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Lateral Inhibition and Winner-Take-All in Domain
Wall Racetrack Arrays for Neuromorphic
Computing

Abstract—Neuromorphic computing is a promising candidate
for beyond-von Neumann computer architectures, featuring low
power consumption and high parallelism. Lateral inhibition and
winner-take-all (WTA) features play a crucial role in neuronal
competition of the nervous system as well as neuromorphic
hardwares. The domain wall - magnetic tunnel junction (DW-
MT)J) neuron is an emerging spintronic artificial neuron device
exhibiting intrinsic lateral inhibition. In this paper we show that
lateral inhibition parameters effectively modulates the neuron
firing statistics in a DW-MTJ neuron array, thus emulating soft-
winner-take-all (WTA) and firing group selection.

Index Terms—magnetism, spintronics, lateral inhibition,
winner-take-all, domain wall racetrack, spin-transfer torque,
neuromorphic computing

I. INTRODUCTION

Inspired by the signal processing of the brain, neuromorphic
computing exceeds classical von Neumann computers in terms
of speed and power efficiency, particularly in data-intensive
artificial intelligence applications [1] [2]. In the brain, neurons
communicate through spikes and function as both the com-
putational and data storage units; synapses store the weights
of neuron connectivity and can be adjusted by learning.
Numerous CMOS-based neuromorphic hardware have been
proposed [3] [4] [5], but they lack the biological plausibility
required to realize the full potential of neuromorphic circuits
and networks [6].

Spintronic devices are known for their small footprints, high
endurance, low power consumption and the highly tunable spin
dynamics that are non-linear, stochastic and non-volatile, thus
offering a new arena for neuromorphic device development
[7]. Spintronic neuromorphic devices are closely modeled after
their biological counterparts in both structure and functional-
ity, leveraging non-volatility, non-linearity, stochasticity, and
phenomena such as synchronization for efficient computing
[8] [9] [10]. They have been shown to emulate the integrate-
and-fire (IF) neurons [11], resonate-and-fire neurons [12] and
memristive synapses [13].

However, unsupervised learning algorithms require addi-
tional functions such as winner-take-all (WTA) [14], and it
is desirable that spintronic neurons and synapses incorporate
such features. Here we present a simulation study of an
important neuron functionality, lateral inhibition, in an array
of domain wall-magnetic tunnel junction (DW-MTJ) neurons.
While it has been proposed that an array of co-integrated
DW-MT]J synapses and neurons can perform online learning
by combining plastic synapse updates with the behavior of

interacting neurons [15], and that this approach can achieve
natural clustering or unsupervised learning on small tasks
[16], these results assumed a coarse-grained model of lateral
interaction. In this study, we expand our understanding of
lateral inhibition, informing new directions for optimized
nanofabricated domain wall-magnetic tunnel junction (DW-
MT]J) coupled neural arrays. We will show that lateral inhi-
bition strength and neuron arrangement can modulate neuron
firing statistics of the array, which may be a useful property
in implementing unsupervised learning algorithms.

II. NEURONAL WINNER-TAKE-ALL AND LATERAL
INHIBITION

In the nervous system, neuronal competition results in
the selective firings of a subset of the neuron population.
It has great importance in generating meaningful sensory
information representations in response to external stimuli;
otherwise, an explosive epileptic state will occur [17] [18].
Neuronal competition is regulated by a winner-take-all (WTA)
process, in which one or more neurons win out by suppressing
the activities of other competitors.

Competitive neural networks incorporate the WTA function
to choose one or more neurons that are best matched with the
input stimuli; the chosen winners then participate in synaptic
weight adaptation (i.e. learning) [19]. Various mathematical
models of WTA have been proposed. The traditional hard-
WTA selects only one neuron as the winner. Two less extreme
versions of WTA, namely the k-WTA and soft-WTA, have su-
perior computational power [20]. k&-WTA allows k£ > 1 neurons
to be chosen as winners. It is closer to the biological realism
than hard-WTA since it supports “distributed representation”,
in which sensory information is not localized to one neuron
but is instead encoded in a group of neurons [17] [21]. Like .-
WTA, soft-WTA produces multiple winners; in addition, their
outputs are analog and proportional to the strengths of stimuli.
Soft-WTA allows all competitors to be updated based on their
performances, and was shown to achieve higher accuracy
in classification task than hard-WTA [22]. In unsupervised
learning, soft-WTA can also enable efficient Hebbian learning
[19] and autonomous pattern recognition [23].

Lateral inhibition describes the the mutual inhibition of the
neurons belonging to the same layer and is a biologically plau-
sible WTA mechanism. In visual, auditory and somatosensory
cortices, lateral inhibition enhances the contrast of neighboring
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cells in the receptive fields [24]. Lateral inhibition in WTA cir-
cuits can be implicitly modeled by choosing proper transistor
connections and biasing, or, in a biologically realistic manner,
be explicitly mediated by an inhibitory interneuron [25] [26].
The WTA-via-lateral inhibition feature has been realized in
CMOS VLSI [27] [28] [29] as well as in hybrid CMOS-
memristor crossbar array [30]. However, these implementa-
tions require peripheral circuitry, large numbers of transistors
and recurrent connections between the neurons, resulting in
substantial chip area and energy cost, especially for large-scale
networks. We will show below that in the spintronic artificial
neuron, magnetostatic interaction results in efficient intrinsic
lateral inhibition.

ITII. DW-MT]J INTEGRATE-AND-FIRE NEURON WITH
INTRINSIC LATERAL INHIBITION

The domain wall - magnetic tunnel junction (DW-MTJ)
neuron is an artificial IF neuron based on the three-terminal
MT]J logic device [31]. It consists of a magnetic racetrack
for DW motion and a MTJ for spike signal readout (Fig.
1). DW position and velocity in the racetrack encode neuron
activity and the MTJ position defines the neuron firing point.
During the integration phase (Fig. 1(a)), the current-driven
DW propagates towards the MTJ due to spin-transfer torque
(STT) or spin-orbit torque (SOT); once the DW passes under
the MT]J, its magnetoresistance (MR) is switched low and an
output current spike can be read out, emulating the firing of
the neuron (Fig. 1(b)). Therefore, the neuron with higher DW
velocity fires first and is more active. The DW-MT]J neuron has
high energy efficiency [11] [32], and simulation studies have
also shown that neuron leaking [33] and lateral inhibition [34]
[35] can also be implemented without extra energy cost.
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Fig. 1. Structure of the domain wall - magnetic tunnel junction (DW-MTJ)
integrate-and-fire (IF) neuron. (a) integration: DW has not yet reached the
firing point (MTJ) and the magnetoresistance (MR) state remains high. (b)
fire: the DW is driven passed the firing point and the MR is switched low. A
large output current (“spike”) is generated.

Lateral inhibition of the DW-MTJ neuron is manifested
in the enhanced DW velocity contrast: an active neuron

delays or prevents the firing of its less active neighbor by
further decreasing its DW velocity. According to the Landau-
Lifshitz-Gilbert (LLG) equation and Walker’s formulation of
DW motion [36], DW velocity can be controlled by external
magnetic field. The magnetostatic interaction between a pair
of DW-MTJ neurons is shown in Fig. 2. Here, DW; and
DWy propagate along +x with DW velocities vpwr < vpwn-
Neuron N exerts a stray field along —z originating from its
+z domain on DWr; reciprocally, DWy experiences a stray
field along +z originating from the —z domain of Neuron I.
It has been shown previously that the —z stray field plays a
central role in lateral inhibition, and by optimizing the stray
field magnitude as well as the device geometrical and material
parameters, an up to 90% reduction of DW7 velocity (i.e. 90%
lateral inhibition) is achieved [35]. Since the DW-MTJ neuron
is capable of performing lateral inhibition without electrical
connections, the lateral inhibition implementation is energy
efficient and scalable.
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Fig. 2. Magnetostatic interaction and lateral inhibition of a pair of side-by-
side DW-MTJ neurons (only DW racetracks are shown). Neuron N is more
active and its stray field impedes the motion of DWj, resulting in lateral
inhibition.
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IV. LATERAL INHIBITION IN DW-MTJ NEURON ARRAYS

Having established the basis of DW-MT]J neuron lateral in-
hibition, we now extend the discussion to the lateral inhibition
of a DW-MT]J array. In a DW-MT]J array, a neuron experiences
a complicated magnetic environment determined by input
current configurations, and here we make the assumption that a
neuron is only influenced by its two immediate neighbors. This
assumption is justified by the rapid decrease of magnetic stray
field at increased distances, as validated in [35]. Two types
of neuron arrangements are considered: (a) the neurons are
evenly arranged with nearest neighbor lateral distance s (Fig.
3(a)) and (b) the neurons are arranged with alternating lateral
distances s; and s5 (51 < s2) (Fig. 3(b)). For arrangement (a),
the two nearest neighbors contribute equally to the net stray
field exerted on the center neuron. In this case, there is only



one inhibition condition (Case A): when both neighbors are
more active than the center neuron. Only under such condition
can it experience a field along —z; otherwise, the net stray
field is either zero or along +z because of the symmetry of the
neighbor locations. Arrangement (b), on the other hand, allows
for two inhibition conditions: Case B: the center neuron is less
active than both neighbors, an equivalent of Case A; Case C:
the center neuron is less active than its close neighbor N; but
more active than its far neighbor N,. As discussed in [35],
inhibition strengths of Case B and C are generally different,
and only one of them can be optimized by choosing s; and
89
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Fig. 3. DW-MTJ neuron arrangements in an array and lateral inhibition

conditions. (a) Nearest neighbors are arranged with lateral distance s; (b)
nearest neighbors are arranged with alternating lateral distances s; and sa.
Neurons with Case A, B, C inhibition and no inhibition are marked.

The DW-MTIJ array investigated consists of N = 1000
neurons. We focus on the change of DW velocity distribu-
tion of the array due to lateral inhibition: {v;} — {v[},
instead of the status of any specific neurons. A series of
1000 evenly distributed DW velocity values {v;} in the range
[Umins Ymax] = [1, 3] (a.u. and proportional to input charge
current densities) are randomly assigned to the neurons. For
neuron arrangement (a), the inhibition strength of Case A
is parameterized by the velocity reduction Awy; for neuron
arrangement (b), inhibition strengths are parameterized by a
pair (Avp, Avc) corresponding to Case B and C, respectively.
{v}} is calculated as follows:

v; — Avp, for Case A inhibition

{0} = {ol} 1 o = v; — Avg, for Case B %nh?b?t?on
v; — Ave, for Case C inhibition
; otherwise

The calculated {v,} are ranked in ascending order to yield the
modified velocity distribution due to lateral inhibition. The

values of Av determine whether the inhibition causes the DW
velocity signs to change:

VAv € {Ava, Avg, Ave} < Umin, weak inhibition
FAv € {Ava, Avg, Avc} > Umin, strong inhibition

We first study the weak inhibition. {v}} are calculated with
inhibition strengths Av 4, Avg, Ave summarized in Table.1.
Fig. 4(a) compares the {v]} due to lateral inhibition for neuron
arrangements (a) (solid lines) and (b) (dashed lines). For both
types of arrangements, lowering of DW velocities from {v; } to
{v!} becomes more significant with larger inhibition strength.
Notably, arrangement (a) results in non-linear {v}}: the low-
velocity range shows the largest overall reduction, while the
high-velocity range remains largely unchanged. This is due to
the larger inhibition probability of the low-velocity (inactive)
DWs, consistent with the inhibition mechanism described
above. The non-linearity of the {v.} increases with stronger
inhibition. Arrangement (b), on the other hand, largely main-
tains the linearity of {v}}, since it improves the uniformity of
inhibition probability across the whole DW velocity range as
compared to arrangement (a). As visible, the weak inhibition
does not strictly prohibit the firing of any members of the
neuron array, but instead delays the firing of its inactive
members.

TABLE I
INHIBITION STRENGTHS

Weak inhibition (Fig. 4(a))

Arrangement (a) Avy 0.9,0.7,0.5,0.3,0.1
Arrangement (b) Avp 0.9,0.7,0.5,0.3,0.1
Ao {0.8,0.6,0.4,0.2,0}

Strong inhibition (Fig. 4(b))

Arrangement (a) Avg {2.5,2.2,1.9,1.6,1.3,1.0
Arrangement (b) Avp {2.5,2.2,1.9,1.6,1.3,1.0
Avc | {2.4,2.1,1.8,1.5,1.2,0.0

We next study the strong inhibition. We again calculate {v}}
with inhibition strengths summarized in Table. 1, with results
plotted in Fig. 4(b). In this case, the distribution of {v;} of
both arrangements (a) and (b) are highly non-linear due to
the large inhibition strength, and as in the weak inhibition
case, arrangement (b) more effectively reduces the overall DW
velocities than the arrangement (b). Negative v;’s indicate that
the corresponding members are prohibited from firing. We
calculate the neuron firing proportion (E%) of the array from
the {v;} of Fig. 4(b), shown in Fig. 4(c). The firing proportion
E% is less than unity when Awva(Awvg) is larger than v,,;, and
monotonically decreases as inhibition strength becomes larger.
The effect is more prominent for neuron arrangement (b), with
E% as low as 53%.

Using a simple inhibition model with nearest neighbor
coupling assumption, we are able to show the relation between
neuron activity, firing statistics and lateral inhibition strengths.
We can draw a direct comparison between weak inhibition and
soft-WTA, and between strong inhibition and k&~-WTA. When
inhibition is weak, all neurons in the array are allowed to
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Fig. 4. DW velocity distribution change {v;} — {v}} due to lateral inhibition
in an array of N = 1000 DW-MT]J neurons. (a) weak inhibition and (b) strong
inhibition. Solid lines: arrangement (a); dashed lines: arrangement (b). {v;}
are plotted in grey solid lines in both (a) and (b). (c) Neuron firing proportion
E% versus inhibition strength, calculated from (b). Red: arrangement (a);
green: arrangement (b). For the definitions of parameters Ava, Avp and
Avc see text.

fire, but the DW velocity contrast in the array is enhanced by
lateral inhibition. In this case, the activities or performances
of the neurons can be inferred from their firing times. When
inhibition is strong, besides delaying the firing of the inactive
members of the array, it can forbid some of them from firing
and thus control the neuron firing proportion of the array. It
is also worth noting that the lateral inhibition of DW-MTJ
neuron can be effectively tuned by field, current and device
materials [35], which endows the neuron array with additional
tunability that may be explored in future works.

V. CONCLUSIONS

We study the lateral inhibition and winner-take-all (WTA)
characteristics of a DW-MTIJ neuron array. Lateral inhibition
of the DW-MT]J neuron arises from magnetostatic interaction,
and modulates the WTA behaviors of the neuron array: a small
inhibition strength lowers the overall DW velocities of the
neuron members but does not prohibit their firing, mimicking
the soft-WTA; a large inhibition strength reverses the motion
of some DWs and strictly prohibits the corresponding neurons
from firing, resulting in a firing proportion E% of down
to 53% in our simulations, mimicking k-WTA. In addition,
the WTA characteristics are also dependent on neuron ar-
rangement: the non-evenly arranged neuron array yields a
stronger overall inhibition than the evenly-arranged array. Our
proposed lateral inhibition model provides a novel mechanism
for implementing soft-WTA and group selection in spiking
neural networks.
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