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3 Inefficiencies in current systems

Communication cost Static leakage power

Processor Communication bus Memory
1 OFF

I_

Memory access is more expensive than Leakage in idle devices accounts for at least 20%
computation (per bit), by multiple orders of of system power,1 and prevents scaling CMOS to

magnitude! low voltages

(1) Redesign the architecture to perform (2) Perform computation using non-volatile
computation close to or inside memory memory devices

1 F. Tachibana, et al. IEEE Journal of Solid-State Circuits 49, 118-26 (2014).



4 Magnetic memory (MRAM): based on the magnetic tunnel junction (MTJ)
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`1' (P) 4 '0' (AP)

Write: 

Domain wall memory: read/write
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Read & reset: 



7 A single domain wall device implements any elementary logic gate
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8 A single domain wall device implements any elementary logic gate

/
- -

IN

NAND

OUT

Mg0 CLK

Ta

Buffer

/1.5W

Current in : Current out 4 Cascadable

A B DW state

o

1

o

NOR

1

o

o

1

1

P (1)

P (1)

P (1)

AP (0)

AND

Mg0

Ta
1.5W

J. A. Currivan et al, IEEE Magnetics Letters 2012



9 Experimental demonstration and modeling

Electrical control of
perpendicular anisotropy

domain wall MTJs

Courtesy of Jean Anne Incorvia
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SPICE model
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Cascaded logic using clocked domain wall devices
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Domain wall devices serve double duty
as processing elements and non-volatile data buffers

Micro-pipelined domain wall logic Pipelined CMOS processor

Independent addition operations Independent CPU instructions

Compute Standby Tran 3mit Compute Standby Tran

Domain wall data buffering
(consumes no static power)

3mit

► C
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MIPS architecture, from Hennessy & Patterson, Computer Architecture, 2011



32-bit operands
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Throughput: 1 sum / cycle = 1 sum / 3 gate delays
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Domain wall logic dynamic energy consumption can
surpass scaled CMOS
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15nm CMOS LV

109 1010

STT

C,___ 
10"

Threshold current density (A/m2)

32-bit adder performance comparison

CMOS HP CMOS LV DW-MTJ
vmv — 15 m/s

Latency 0.43 ns 4.2 ns

i

495 ns

Throughput 2.4 0.24
[109 Op/s]

0.07

The more complex and regular the computation, the
greater the benefit in throughput from micro-pipelining

CMOS: D. Nikonov, I. Young, IEEE JXCDC 2015 T. Xiao et al, IEEE JXCDC 2019
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Robust to process variations and high temperature
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Micro-pipelined systolic matrix multiplication
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Domain-wall multiply-accumulate (MAC) unit
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VDW Speed requirements

)111111111111.

The throughput target of any compute application can be directly translated to a material /
device requirement:

Google TPUvl (28nm)

256 x 256 systolic CMOS 8-bit MAC array
at 700 MHz

Peak throughput = 2x256x256x700 MHz
= 92 TeraOps/s

Domain wall processor

256 x 256 micro-pipelined DW array

Peak throughput = 2x256x256 / (3xgate delay)

Assume Leff,track = 75 nm
To match CMOS peak throughput, need

DW velocity VDW > 158 m/s

N. Jouppi et al, arXiv [cs.AR], 2017 S. Velez et al, Nature Comm 2019



For better efficiency, co-design domain wall processing with
memory structure

32-bit operands

32b carry save
array multiplier

32-bit outputs

32b carry
ripple adder

Magnetic memory array
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I
Conclusions

• Domain walls implement a form of stateful logic that enables micro-pipelining 
I

• Well suited to large, regular computations (e.g. matrix multiplication) I

• Unlike CMOS, throughput is independent of complexity of operation and
depends directly on device properties I

• Non-volatile: mitigate leakage

• Logic can be closely co-integrated with digital memory, or can be
organized as analog compute-in-memory arrays
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