
Unclassified Unlimited Release

NUL IMPAIIIIMIIT

~►'~

Kokkos: Present and Future
Christian R. Trott, - Center for Computing Research

Sandia National Laboratories/NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energys National Nuclear Security Administration under contract DE-NA-0003525.

SAND2019-3723 PE

SAND2020-9180C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Transitioning To Community Project

• Core: 15 Developers (8 SNL) n-3 1 Sandia
National OAK RIDGErr

• More code contributions from non-SNL L Laboratories National Laboratory

• >50% of code reviews by ORNL /")

• >50% of commits from non-Sandians Argonne Los Alamos
NATIONAL LABORATORY NATIONAL LABORATORY

• Sandia leads API design

• Other labs lead backend implementations BERKELEY LAB

Kokkos Core:

Kokkos Kernels:

Kokkos Tools:

Kokkos Support:

EST 1943

C.R. Trott, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Jan Ciesko, J. Wilke, L. Cannada,

H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin, J. Madsen, D. Arndt, J. Madsen, R. Gayatri

former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova, D. Sunderland,

S. Rajamanickam, L. Berger, V. Dang, N. Ellingwood, E. Harvey, B. Kelley, K. Kim, C.R. Trott, J. Wilke, S. Acer

D. Poliakoff, S. Hammond, C.R. Trott, D. Ibanez, S. Moore, L. Cannada

C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

, Kokkos Uptake

ECP Critical Dependencies Kokkos Slack Users

loo

•
MPI 60 hypre 11
LLVM 53 Trilinos 10
C++ 41 DAV-SDK 9
OpenMP 33 ADIOS 8
CUDA 22 VTK-m 8 •
HDF5 19 FFT 7
LAPACK 19 Spack 7
KokkosIP 18 OpenACC 6
Fortran 17 MPI-10 6
BLAS 16 PnetCDF 6
C 14 zfp 5
ALPINE 12 SUNDIALS 5

440 registered users
400

• 70 Institutions

• Every continent 300

• (-Antarctica)
200Doubles every year

0

=

E.vairaid
Ld t -

17 18 19 20

• Total membership

Weekly active members

Exascale Readiness
Frontier/EI Capitan: HIP

• Primary development at ORNL
• Many Capabilities ready

• Some Hierarchical parallelism is waiting for
compiler bugs

• PR testing for Kokkos on AMD GPUs in place
• ArborX, Cabana, LAMMPS (partially) working

Aurora: DPC++ and OpenMP 5.0

• DPC++ blocked by compiler
Ful 1114 • Working with Intel on it

1, • OpenMP 5.0 similar state as HIP

Kokkos 3.3 (Nov 2020): OpenMP 5 and HIP expected to be largely feature complete

7.
,_, Updates: Training Material =

• Developed The Kokkos Lectures

• 8 lectures covering most

aspects of Kokkos

• 14 hours of recordings

• > 500 slides

• >20 exercises

• Hosted by ECP

• Module 8 this Friday

• Module 1: Introduction
• Introduction, Basic Parallelism, Build System

• Module 2: Views and Spaces
• Execution and Memory Spaces, Data Layout

• Module 3: Data Structures and MDRangePolicy
• Tightly Nested Loops, Subviews, ScatterView,...

• Module 4: Hierarchical Parallelism
• Nested Parallelism, Scratch Pads, Unique Token

• Module 5: Advanced Optimizations
• Streams, Tasking and SIMD

• Module 6: Language lnteroperability
• Fortran, Python, MPI and PGAS

• Module 7: Tools
• Profiling, Tuning , Debugging, Static Analysis

• Module 8: Kokkos Kernels
• Dense LA, Sparse LA, Solvers, Graph Kernels

https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series

..Fw Updates: Remote Spaces and Tooling

• Tools Support is growing

• More Native support e.g. Tau

• Connectors to Timemory etc.

• Nsight Systems does more useful

stuff with connectors

• Rename Kernels

1000

800

600
LJ

400

200

0

3D CG-SOLVE Lines of Code (LOC)
Code break down

• Computation • Communication

KOKKOS.NVSFIMEM
1
MPI+Cuda

Name, Exclusive TIME

M.TAU application

•Comm::exchange

•Comm::exchange_halo

0.143

0.001

0.001
• Comm::update_halo 0.004

• Kokkos::parallel_for CommMPl::halo_update_pack [device=0] 0.002

•Kokkos::parallel_for CommMPl::halo_update_self [device=0] 0.003

•Kokkos::parallel_for CommMPl::halo_update_unpack [device=0] 0.002

•MPI_Irecv() 0.001

•MPI_Send0 29.268

•MPI_Wait0 0.001

•OpenMP_Implicit_Task 0.041

•OpenMP_Parallel_Region parallel_for<Kokkos::RangePolicy<CommMPL:Ta 0
•OpenMP_Parallel_Region parallel_for<Kokkos::RangePolicy<CommMPL:Ta 0.08
•OpenMP_Parallel_Region void Kokkos::parallel_for<Kokkos::RangePolicy<(0.001

•OpenMP_Sync_Region_Barrier parallel_for<Kokkos::RangePolicy<CommMF 0.489

• OpenMP_Sync_Region_Barrier parallel_for<Kokkos::RangePolicy<CommMF 0.875

•OpenMP_Sync_Region_Barrier void Kokkos::parallel_for<Kokkos::RangePol 0.58

• Remote Spaces beta now released

• https://github.com/kokkos/kokkos-remote-spaces

• Support for NVSHMEM, MPI, SHMEM

• Working on Caching, aggregation etc.

• Potentially huge productivity benefits

7.
New Capabilities: Auto TuningtAik

• Part of Kokkos 3.2 (released last week)

• Tuning Interface + Tools

• Same as other hooks: they are always there,
but act as no-ops without a tool

• Multi Input — multi Output tuning

• Inputs describe problem space

• OutputTypes describe search space

Sets, Ranges, Categorical

Logarithmic, linear

• Tuning scopes can include multiple kernels

• Tuning of internal variables in 3.3 or 3.4

=

Apollo Tuner for SPMV tuning:
• Rows per team
• Team Size
• Vector Length

Minimum Execution Time for Kokkos Kernels SpMV (CUDA)

0 2000 4000 6000 8000

Data Size (MB)

10000 12000 14000

: New Capabilities: Static Analysis =
• Can we catch violations of Kokkos semantics even if code would compile/run?

• kokkos-llvm: fork of LLVM with Kokkos aware clang-tidy variant

• Three types of violating patterns:

• compile with some backends but not others.

• run correct with some backends but crash on others.

• run correct with some backends but have wrong results with others!

Example: Missing function markup
void foo00PS(int i) { printf("%i\n", i); }

int main(int argc, char **argv) {

Kokkos::initialize();

Kokkos::parallel_for(15, KOKKOS_LAMBDA(int

foo0OPS(i);

});

Kokkos::finalize();

}

i) {

>clang-tidy -checks=-*,kokkos-* file.cpp
<main.cpp:7:5> warning: Function 'foo0OPS' called in

a lambda was missing KOKKOS_X_FUNCTION annotation.

foo0OPS(i);
A

<main.cpp:2:1> note: Function 'foo0OPS' was delcared here

void foo00PS(int i) { printf("%i\n", i); }

: Upcoming Capabilities: Graph Interface 192Mi

• Build static graphs of kernels

• Can use CUDAGraphs as backend

• Allows repeated dispatch

• Helps with Latency Limited codes

• Cuts down on launch latency

const auto graph = Kokkos::Experimental::create_graph(

[=](auto builder) {

auto root = builder.get_root();

auto f1 = root.then_parallel_for(

Kokkos::RangePolicy<>(0, 1), KOKKOS_LAMBDA(long)

auto f2a = fl.then_parallel_for(

Kokkos::RangePolicy<>(0, 1), KOKKOS_LAMBDA(long)

auto f2b = fl.then_parallel_for(
Kokkos::RangePolicy<>(0, 1), KOKKOS_LAMBDA(long)

builder.when_all(f2, f3).then_parallel_for(
Kokkos::RangePolicy<>(0, 1), KOKKOS_LAMBDA(long)

• Can leverage streams to overlap 1);

work

• Infers overlapping from
dependencies

• Prototype release planned as part of
Kokkos 3.3 (November)

for (int i = 0; i < repeats; ++i) {

graph.submit();

graph.get_execution_space().fence();
}

