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2 I Outline

•Motivation

•A little about human performance.

•Visualization experiments: Bad DL is better than no DL, with one exception

•Accuracy experiments: As DL model performance goes up, human performance goes up, with
exceptions

•Discussion of future work: Explainability, three ways.



Motivation & Introduction



4 I Deep Learning and International Safeguards

Safeguards "running' towards DL in multiple aspects of verification

Deep learning models are getting very good, but what happens when they are wrong?

No deep learning algorithms were harmed in the course of this work.

Experimental data:

1) Visual search psychology dataset

2) Open source imagery dataset



A little about humans...
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7 How good is my model at identifying the defined signature?
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8 How good is my signature at identifying the event?
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9 How good is my human at interpreting the model's identification —
or misidentification - of the signature?
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I) Even "bad" DL is better than
"no" DL (most of the time)



11 Is there a "Perfect T" present?
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12 I Participant Accuracy for Correct Model Indicators
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- TP: Accuracy increases from 74%
to over 90%

- TN: Accuracy remains about the
same at 91%.

- TN presentation is an absence of
indicator for all but text conditions,
so similar performance on TN and
no aid is expected



13 I Human accuracy when the model is wrong
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Human performance without aid
Target present

Target absent

- FN: Accuracy remains about the same,
up slightly from 74% no aid to 75%.

- FP: Results stay about the same as no aid
to identify the absence of a target

- FN + FP: Performance decreases from
the no aid condition, from 74% to about
68%.



2) As DL model performance goes
up, so does human performance
(most of the time)



15 I Participant Accuracy as a Function of DL Accuracy
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16 Participant Accuracy as a Function of DL Accuracy
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3) Explainability, three ways



18 Confidence

P(T) = .22



19 I Salience

p cooling tower = 1.00000

p rooting tower = 0.96455



20 I Transparency

Which model wouldyou trust?
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Google Brain-developed libraries
Image: TensorFlow.org

YOLO v3
Image: Redmon, https://pjreddie.com 
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