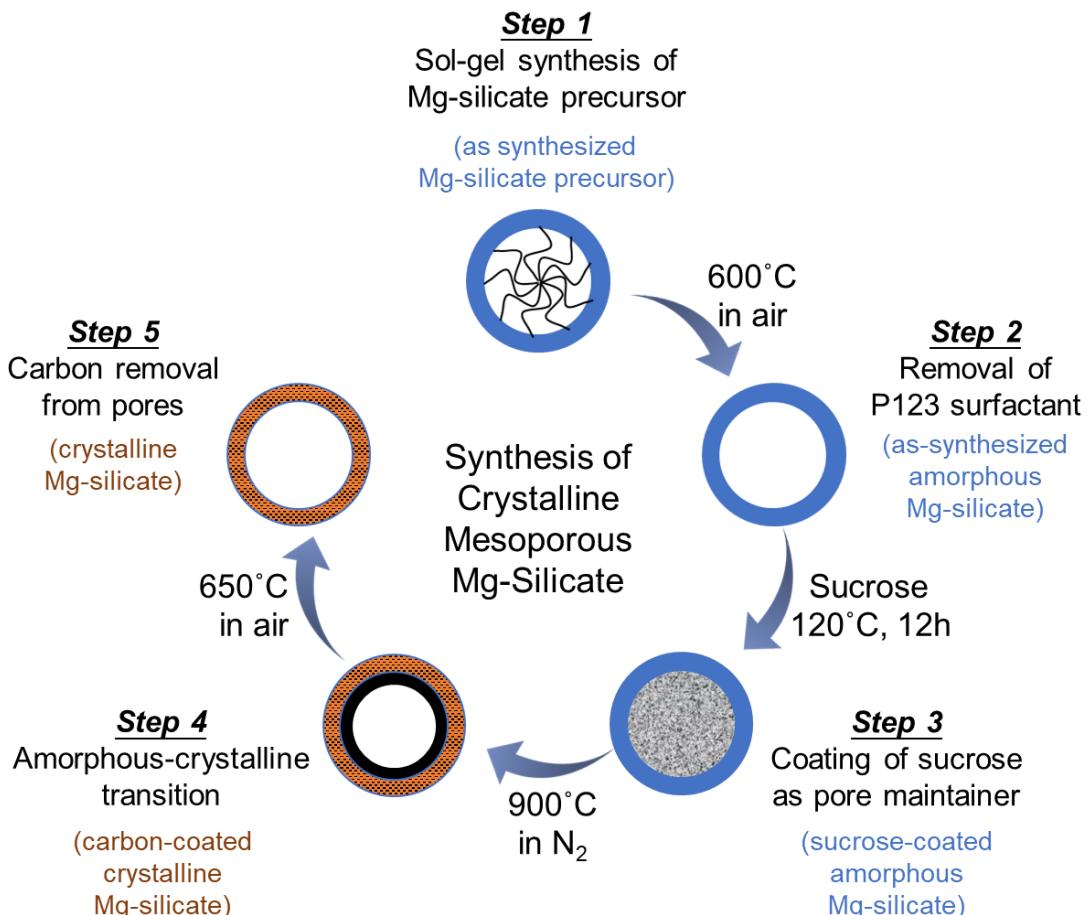
7 **Figure 3.** Delineation of Q^4 - Q^0 contributions from silicate species using deconvoluted
8 ATR-IR spectra for as-synthesized **(a)**, sucrose-coated **(b)**, carbon-coated **(c)**, and crystalline
9 **(d)** Mg-silicate samples, respectively.

10 **Figure 4.** Structural arrangement in as-synthesized amorphous magnesium silicate **(a)**,
11 sucrose-coated magnesium silicate **(b)**, carbon-coated magnesium silicate **(c)**, crystalline
12 magnesium silicate **(d)**, and crystalline magnesium silicate without sucrose coating **(e)**
13 determined using X-ray diffraction.

14 **Figure 5.** Identification of magnesium, silicon, carbon, and oxygen peaks using X-ray
15 photoelectron spectroscopy (XPS) spectra.

16 **Figure 6.** Identification of changes in the chemical states of magnesium **(a-1 to d-1)**, silicon
17 **(a-2 to d-2)**, and oxygen **(a-3 to d-3)** via deconvolution of Mg 2s, Si 2p, and O 1s peaks in
18 as-synthesized amorphous, sucrose-coated, carbon-coated **(c)**, and crystalline magnesium
19 silicate samples, respectively.

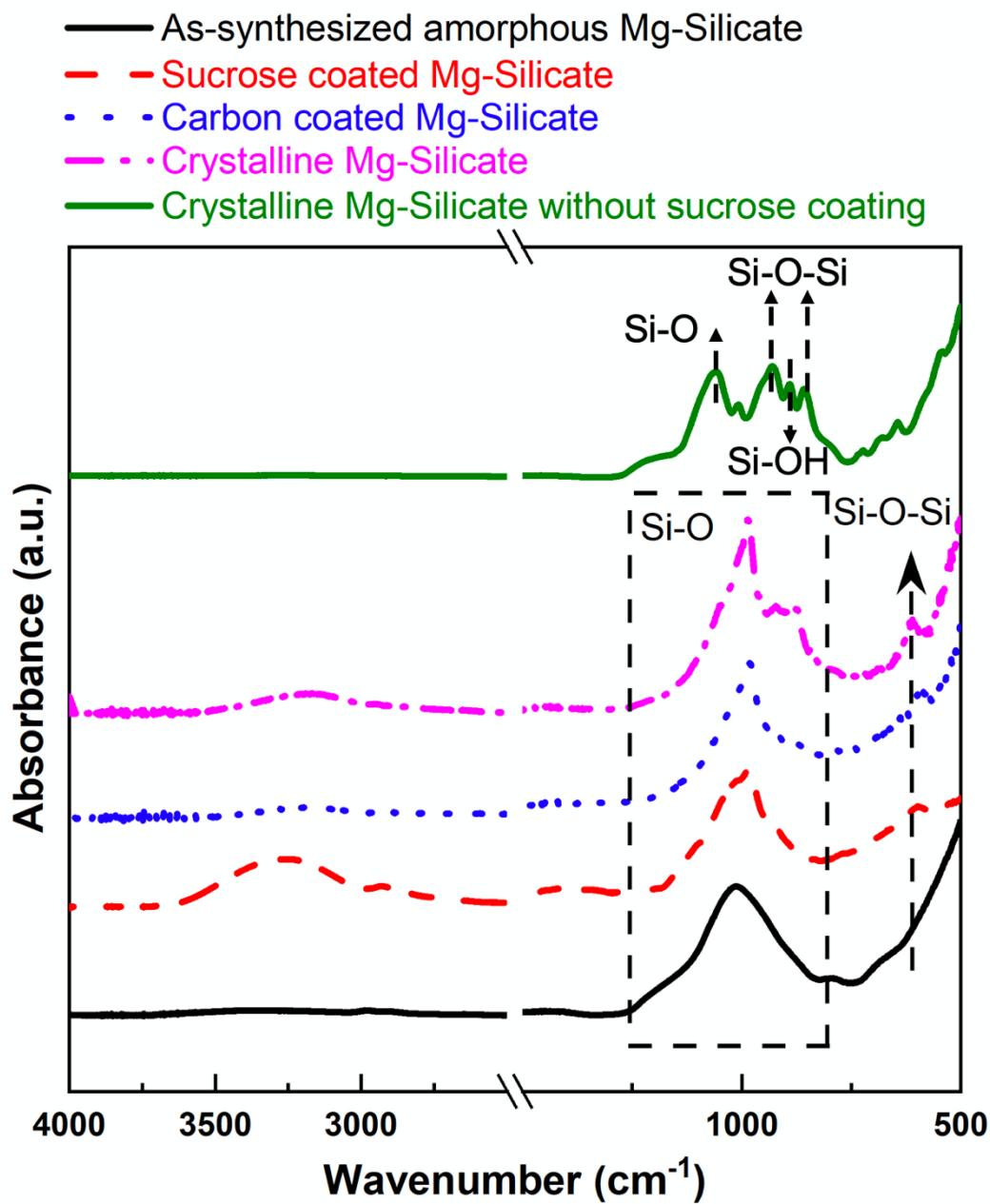
20 **Figure 7.** Morphologies of amorphous **(a)**, sucrose-coated **(b)**, carbon-coated **(c)**, and
21 crystalline **(d)** mesoporous magnesium silicate samples determined using scanning electron


1 micrographs (SEM)

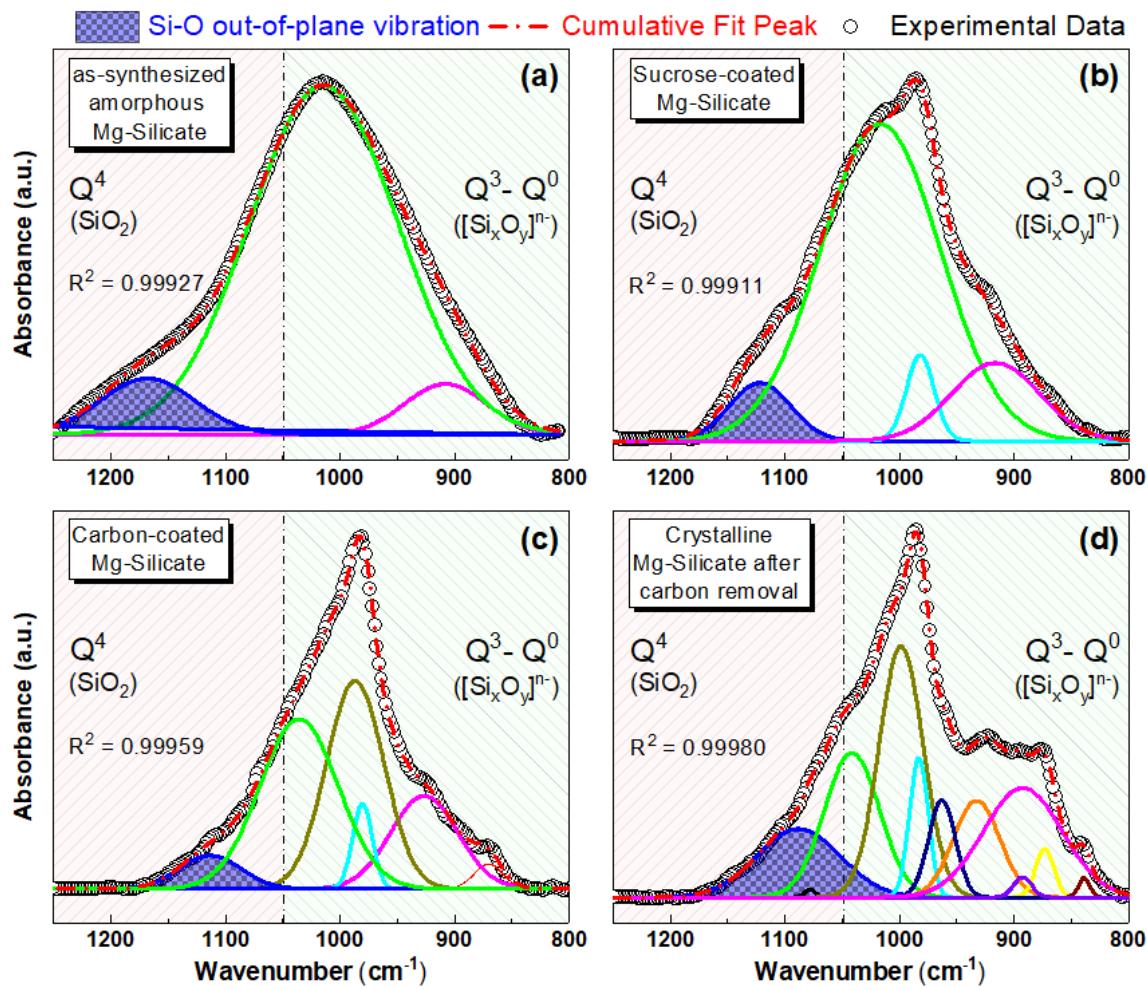
2 **Figure 8.** Pore size distribution for as-synthesized amorphous magnesium silicate **(a)**,
3 sucrose-coated magnesium silicate **(b)**, carbon-coated magnesium silicate **(c)**, crystalline
4 magnesium silicate **(d)** samples, and crystalline magnesium silicate without sucrose coating
5 **(e)**, respectively, determined using non-local density functional theory (NLDFT) model on
6 the adsorption branch. The insets are schematic representations of the pores and the
7 crystallinity of the pore walls.

8 **Figure 9.** Visualization of pore size and crystallinity in the pore walls for crystalline
9 magnesium silicate sample determined using high-resolution transmission electron
10 microscopy (HR-TEM)

11 **Figure 10.** Changes in the structural arrangements of the pore walls of mesoporous
12 magnesium silicate samples were determined using *in-situ* Wide-Angle X-ray Scattering
13 (WAXS) measurement.

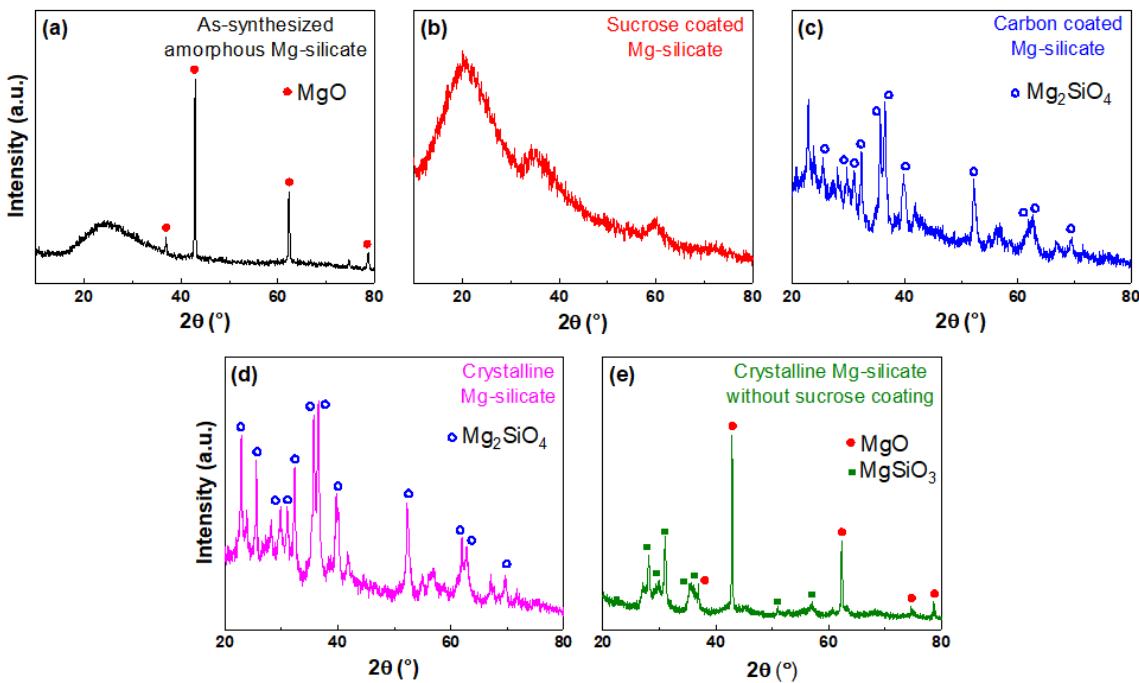

14

1


2 **Figure 1.** Schematic representation of different stages of crystalline mesoporous magnesium
3 silicate synthesis

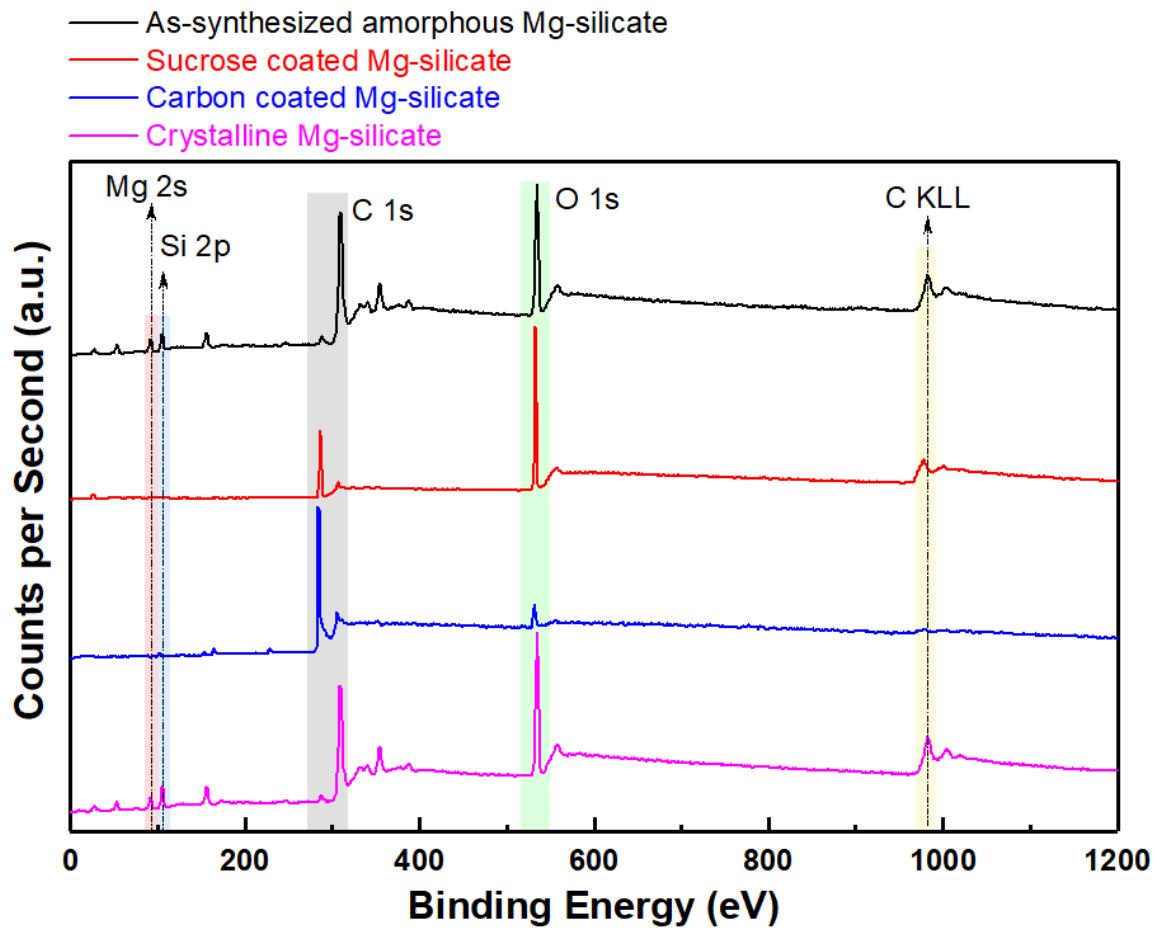
4

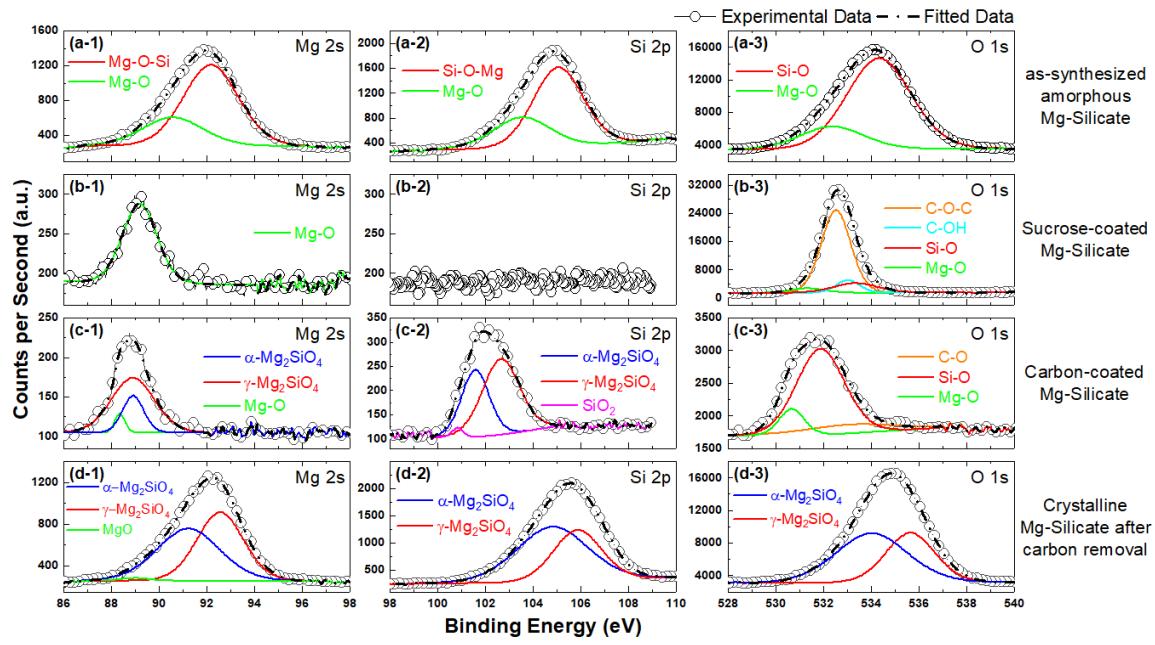
1
2 **Figure 2.** Identification of different functional groups using Attenuated Total Reflection-
3 Fourier Transform Infrared (ATR-FTIR) spectroscopy measurements in different
4 mesoporous magnesium silicate samples.


5

1

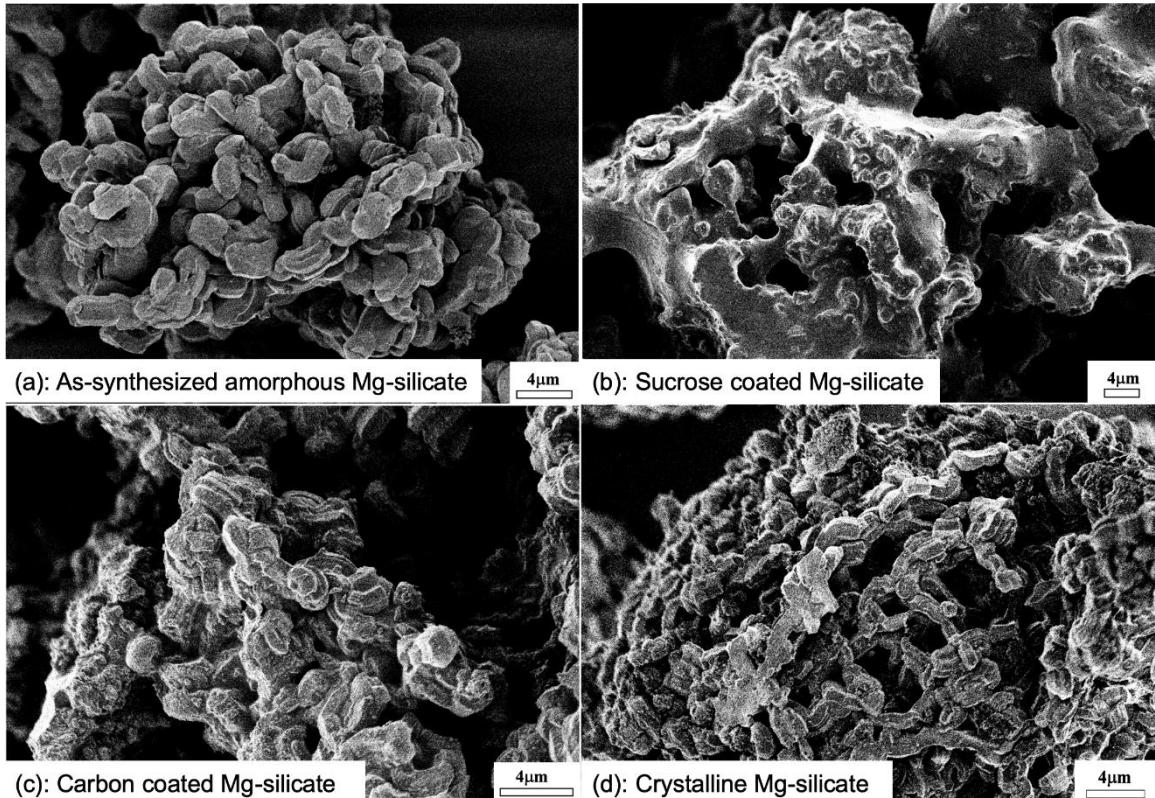
2 **Figure 3.** Delineation of Q⁴-Q⁰ contributions from silicate species using deconvoluted
 3 ATR-IR spectra for as-synthesized **(a)** sucrose-coated **(b)** carbon-coated and, **(c)** crystalline
 4 **(d)** Mg-silicate samples.


5

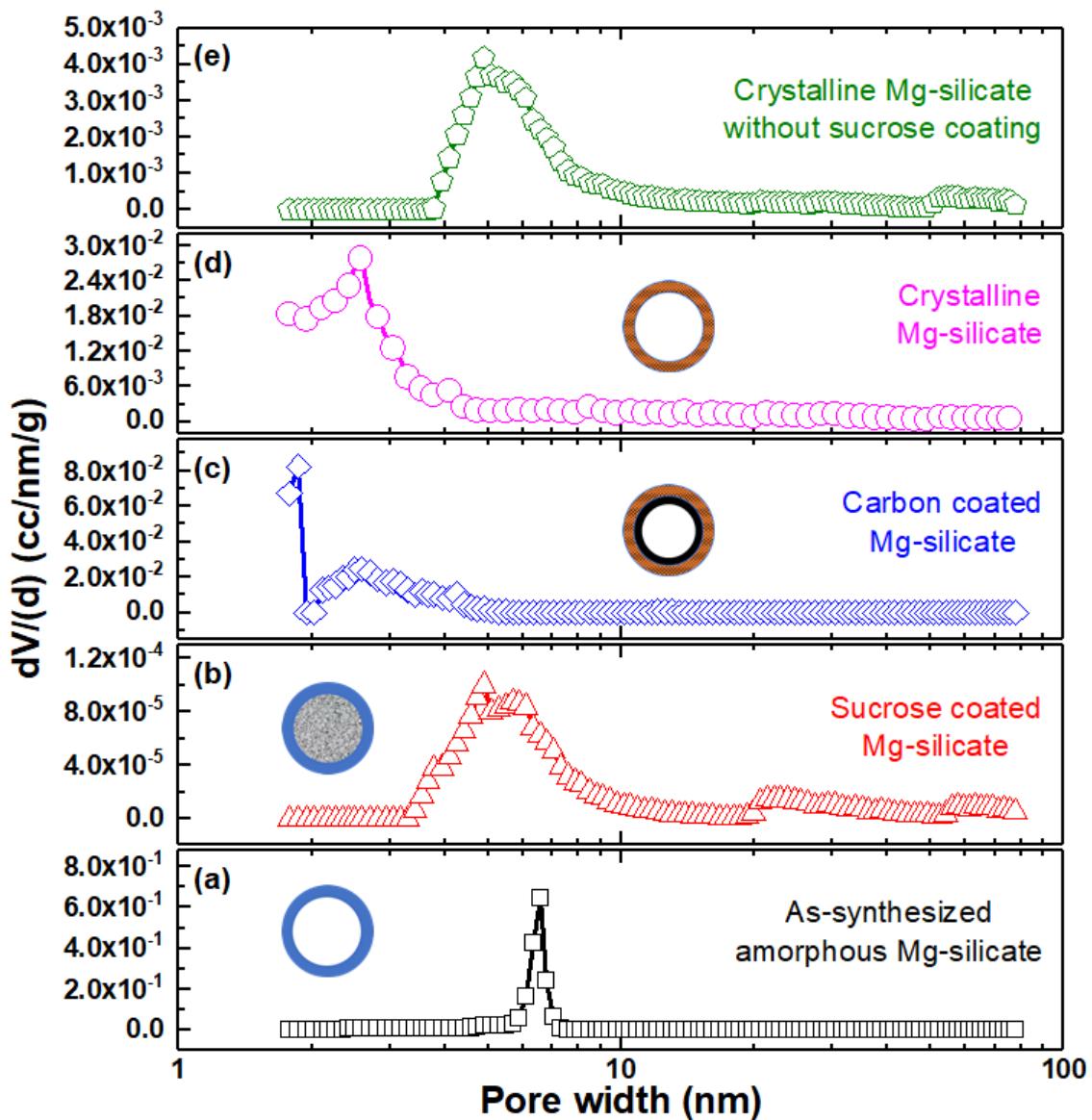

1

2 **Figure 4.** Structural arrangement in as-synthesized amorphous magnesium silicate **(a)**,
 3 sucrose-coated magnesium silicate **(b)**, carbon-coated magnesium silicate **(c)**, crystalline
 4 magnesium silicate **(d)**, and crystalline magnesium silicate without sucrose coating **(e)**
 5 determined using X-ray diffraction

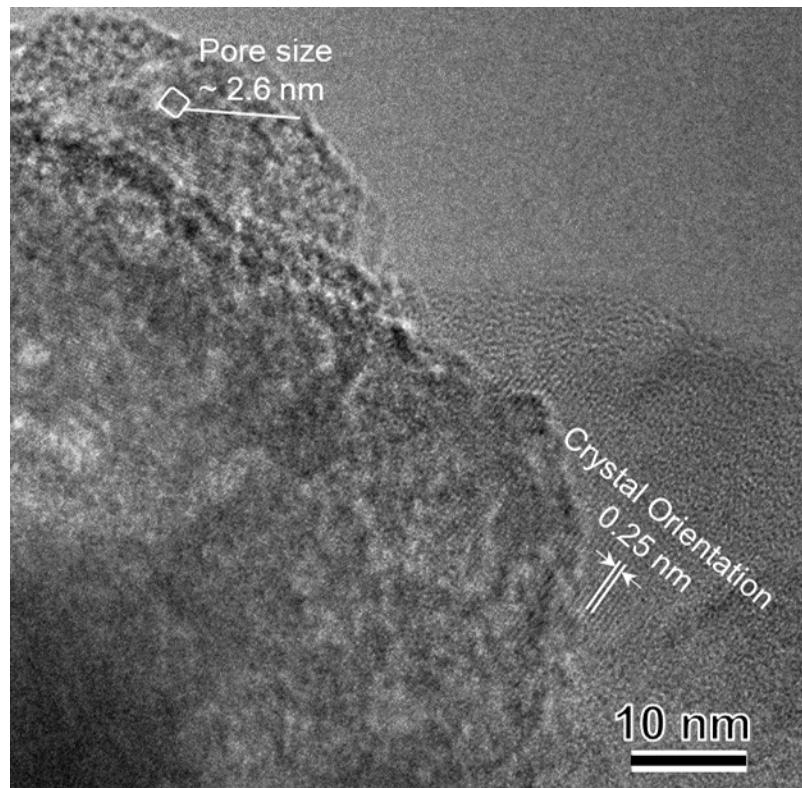
6


1
2 **Figure 5.** Identification of magnesium, silicon, carbon, and oxygen peaks using X-ray
3 photoelectron spectroscopy (XPS) spectra.
4

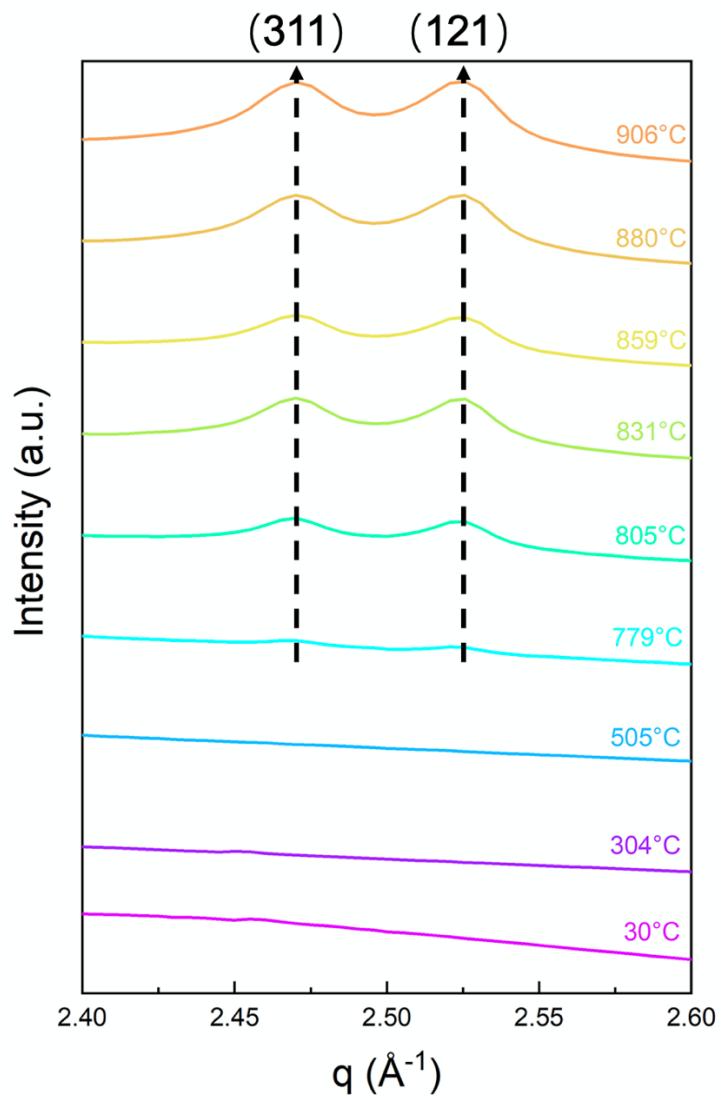
1


2 **Figure 6.** Identification of changes in the chemical states of magnesium **(a-1 to d-1)**, silicon
 3 **(a-2 to d-2)**, and oxygen **(a-3 to d-3)** via deconvolution of Mg 2s, Si 2p, and O 1s peaks in
 4 as-synthesized amorphous, sucrose-coated, carbon-coated **(c)**, and crystalline magnesium
 5 silicate samples, respectively.

1
2



3
4 **Figure 7.** Morphologies of amorphous **(a)**, sucrose-coated **(b)**, carbon-coated **(c)**, and
5 crystalline **(d)** mesoporous magnesium silicate samples determined using scanning electron
6 micrographs (SEM)


7

1
2 **Figure 8.** Pore size distribution for as-synthesized amorphous magnesium silicate **(a)**,
3 sucrose-coated magnesium silicate **(b)**, carbon-coated magnesium silicate **(c)**, crystalline
4 magnesium silicate **(d)** samples, and crystalline magnesium silicate without sucrose coating
5, respectively, determined using non-local density functional theory (NLDFT) model on
6 the adsorption branch. The insets are schematic representations of the pores and the
7 crystallinity of the pore walls.

2 **Figure 9.** Visualization of pore size and crystallinity in the pore walls for crystalline
3 magnesium silicate sample determined using high-resolution transmission electron
4 microscopy (HR-TEM).

1

2 **Figure 10.** Changes in the structural arrangements of the pore walls of mesoporous
3 magnesium silicate samples determined using *in-situ* Wide-Angle X-ray Scattering (WAXS)
4 measurement.

5