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I Part I: Overview of Previous Modeling
4 Work at Sandia National Laboratories

• Various thermal modeling tasks have been carried out at Sandia
for disposal in salt.

•Thermal-only modeling using semi-analytical models was used in
the design of generic repositories to estimate repository footprint
and peak temperatures.

TM numerical modeling was conducted to study thermal
conditions in the near-field together with mechanical processes.

•THM numerical modeling was done to study the effect of
hydrologic (including vapor transport) conditions in addition to
the TM processes.



51 Salt Disposal Concept for Standard Canisters

• Disposal concept considered includes a series of panels with
alcoves

• Access drifts included between panels

• Alcoves to be covered with crushed salt backfill

Clayton (2010)



6 I THM Modeling for Disposal in a Salt Repository

• 3-D grid extending 30 m above and
below repository

• Model includes intact salt host rock,
disturbed rock zone (DRZ) and
crushed salt backfill

- Alcove with one canister/ waste
package with a diameter of 0.61 m
and 2.7 m long

Mesh with 175,520 cells

• Sandia's Sierra suite of codes:
Adagio, Aria and Arpeggio were used

DRZ

Intact salt

Intact salt

Intact salt

Hadgu et al. (2013)



71 THM Modeling Results

- The TM simulations used a salt constitutive
model developed by Callahan (1999)

• Thermal conductivity of crushed salt backfill
as a function of temperature and porosity

For permeability-porosity relations
experimental data used

• Initial conditions:
• intact salt and DRZ: 25 °C and 12 MPa

• crushed salt backfill: 25 °C and 1 atm.

Boundary conditions:

Constant temperature at top and bottom

• Constant pressure at top
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Direct Disposal of Dual Purpose Canisters
8

• An Example of a dual-purpose canister inside a storage overpack (cask) (Hardin et

al., 2015, Modified from Easton 2011)

Dual Purpose Storage Cask*

Cask Lid

Steel Canister Ms in)

Bundles of used
fuel assemblies

Concrete Wall (26.75 in.)

Ove 1....•rigth 147 1p2.2.5
Lpaded Vkight )10.090 lbs
Typka I P ay Foad 2L PWR Bandits

Diameter: 98 ir

1,1•01tirc Irrtern olio nal

HI-STORM SOqy

' Storage aed Dar, soorraoon

• The TM and thermal analyses assumed the in-drift emplacement mode
which is considered to be suitable for disposal of large, heavy packages



9 Part 11: TM Modeling of Disposal in Salt

• For TM modeling Sandia based Sierra suite of codes were used.

• For the simulations creep models for intact and crushed salt
were utilized. The method allows for mechanical consolidation
of the crushed salt backfill which affects thermal properties of
the backfill.

• The simulation looked at emplacement of waste packages in
semi-cylindrical floor cavities and increasing out-of-reactor
period to meet target temperature limit (assumed to be 200 °C).



Thermal and Mechanical Properties for TM
10

Modeling

Material Thermal Specific Heat Density
Conductivity (J/kg K) (kg/m3)
(W/m K)

Waste 1.0 840.0 2200.0

Intact Salt Function of temp 931.0 2160(po)

Crushed Salt Function of temp 931.0 Po(H)

Material Young's Poisson's Thermal
Modulus Ratio Expansion
(Pa) (K-1)

Heater 2.0E11 0.3 2.0E-06

• Intact salt modeled using the multimechanism-deformation (M-D) creep

model (Munson et al. 1989).

• Crushed salt modeled using the crushed salt creep model (Callahan 1999).

• Waste assumed to respond elastically using the properties of steel.



111 Near-Field Alcove Grid used for TM Modeling
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121 TM Modeling Results: Temperature Histories

• In-drift emplacement with 30-m waste package spacing, and fully

coupled thermal-mechanical solution. 60 GW-d/MT, 100 years out of

reactor. No floor cavity.
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13 I TM Results: Temperature Histories; Continued
• In-drift emplacement of 37-PWR size waste packages with 30-m spacing,

and fully coupled thermal-mechanical solution. 60 GW-d/MT, 100 years out

of reactor. run with floor cavity.
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14 1

PART 111: Thermal-Only Modeling using the
Semi-Analytical Model

• Semi-analytical model used to simulate emplacement of
DPCs.

• The repository was assumed to be at 500 m depth.

• Ambient average ground surface temperature of 15°C,
and a natural geothermal gradient of 25°C/km were
used.

• The disposal concept is based on DPCs placed in
overpacks emplaced individually horizontally.



15 1 Representation of the Semi-Analytical Method

0 Thermal-only analysis based on semi-analytical solution

0 Based on method of superposition
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Representation of the Semi-Analytical Method,
16 Contd.

MathCad-based semi-analytical transient thermal model

Based on analytical solution of heat transport (i.e., Carlslaw and Jaeger, 1959)

Model includes other processes such as radiation heat transfer and ventilation

0 Thermal conduction solution: linear superposition of components

Point at calculation radius

(at top of rock wall)
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17 1 Input Parameters for Thermal Analysis

• Waste includes 37-PWR waste packages with 60 GW-d/MT burnup.

• Base Case Data:

• drift diameter: 6.1 m

• waste package diameter of 2.0 m with 5.6 m length

• Drift spacing: 35 m

• Waste package spacing: 10 m (center-to-center)

• Thermal conductivity of intact salt: 3.2 W/m K

• Thermal diffusivity: 1.57 x 10-6 m 2/sec

• Thermal Conductivity of backfill: 3.2 W/m K

• Surface storage time: 100 years

• For parametric study the following variations were made:

• Surface storage time: 50.0, 150.0 years

• Backfill thermal conductivity: 1.0, 2.0, 5.0 and 10.0 W/m K

• Drift spacing: 50.0, 70.0 m

• Waste package spacing: 15.0, 20.0 m



18 I Results of Thermal Simulations: Base Case

Base Case: Waste Package and Drift Wall Temperature
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19  Storage Times
Results of Thermal Simulations: Surface
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20 I Results of Thermal Simulations: Drift Spacing
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Results of Thermal Simulations: Waste
2,  Package Spacing
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Results of Thermal Simulations: Crushed Salt
22 Thermal Conductivity LE
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231 Conclusions

• Presented results of TM and thermal-only modeling for
disposal of DPCs in a salt repository.

• Direct disposal of DPCs would result in high thermal loads.

• The high thermal conductivity of intact salt helps to reduce
peak temperatures.

•The predicted results showed that a combination of a larger
repository foot print, a longer surface storage time and an
engineered backfill would be required to control peak
temperatures.
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