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Energy Per Mathematical Computation
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Inefficiencies in current systems

Communication cost

Processor

Communication bus

Memory

Memory access is more expensive than
computation (per bit), by multiple orders of

magnitude!

|

(1) Redesign the architecture to perform
computation close to or inside memory

‘ OFF

f—

Static leakage power ‘

Leakage in idle devices accounts for at least 20%
of system power,! and prevents scaling CMOS to
low voltages

|

(2) Perform computation using non-volatile
memory devices

'F. Tachibana, et al. IEEE Journal of Solid-State Circuits 49, 118-26 (2014).



Magnetic memory (MRAM): based on the magnetic tunnel junction (MTJ)
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Magnetic memory (MRAM): based on the magnetic tunnel junction (MTJ)

Domain wall MTJ device
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Domain wall memory: read/write

Write:
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7 A single domain wall device implements any elementary logic gate
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J. A. Currivan et al, IEEE Magnetics Letters 2012

Current in : Current out > Cascadable
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8 A single domain wall device implements any elementary logic gate

Current in : Current out > Cascadable
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J. A. Currivan et al, IEEE Magnetics Letters 2012
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9 Experimental demonstration and modeling
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Domain wall devices serve double duty

11 § .
as processing elements and non-volatile data buffers

Micro-pipelined domain wall logic Pipelined CMOS processor
Independent addition operations Independent CPU instructions
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Domain wall data buffering Pipeline registers Pipeline registers

(consumes no static power)

MIPS architecture, from Hennessy & Patterson, Computer Architecture, 2011



Bit-level micro-pipelining enables
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high-throughput arithmetic operations
32-bit operands ke bealf orddar 32-bit sums
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32-bit ripple carry adder
Delay per add: 32 cycles
Throughput: 1 sum /cycle = 1 sum / 3 gate delays
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32-bit operands

Bit-level micro-pipelining enables
high-throughput arithmetic operations

32-bit outputs
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32b carry save 32b carry
array multiplier ripple adder

Chain of arithmetic operations (e.g. matrix multiplication)
Delay per operation: X cycles
Throughput: 1 output/ 3 gate delays



14 Domain wall logic dynamic energy consumption can
surpass scaled CMOS

125 mV clock
0pd T\ 73
: & 32-bit adder performance comparison
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CMOQOS: D. Nikonov, I. Young, IEEE JXCDC 2015 T. Xiao et al, IEEE JXCDC 2019
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Accuracy of 1-bit adds

Robust to process variations and high temperature
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N. Jouppi et al, arXiv [cs.AR], 2017
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Systolic matrix multiplication
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Micro-pipelined systolic matrix multiplication
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5 | Systolic matrix multiplication in a domain wall processor
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Domain-wall multiply-accumulate (MAC) unit

2 cycles
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Domain-wall multiply-accumulate (MAC) unit
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o vow  Opeed requirements

The throughput target of any compute application can be directly translated to a material /

device requirement:

Google TPUv1 (28nm)

256 x 256 systolic CMOS 8-bit MAC array
at 700 MHz

Peak throughput = 2x256x256x700 MHz
= 92 TeraOps/s

N. Jouppi et al, arXiv [cs.AR], 2017

Domain wall processor

256 x 256 micro-pipelined DW array

Peak throughput = 2x256x256 / (3xgate delay)

Assume L g0 = 79 NM
To match CMOS peak throughput, need

DW velocity vy, > 158 m/s

S. Velez et al, Nature Comm 2019



For better efficiency, co-design domain wall processing with

25
memory structure

32-bit operands 32-bit outputs
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32b carry save 32b carry
array multiplier ripple adder

Magnetic memory array |€
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Conclusions
Domain walls implement a form of stateful logic that enables micro-pipelining
« Well suited to large, regular computations (e.g. matrix multiplication)

« Unlike CMOS, throughput is independent of complexity of operation and
depends directly on device properties

« Non-volatile: mitigate leakage

* Logic can be closely co-integrated with digital memory, or can be
organized as analog compute-in-memory arrays
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« Domain walls implement a form of stateful logic that enables micro-pipelining
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« Well suited to large, regular computations (e.g. matrix multiplication)

« Unlike CMOS, throughput is independent of complexity of operation and
depends directly on device properties

« Non-volatile: mitigate leakage

* Logic can be closely co-integrated with digital memory, or can be
organized as analog compute-in-memory arrays
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