
Application Development and Readiness for Sierra:
An MPI Challenge

CCR
Center for Computing Research

James Elliott

jjellio@sandia.gov
OM'

Sandia National Laboratories is a multimission
Laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

(SAND2020-1959 PE)

Unclassified Unlimited Release

SAND2020-9072C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



Unclassified Unlimited Release

2

Outline

CI An evolution of MPI implementations

CI An API left behind, and how developers and users pay the price
U Misunderstood performance gaps

An API's ignorance leaves blood stains on the command line

CI Well documented semantics? (Cue laughter)

Enjoy your deadlocks and correctness problems
Convoluted code paths depending on compile-time/runtime parameters

All because an API refuses to provide introspection

What can be done about it?

Note: This talk is intended to have a fair amount of snarky
comments.

The talk is not intended to be taken as criticism of any persons,
organizations, or vendors.

The goal of this talk is present challenges that have arisen over
time (pre/post Sierra), and spawn discussions about how to avoid

these pitfalls in the future. 4:".CCR '
Unclassified Unlimited Release Center for Computing Research



Unclassified Unlimited Release

3

An evolution of MPI implementations

MPI_Send(const void *buf, int count, MPI Datatype dtype, dest, tag, MPI Comm comm)

CI Was well defined — but has assumption that buf is addressable

1:1 Device-aware MPI allows this buf to be a device, host, or 'managed' pointer

Different platforms may offer varied levels of support for each

❑ MPI *has* evolved, rather than modify the API
✓ New runtime parameters

`cuda aware' MPI=ON OFF (better know which state is the default!)

✓ Poorly documented implementation details

No memory allocations before MPI_Init!

✓ Hard to vet if you are using the MPI implementation correctly

Am I following all of the rules?

U Implementations 'work' but developers left with no API to determine which memory
spaces MPI supports

That is, addressing buf may not segfault, but the API hasn't evolved to match the
runtime changes imposed

(What internal code path should you be following? It needs to match a the runtime)
t:CCR
•
Center for Computing Research

1

Unclassified Unlimited Release



Unclassified Unlimited Release

4

An API left behind, and how developers and users pay the price

MPI_Send(const void *buf, int count, MPI Datatype dtype, dest, tag, MPI Comm comm)

Device-aware MPI changes this buf could be device, host, or 'managed' pointer

(Different platforms may offer varied levels of support for each

CI App teams develop on diverse machines ... targeting a future/different machine
Cl Early MPI implementations may not be complete or performant
U Multi-platform compatibility requires supporting various combinations

E.g., support CUDA before MPI implementations allow device pointers (Jaguar/Titan)

U Customers using your application may need varied support

r Convoluted code paths, exacerbated because MPI provides no way to
query where buf can point.

Perhaps,
// Which memory spaces does this implementation support?
MPI_Get_memory_spaces( ... )
// The expected cost to use memory space(s)
MPI_Get_memory_space_priorities( ... )

Unclassified Unlimited Release

____...9

Center for Computing Research
CCCR 1

1

1

1



Unclassified Unlimited Release

5

An API left behind, and how developers and users pay the price

MPI_Send(const void *buf, int count, MPI Datatype dtype, dest, tag, MPI Comm comm)

New runtime parameters ... blood stains on the command line

`cuda aware' MPI=ON 1 OFF (better know which state is the default!)

D Complexity of device-aware MPI leaks up to the user and runtime
D Various machines can have different default behaviors (device aware 'on' or 'off')
U Software now has different default behavior based on auto detected MPI capabilities

Assumes compile-time environment matches runtime! (control your laughter!)

El Developers are savvy, make code paths runtime tunable (app will use device buffers or host). .. ,, ./ , .
App now depends on runtime settings, and setting needs to match MPI's runtime settings

(What could possibly go wrong?)

User sees it as: 'I ran it this way on similar machine X, and it's 2x slower on this machine Y'

El Users may get away with ignorance, but see unexpected performance

--r Issue would be improved if MPI provided a way to express it's current runtime
settings.

(In a portable way!)
Prior suggestion on memory spaces partially satisfies this

Would be nice if the app could decide if it wants to be 'device aware' or not
API... ?

Unclassified Unlimited Release

J ccCR .
Center for Computing Research



Unclassified Unlimited Release

An API left behind, and how developers and users pay the price

MPI_Send(const void *buf, int count, MPI Datatype dtype, dest, tag, MPI Comm comm)

Poorly documented implementation details

No memory allocations before MPI_Init!

D Hidden semantics introduced
CI Location of buf may require different code paths (for the MPI implementation)

if ( loc(buf) == Host) call ole_fashion(); else if ( loc(buf) == ...) call me_baby();

D Most device-aware implementations tend to do some form of tracking allocations and caching
locations ( ̀loc()' may be expensive, vendors may do more optimizations )

Calling an MPI function with a buffer it hasn't tracked causes imminent death issues

Effect: Tracking starts with MPI_Init()

"The MPI standard does not say what a program can do before an MPI_INIT or after an MPI_FINALIZE."
MPICH documentation for MPI_Init

CI When problems happened, was hard to diagnose (obscure segfaults later in program execution!)

Did not always observe a crash in/near MPI_Init... instead, observed memory corruption

6

If MPI_Init is required to be first, then document it!

CCCR '
Unclassified Unlimited Release Center for Computing Research



Unclassified Unlimited Release

7

An API left behind, and how developers and users pay the price

MPI_Send(const void *buf, int count, MPI Datatype dtype, dest, tag, MPI Comm comm)

Hard to vet if ou are usin the MPI im lementation correctl

Am I following all of the rules?
• 

D Compile time and runtime parameters — is the app following the rules?
D Observed obscure correctness problems

Appeared app was seeing 'old' data in MPI_Recv

Valgrind clean / compiler warnings clean (kitchen sink reported everything was fine!)

CI Problem was one spot in the code that started passing managed memory (UVM) to MPI, but app did
not enable ̀ cuda-aware'

UVM is technically addressable on both device and host (we learned it is a ̀cuda-aware feature')

(Thanks Dave Richards and Ian Karlin!)

CI Implemented a PMPI profiler that tested/tracked all buffers into MPI and reported locations

Quickly identified sources of problems ... (fixed a single typedef)

Fixed a few other locations in Trilinos...

Codes had all previously worked, because our early-access testbed had ̀ cuda-aware' on by default

r
How to solve this in a portable way?

Surely, new machines will have some new rules ... (good discussion point!)
J

Unclassified Unlimited Release

4.TCCR 1
Center for Computing Research



Unclassified Unlimited Release

What can be done about all of this?

MPI Send(const void *buf, int count, MPI Datatype dtype, dest, tag, MPI Comm comm)

This talk has pointed out some naïve ways the MPI standard could potentially
address these issues, but would those techniques ever be portable?

8

Should the standard adopt some some incarnation of a memory space?

MPI Send(const void *buf, MPI Memory Space location,

int count, MPI Datatype dtype, dest, tag, MPI Comm comm)

Unclassified Unlimited Release

CCCR
Center for Computing Research

1



Unclassified Unlimited Release 1
What can be done about all of this?

Instead... or, perhaps, in addition:

Many codes wrap MPI already - is it time for a communication portability
layer, "Kokkos for MPI" ?

Comments/Thoughts/Suggestions/Snark:
jjellio@sandia.gov

9
Unclassified Unlimited Release

1

C3-•:scsig.R.. 1


