This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 9072C

Application Development and Readiness for Sierra:
An MPI Challenge

James Elliott

o
| e
.‘3«.
R

e UL
Center for Computing Research
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.
(SAND2020-1959 PE)

jjellio@sandia.gov

Unclassified Unlimited Release

Unclassified Unlimited Release

Outline

J An evolution of MPI implementations

An API left behind, and how developers and #users pay the price
J Misunderstood performance gaps
An APP’s ignorance leaves blood stains on the command line
J Well documented semantics? (Cue laughter)
Enjoy your deadlocks and correctness problems
J Convoluted code paths depending on compile-time/runtime parameters
All because an API refuses to provide introspection

) What can be done about it?

Note: This talk is intended to have a fair amount of snarky
comments.

The talk is not intended to be taken as criticism of any persons,
organizations, or vendors.

The goal of this talk is present challenges that have arisen over
time (pre/post Sierra), and spawn discussions about how to avoid
these pitfalls in the future. ,:CCR

Unclassified Unlimited Release

Unclassified Unlimited Release

An evolution of MP| implementations

MPI_Send(const void *buf, int count, MPI_Datatype dtype, dest, tag, MPI_Comm comm)
] Was well defined — but has assumption that buf is addressable

J Device-aware MPI allows this buf to be a device, host, or ‘managed’ pointer

[Different platforms may offer varied levels of support for each]

J MPI *has* evolved, rather than modify the API

v New runtime parameters
:‘cuda aware’ MPI=ON | OFF (better know which state is the default!)
v Poorly documented implementation details

| No memory allocations before MPI_Init!

v" Hatd to vet if you are using the MPI implementation correctly

l Am I following all of the rules?

J Implementations ‘work’ but developers left with no API to determine which memory
spaces MPI supports

That is, addressing buf may not segfault, but the API hasn’t evolved to match the
runtime changes imposed

(What internal code path should you be following? It needs to match a the runtime)

CCR

Unclassified Unlimited Release femerfwtomp g

Unclassified Unlimited Release

An API left behind, and how developers and users pay the price

MPI_Send(const void *buf, int count, MPI_Datatype dtype, dest, tag, MPI_Comm comm)

Device-aware MPI changes this buf could be device, host, or ‘managed’ pointer

[Different platforms may offer varied levels of support for each]

) App teams develop on diverse machines ... targeting a future/different machine
J Early MPI implementations may not be complete or performant

J Multi-platform compatibility requires supporting vatious combinations
E.g., support CUDA before MPI implementations allow device pointers (Jaguar/Titan)

J Customers using your application may need varied support

/ Convoluted code paths, exacerbated because MPI provides no way to \
query where buf can point.

Perhaps,
// Which memory spaces does this implementation support?

MPI_Get_memory_spaces(...)
// The expected cost to use memory space(s)

\ MPI_Get_memory_space_priorities(...) /
CCR

C M@ for Computing Research

Unclassified Unlimited Release

Unclassified Unlimited Release

An API left behind, and how developers and users pay the price

MPI_Send(const void *buf, int count, MPI_Datatype dtype, dest, tag, MPI_Comm comm)

New runtime parameters ... blood stains on the command line
[‘cuda aware’ MPI=ON | OFF (better know which state is the default))]

J Complexity of device-aware MPI leaks up to the user and runtime
J Various machines can have different default behaviors (device aware ‘on’ or ‘off’)
J Software now has different default behavior based on auto detected MPI capabilities
Assumes compile-time environment matches runtime! (control your laughter!)
J Developers are savvy, make code paths runtime tunable (app will use device buffers or host)
App now depends on runtime settings, and setting needs to match MPI’s runtime settings
(What could possibly go wrong?)
J Users may get away with ignorance, but see unexpected performance
User sees it as: ‘I ran it this way on similar machine X, and it’s 2x slower on this machine Y’

settings.
(In a portable way!)
Prior suggestion on memory spaces partially satisfies this
Would be nice if the app could decide if it wants to be ‘device aware’ or not

\ API... ?

f Issue would be improved if MPI provided a way to express it’s current runtime \

CR

Unclassified Unlimited Release Gt o ool Tt

Unclassified Unlimited Release

An API left behind, and how developers and users pay the price

MPI_Send(const void *buf, int count, MPI_Datatype dtype, dest, tag, MPI_Comm comm)

Poorly documented implementation details
[No memory allocations before MPI_Init!]

J Hidden semantics introduced
J Location of buf may require different code paths (for the MPI implementation)
if (loc(buf) == Host) call ole_fashion(); else if (loc(buf) == ...) call me_baby();

J Most device-aware implementations tend to do some form of tracking allocations and caching
locations (‘loc()’ may be expensive, vendors may do more optimizations)

Calling an MPI function with a buffer it hasn’t tracked causes #mminent-death issues
Effect: Tracking starts with MPI_Init()
““The MPI standard does not say what a program can do before an MPI_INIT or after an MPI_FINALIZE.”
MPICH documentation for MPI_Init
J When problems happened, was hatrd to diagnose (obscure segfaults /azer in program execution!)
Did not always observe a crash in/near MPI_Init... instead, observed memory corruption

If MPI_Init is required to be first, then document it!

Unclassified Unlimited Release s s e

Unclassified Unlimited Release

An API left behind, and how developers and users pay the price

MPI_Send(const void *buf, int count, MPI_Datatype dtype, dest, tag, MPI_Comm comm)

Hard to vet if you are using the MPI implementation correctly
[Am I following all of the rules?]

J Compile time and runtime parameters — is the app following the rules?
J Observed obscure correctness problems
Appeared app was seeing ‘old’ data in MPI_Recv
Valgrind clean / compiler warnings clean (kitchen sink reported everything was fine!)

J Problem was one spot in the code that started passing managed memory (UVM) to MPI, but app did
not enable ‘cuda-aware’

UVM is technically addressable on both device and host (we learned it is a ‘cuda-aware feature’)
(Thanks Dave Richards and Ian Karlin!)

J Implemented a PMPI profiler that tested/tracked all buffers into MPI and reported locations
Quickly identified sources of problems ... (fixed a single typedef)
Fixed a few other locations in Trilinos...

Codes had all previously worked, because our eatly-access testbed had ‘cuda-aware’ on by default

How to solve this in a portable way?

Surely, new machines will have some new rules ... (good discussion point!)

Unclassified Unlimited Release s s e

Unclassified Unlimited Release I

What can be done about all of this?

MPI_Send(const void *buf, int count, MPI_Datatype dtype, dest, tag, MPI_Comm comm)

This talk has pointed out some naive ways the MPI standard could potentially
address these issues, but would those techniques ever be portable?

Should the standard adopt some some incarnation of a memory space?
MPI_Send(const void *buf, MPI_Memory_Space location,
int count, MPI_Datatype dtype, dest, tag, MPI_Comm comm)

" -4 CR

Unclassified Unlimited Release fémerfw(.'omp g

Unclassified Unlimited Release I

What can be done about all of this?

Instead... or, perhaps, in addition:

4 N

Many codes wrap MPI already - is it time for a communication portability
layer, “Kokkos for MPI” ?

Comments/Thoughts/Suggestions/Snark:
jjellio@sandia.gov

N /

CCR

Unclassified Unlimited Release o mef‘wmmp g

