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Transitioning To Community Project

• Core: 15 Developers (8 SNL) n-3 1 Sandia 
National OAK RIDGErr 

• More code contributions from non-SNL L Laboratories National Laboratory

• >50% of code reviews by ORNL /")

• >50% of commits from non-Sandians Argonne Los Alamos
NATIONAL LABORATORY NATIONAL LABORATORY

• Sandia leads API design

• Other labs lead backend implementations   BERKELEY LAB

Kokkos Core:

Kokkos Kernels:

Kokkos Tools:

Kokkos Support:

EST 1943

C.R. Trott, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Jan Ciesko, J. Wilke, L. Cannada,

H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin, J. Madsen, D. Arndt, J. Madsen, R. Gayatri

former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova, D. Sunderland,

S. Rajamanickam, L. Berger, V. Dang, N. Ellingwood, E. Harvey, B. Kelley, K. Kim, C.R. Trott, J. Wilke, S. Acer

D. Poliakoff, S. Hammond, C.R. Trott, D. Ibanez, S. Moore, L. Cannada

C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter



, Kokkos Uptake

ECP Critical Dependencies Kokkos Slack Users

loo

•
MPI 60 hypre 11
LLVM 53 Trilinos 10
C++ 41 DAV-SDK 9
OpenMP 33 ADIOS 8
CUDA 22 VTK-m 8 •
HDF5 19 FFT 7
LAPACK 19 Spack 7
KokkosIP 18 OpenACC 6
Fortran 17 MPI-10 6
BLAS 16 PnetCDF 6
C 14 zfp 5
ALPINE 12 SUNDIALS 5

440 registered users
400

• 70 Institutions

• Every continent 300

• (-Antarctica)
200Doubles every year
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• Total membership

Weekly active members



Exascale Readiness
Frontier/EI Capitan: HIP

• Primary development at ORNL
• Many Capabilities ready

• Some Hierarchical parallelism is waiting for
compiler bugs

• PR testing for Kokkos on AMD GPUs in place
• ArborX, Cabana, LAMMPS (partially) working

Aurora: DPC++ and OpenMP 5.0

• DPC++ blocked by compiler
Ful 1114 • Working with Intel on it

1, • OpenMP 5.0 similar state as HIP

Kokkos 3.3 (Nov 2020): OpenMP 5 and HIP expected to be largely feature complete



7.
,_, Updates: Training Material =

• Developed The Kokkos Lectures

• 8 lectures covering most

aspects of Kokkos

• 14 hours of recordings

• > 500 slides

• >20 exercises

• Hosted by ECP

• Module 8 this Friday

• Module 1: Introduction
• Introduction, Basic Parallelism, Build System

• Module 2: Views and Spaces
• Execution and Memory Spaces, Data Layout

• Module 3: Data Structures and MDRangePolicy
• Tightly Nested Loops, Subviews, ScatterView,...

• Module 4: Hierarchical Parallelism
• Nested Parallelism, Scratch Pads, Unique Token

• Module 5: Advanced Optimizations
• Streams, Tasking and SIMD

• Module 6: Language lnteroperability
• Fortran, Python, MPI and PGAS

• Module 7: Tools
• Profiling, Tuning , Debugging, Static Analysis

• Module 8: Kokkos Kernels
• Dense LA, Sparse LA, Solvers, Graph Kernels

https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series 



..Fw Updates: Remote Spaces and Tooling

• Tools Support is growing

• More Native support e.g. Tau

• Connectors to Timemory etc.

• Nsight Systems does more useful

stuff with connectors

• Rename Kernels
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3D CG-SOLVE Lines of Code (LOC)
Code break down

• Computation • Communication

KOKKOS.NVSFIMEM
1
MPI+Cuda

Name, Exclusive TIME

M.TAU application

•Comm::exchange

•Comm::exchange_halo

0.143

0.001

0.001
• Comm::update_halo 0.004

• Kokkos::parallel_for CommMPl::halo_update_pack [device=0] 0.002

•Kokkos::parallel_for CommMPl::halo_update_self [device=0] 0.003

•Kokkos::parallel_for CommMPl::halo_update_unpack [device=0] 0.002

•MPI_Irecv() 0.001

•MPI_Send0 29.268

•MPI_Wait0 0.001

•OpenMP_Implicit_Task 0.041

•OpenMP_Parallel_Region parallel_for<Kokkos::RangePolicy<CommMPL:Ta 0
•OpenMP_Parallel_Region parallel_for<Kokkos::RangePolicy<CommMPL:Ta 0.08
•OpenMP_Parallel_Region void Kokkos::parallel_for<Kokkos::RangePolicy<( 0.001

•OpenMP_Sync_Region_Barrier parallel_for<Kokkos::RangePolicy<CommMF 0.489

• OpenMP_Sync_Region_Barrier parallel_for<Kokkos::RangePolicy<CommMF 0.875

•OpenMP_Sync_Region_Barrier void Kokkos::parallel_for<Kokkos::RangePol 0.58

• Remote Spaces beta now released

• https://github.com/kokkos/kokkos-remote-spaces

• Support for NVSHMEM, MPI, SHMEM

• Working on Caching, aggregation etc.

• Potentially huge productivity benefits



7.
New Capabilities: Auto TuningtAik

• Part of Kokkos 3.2 (released last week)

• Tuning Interface + Tools

• Same as other hooks: they are always there,
but act as no-ops without a tool

• Multi Input — multi Output tuning

• Inputs describe problem space

• OutputTypes describe search space

Sets, Ranges, Categorical

Logarithmic, linear

• Tuning scopes can include multiple kernels

• Tuning of internal variables in 3.3 or 3.4

=

Apollo Tuner for SPMV tuning:
• Rows per team
• Team Size
• Vector Length

Minimum Execution Time for Kokkos Kernels SpMV (CUDA)

0 2000 4000 6000 8000

Data Size (MB)

10000 12000 14000



: New Capabilities: Static Analysis =
• Can we catch violations of Kokkos semantics even if code would compile/run?

• kokkos-llvm: fork of LLVM with Kokkos aware clang-tidy variant

• Three types of violating patterns:

• compile with some backends but not others.

• run correct with some backends but crash on others.

• run correct with some backends but have wrong results with others!

Example: Missing function markup
void foo00PS(int i) { printf("%i\n", i); }

int main(int argc, char **argv) {

Kokkos::initialize();

Kokkos::parallel_for(15, KOKKOS_LAMBDA(int

foo0OPS(i);

});

Kokkos::finalize();

}

i) {

>clang-tidy -checks=-*,kokkos-* file.cpp
<main.cpp:7:5> warning: Function 'foo0OPS' called in

a lambda was missing KOKKOS_X_FUNCTION annotation.

foo0OPS(i);
A

<main.cpp:2:1> note: Function 'foo0OPS' was delcared here

void foo00PS(int i) { printf("%i\n", i); }



: Upcoming Capabilities: Graph Interface 192Mi

• Build static graphs of kernels

• Can use CUDAGraphs as backend

• Allows repeated dispatch

• Helps with Latency Limited codes

• Cuts down on launch latency

const auto graph = Kokkos::Experimental::create_graph(

[=](auto builder) {

auto root = builder.get_root();

auto f1 = root.then_parallel_for(

Kokkos::RangePolicy<>(0, 1), KOKKOS_LAMBDA(long)

auto f2a = fl.then_parallel_for(

Kokkos::RangePolicy<>(0, 1), KOKKOS_LAMBDA(long)

auto f2b = fl.then_parallel_for(
Kokkos::RangePolicy<>(0, 1), KOKKOS_LAMBDA(long)

builder.when_all(f2, f3).then_parallel_for(
Kokkos::RangePolicy<>(0, 1), KOKKOS_LAMBDA(long)

• Can leverage streams to overlap 1);

work

• Infers overlapping from
dependencies

• Prototype release planned as part of
Kokkos 3.3 (November)

for (int i = 0; i < repeats; ++i) {

graph.submit();

graph.get_execution_space().fence();
}




