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Abstract—Quantum computing vendors are begin-
ning to open up application programming interfaces
for direct pulse-level quantum control. With this, pro-
grammers can begin to describe quantum kernels of
execution via sequences of arbitrary pulse shapes. This
opens new avenues of research and development with
regards to smart quantum compilation routines that en-
able direct translation of higher-level digital assembly
representations to these native pulse instructions. In
this work, we present an extension to the XACC system-
level quantum-classical software framework that di-
rectly enables this compilation lowering phase via user-
specified quantum optimal control techniques. This
extension enables the translation of digital quantum
circuit representations to equivalent pulse sequences
that are optimal with respect to the backend sys-
tem dynamics. Our work is modular and extensible,
enabling third party optimal control techniques and
strategies in both C++ and Python. We demonstrate this
extension with familiar gradient-based methods like
gradient ascent pulse engineering (GRAPE), gradient
optimization of analytic controls (GOAT), and Krotov’s
method. Our work serves as a foundational component
of future quantum-classical compiler designs that lower
high-level programmatic representations to low-level
machine instructions.

I. Introduction

Extensible and modular software architectures for
quantum-classical computing are proving essential for
researchers that require a quick prototyping capability
and workflow customization [1], [2]. Moreover, it has
become increasingly evident that low-level, pulse-level
access to nascent hardware will enable improved er-
ror mitigation and smart quantum-program generation
technique [3]-[5]. There is a unique need for extensible
software architectures that enable customization of the
pulse-level programming, compilation, and execution
workflows.

Recently we presented a novel update to the XACC
system-level quantum-classical programming, compi-
lation, and execution framework that enables direct
pulse-level programming [6]. Specifically, we demon-
strated an extension to the XACC quantum interme-
diate representation for pulse-level instructions, com-
piler scheduling routines, and an OpenPulse adherent

simulation backend built on the QuaC open quantum
dynamics simulator [7]. We believe this is founda-
tional for the creation of higher-level quantum compiler
technologies that streamline pulse-level programming
research and development activities. In this work, we
build off the initial XACC pulse-level software infras-
tructure to provide an extensible framework for typ-
ical (or custom) optimal quantum control strategies.
Optimal quantum control techniques have been long-
established, and a number of popular strategies exist
based on typical gradient methods (GRAPE, GOAT, Kro-
tov, etc.) [8]-[10]. Our goal here is to present a unique
software architecture that extends the XACC frame-
work to enable the implementation of these typical con-
trol strategies in a plug-and-play manner. Ultimately,
we demonstrate how this extension can be used for
prototypical quantum compilation routines that lower
gate-level program representations to an optimal pulse-
sequence.

We begin this work with a brief description of quan-
tum optimal control and various gradient-based algo-
rithms that we integrate with XACC (Sec. II). Next, we
briefly provide a background on pulse-level program-
ming and simulation in XACC (Sec. III), and describe
in detail our extension to the IR transformation service
framework enabling modular quantum optimal control
strategies (Sec. IV). We finish with a detailed demon-
stration of the utility of this extension for a number of
problems (Sec. V).

II. Quantum Optimal Control

To enable the control and programmability of physi-
cal qubits, one must be able to generate analog control
signals that affect a desired unitary evolution with high
degrees of precision. This is typically accomplished
using a closed-loop feedback system with an itera-
tive optimization algorithm acting as the controller.
This task, quantum optimal control [11], seeks to map
higher-level quantum programmatic representations to
an optimal sequence of pulses that realizes the unitary
evolution of the program.



Quantum control algorithms typically use a loss func-
tion created out of the difference between the target
state and the evolved state at time 7 as a fidelity
metric to guide their training. A commonly used field
of algorithms are gradient-based, in that they learn the
optimal controls of the system by iteratively updating
them in the direction of the loss function gradient.
For piecewise constant pulses [12], this would mean
iteratively updating the pulse amplitude at each time
step. With Gaussian pulses [13], it would entail iter-
ative updates to the mean and standard deviation of
the distribution and with basis functions [14], [15]. The
optimization routine is terminated once the target and
evolved state reach maximum overlap with some pre-
determined precision.

In this section, we seek to detail prototypical exam-
ples of gradient-based quantum optimal control strate-
gies that we leverage in this work.

a) GRAPE: A commonly used algorithm for quan-
tum control is Gradient Ascent Pulse Engineering, or
GRAPE [8]. GRAPE utilizes a discretized approximation
of Schrodinger’s equation to create piecewise constant
control pulses. The total pulse time, 7, is broken up
into N time-steps, all of duration At. GRAPE seeks
to find the optimal pulse amplitude at each of the N
time steps, typically subject to a value constraint on
the amplitude. The time evolution of the system, in
terms of its Hamiltonian, can thus be approximated as
U(t,) = exp[—i H(t,) At], giving evolution at time 7 as:

U(T) =UEN) Ut 1) - Ulto) (1)

The loss function that we seek to minimize, known as
the infidelity, is:
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where d is the dimension of the system Hilbert space
and Uyqrger is a user-specified target quantum gate.

After initializing all N amplitudes, either randomly
or with a pulse provided by the user, the pulse is
fed to the hardware/simulator, and measurements of
the system are taken. The fidelity is then recorded,
and the pulse amplitudes are updated in small steps
towards the direction of greatest ascent of the fidelity’s
gradient. The step size is a hyperparameter that may
be adjusted by the user, and is used to prevent the
optimizer from over or under stepping its updates.
Optimization is terminated once Eq. 2 is at a minima
(up to some tolerance).

b) GOAT: Gradient Optimization of Analytic con-
Trols, or GOAT [9], is another popular gradient based
technique for optimal control. Unlike GRAPE, GOAT is
not limited to piecewise constant controls and, there-
fore, can be used to create piecewise continuous pulses

with bandwidth constraints. In our implementation, we
optimize pulses within the GOAT framework out of a
superposition of (K) Gaussian pulses of the form:

K
Qt) =Y exp(—(t — 7)/07) (3)
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where 7, and o are the pulse duration and standard
deviation of each of the K Gaussians respectively. The
loss function takes the same form as in GRAPE (Eq. 2),
but with the time ordered Unitary evolution now being:

Ulr) = Teacp[ — ;/OT ”H(t)dt} (4)

For a specified amount of pulses, GOAT seeks to opti-
mize over the set Ay = {7x,0x}. Beginning with either
a randomly initialized or user-provided .4;, GOAT uses
the second-order derivative optimizer, L-BFGS [16], to
iteratively minimize the loss function (Eq. 2). The
unitary evolution (Eq. 4) is then computed using the
third order Runge-Kutta numerical integration algo-
rithm [17]. Training is again terminated once Eq. 2
is minimized.

c) Krotov: As opposed to GRAPE and GOAT, which
use concurrent updates to optimization parameters,
Krotov [10], [18] uses sequential updates to guarantee
monotonic convergence, all without the need for gradi-
ent calculations [19]. Application of the Krotov method
requires reformulation of the system in terms of density
matrices, p(t). The system evolves in time according to:
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where L(t) is the Liouvillian. For the application of
quantum gates to the system, the problem may be
viewed as controlling the unitary time evolution of the
set of basis states, {|¢r(t))}. Krotov seeks to mini-
mize a functional, J [{|¢x(t))}, {€:(¢)}] with constraints
and boundary conditions imposed through Lagrangian
multipliers, and the loss function being VyqJ = 0
[20]. Beginning with either a randomly initialized or
user-specified pulse, Krotov sequentially updates the
controls by:

Qi (t) = Qi—1(t) + AQ,(¢) (6)
until the functional is globally minimized.

III. Pulse-level Programming in XACC

XACC is a system-level software framework en-
abling typical heterogeneous quantum-classical com-
puting workflows [1]. XACC can be decomposed into
front-end, middle-end, and backend layers, enabling
the translation of quantum kernels to a core poly-
morphic intermediate representation (IR), translations
and optimizations on that IR, and hardware-agnostic



backend execution. XACC exposes standard interfaces
at all levels of this hierarchy. An interface or ser-
vice of note for this work is the IR Transformation,
which enables one to define general transformations
on the intermediate representation. This is useful for
quantum-compile time routines, and as we show in
this work, mapping digital circuit representations to
optimal pulse sequences. XACC has been leveraged in
a number of experimental demonstrations of quantum-
classical computing and general benchmarking [21]-
[23].

Recently, XACC has been updated with support for
analog quantum programming. Here, we briefly sum-
marize the key features of pulse-level programming in
XACC, but interested readers are referred to [6] for a
more comprehensive description.

A. Analog Instructions

At its core, XACC puts forward a polymorphic In-
termediate Representation (IR) as an extensible data
structure that encapsulates quantum programming se-
mantics - from single quantum gates to composite
quantum circuits. IR data structures are constructed by
front-end compiler plugins, processed by middle-end IR
transformation plugins (e.g., circuit optimization) and
then executed on available quantum backends, e.g.,
remote quantum hardware or simulators.

Since the emergence of pulse-level programming, we
have extended this key infrastructure of the frame-
work to handle analog-like instructions. Specifically,
we added additional fields to capture discrete pulse
samples, its start time, and the target channel. Pulse
instructions can then be parsed from vendor-provided
pulse libraries (JSON objects), constructed manually by
providing data arrays or programmatically by using a
native XACC pulse generation utility which automati-
cally discretizes commonly-used pulse shapes.

An important aspect of pulse-level programming is
the ability to automatically lower digital gates into
sequences of pulses. The polymorphic hierarchy of
XACC IR enables a unified representation of composite
instructions, i.e. groups of other instructions (basic
instructions or composite instructions), hence digital
gate instructions can be replaced by a pulse composite
IR which consists of multiple pulse instructions.

B. Digital-to-Analog Transpiling

Standard IR lowering from digital to analog is in-
cluded in the basic pulse extension of XACC. When used
with a pulse-capable backend, such as the QuaC simu-
lator (Sec. III-C) the framework will use the backend-
associated default pulse library to transpile digital
gates into pulses.

Pulse libraries typically only contain pulse sequence
definitions for a pre-determined set of universal gate
sets, e.g. single qubit U gates and two-qubit CNOT/CZ
gates between neighboring qubits [24]. In XACC, we
support a much wider range of gates. Thus, for those
gates that do not have direct pulse sequence defini-
tions, XACC transpiles them into gates drawn from the
backend gate set to enable pulse conversion. Pulse
sequences associated with gates are time-shifted ac-
cordingly to maintain the atomicity of quantum gates.

The result of this lowering procedure is a purely-
analog composite instruction consisting of pulse in-
structions on different channels at different start times.
This combinatorial approach toward digital-to-analog
lowering is the fundamental building block of the
XACC pulse programming environment upon which
the quantum-control-based approach that we present
here is built. Not only does quantum optimal control
provide a means to derive basic pulses to construct
a pulse library, but it also enables novel use cases,
such as custom pulse implementation or sub-circuit
optimization, which we discuss in Sec. IV.

C. QuaC Accelerator Backend

In addition to a wide variety of gate-based simulation
backends that are currently available in XACC, we have
also implemented an OpenPulse-compatible simulation
backend based on the QuaC (Quantum in C) quantum
dynamics solver [7]. This analog backend enables users
to experiment with pulse-level programming as well as
to develop and verify custom digital-analog transforma-
tion procedures, e.g. those that are put forward in this
manuscript.

Key components of the QuaC pulse backend are:

o A high-performance time-stepping solver based on
the PETSc library which has built-in support for
MPI parallelization [25]. This allows us to optimize
the simulator performance on platforms ranging
from laptops to computer clusters.

o An OpenPulse-compatible frontend that can pro-
cess pulse-level backend information in OpenPulse
format. This includes system dynamics (Hamilto-
nian and qubit dimensionality), drive/control chan-
nel configurations, and pulse library.

o A pulse generation utility which supports auto-
matic discretization of analytical pulse envelopes.

The QuaC pulse backend implements the standard-
ized Accelerator interface of XACC, hence it can be
used as a drop-in replacement for any other existing
gate-based backends as well as in the Pythonic pro-
gramming environment.



IV. Software Architecture

In the XACC framework, quantum optimal control
capabilities are tightly integrated into the end-to-end
programming model, as illustrated in Fig. 1. More
specifically, with the core intermediate representation
(IR) providing a universal data structure for describing
both digital and analog quantum instructions, we are
able to encapsulate quantum optimal control strategies
as general transormations of the IR, specifically via a
new pulse-level IR Transformation service providing a
flexible gate-to-pulse lowering/compilation procedure.

Since the input IR can represent individual gates
as well as whole quantum circuits, e.g. variational
ansatz state-preparation, Quantum Fourier transform,
etc., this new pulse-level transformation infrastructure
of XACC can provide substantial improvements in areas
such as execution fidelities and efficiencies (total time
of gate operation).

It is worth noting that, while quantum optimal con-
trol modules are utilized internally within the pulse-
level IR transformation workflow, they can also be
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Fig. 1: XACC pulse level IR transformation flow.

used independently as a service. For example, one
can manually define the target unitary and the system
definition and then invoke any quantum optimal control
module that the framework provides.

In the following, we will describe the three main com-
ponents of the pulse-level IR transformation workflow,
as illustrated in Fig. 1, in greater detail.

A. IR Transformation

Built upon the concept of compiler optimization
routines from classical computing, XACC defines the
IRTransformation interface as the backbone of the
middle-end pipeline. This allows modular and customiz-
able multi-pass transformations of quantum kernels
parsed by the front-end. As shown in Fig. 2, we already
have built-in support for several gate-based transfor-
mations such as gate optimization and qubit placement.

In this work, we provide a new IRTransformation
service called PulseTransform, which bridges digital
and pulse IR’s via quantum optimal control. When
invoked with an apply() call, the PulseTransform
service is provided with a CompositeInstruction de-
scribing a quantum circuit and an instance of a pulse-
capable back-end, such as the XACC QuaC simulator
(see Fig. 1 & 2). The backend supplies the system
dynamics information which is required by downstream
control modules to compute analog driving signals.

One key functionality that the top-level PulseTrans-
form service performs is to convert arbitrary gate-
based circuits into their equivalent unitary matrix.
Thus, the framework can transform either individual
gates or multi-gate circuits into monolithic pulse pro-
grams representing the underlying total unitary evolu-
tion.

As described in the next section, we also implement
a wide variety of quantum optimal control modules as
well as provide a user-friendly interface to integrate
custom pulse optimizers, any of which can be used
in this digital-to-analog IR transformation pipeline. By
specifying the method name in the input Heteroge-
neousMap of the apply() call, the corresponding op-
timal control plugin will be delegated (Fig. 2) to per-
form the optimization task. Also, the computed target
unitary matrix along with system definitions are sent
on to downstream optimization plugins as needed.

B. Quantum Control Optimizer

The QCOR language specification [26] put forward
the Optimizer data structure which provides a com-
mon interface for all classical optimization services,
and XACC has provided the first definition and imple-
mentation of it. In a conventional optimization setting,
an Optimizer implementation will perform a multi-
dimensional optimization of a target cost function
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Fig. 2: XACC pulse-level IR transformation software architecture: single service entrance via the Pulse Transform
plugin; the specific optimal control method to be used for circuit-to-pulse transformation is provided as an option;
both native (C++) and Python pulse optimization methods can be invoked via this unified API.

(argmingegrn f(x)). This function is listed as the (input
OptFunction parameter of the optimize method of the
Optimizer interface in Fig. 2.

The Optimizer interface is thus amenable to quan-
tum optimal control problems underpinning analog
control synthesis. For instance, one can consider con-
trol values at each discrete time step as parameters
to be optimized and use any fidelity measures, such
as the trace distance, as the function to be optimized.
To maximize flexibility, modularity, and reusability of
these quantum optimal control sub-routines, we design
a two-level interface for the quantum optimal control
service.

At the top-level, we define a ControlOptimizer
service which can be invoked by its generic name,
quantum-control. The caller then provides a Hetero-
geneousMap which contains a method field indicating
which optimal control method to be used along with an
arbitrary set of additional parameters. The ControlOp-
timizer will then look up in the XACC service registry
for the specified optimal control module, initialize it
with method-specific parameters (either user-provided
or default values customized for each method), and
delegate the optimize() call to the concrete imple-
mentation provided by each optimal control module.

At the time of writing this manuscript, we have imple-
mented the GOAT and GRAPE pulse optimization methods
within the XACC framework as native plugins. Hence,
these two methods are available universally on any
XACC installations. We also provide a Python binding

interface (see PyOptimizer in Fig. 2) through which
one can wrap Pythonic quantum optimal control mod-
ules, e.g. QuTiP [27], and contribute them as services
to be used in the XACC IR transformation workflow. In
the demonstration section, we will demonstrate the use
of the Krotov package, which depends on QuTiP, as a
backend optimizer for a pulse-level IR transformation.

C. Pulse Instruction Synthesis

As illustrated in Fig. 1, the final output of the pulse-
level IRTransformation is a pulse CompositeInstruc-
tion which contains pulse instructions. Those analog
instructions are defined in terms of arrays of complex-
valued samples representing control signals at a back-
end specific sampling rate of dt. Depending on the
specific optimal control method that was used in the
previous step, the results may not immediately be in
the right format.

For example, analytical optimization approaches,
such as GOAT, produce a set of functional parameters
representing time-continuous signals. In that case, the
Pulse Transform service will evaluate those envelope
functions and generate the corresponding data samples
to construct output pulse instructions. On the other
hand, time-series based methods, e.g. piecewise con-
stant optimization, should already generate the opti-
mized pulses as sample arrays which can be used to
construct pulse IR’s directly.
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# find gaussian pulse that approximates the X 2
# gate on qubit 0 3
goat = xacc.getOptimizer(’quantum-control’, { 4
"method’: 'GOAT’', 5
"dimension’: 1, 6
"target-U’:’X0’, 7
"control-params’:[’'sigma’], 8
"control-funcs’:[’exp(-t~2/(2*xsigma”~2))’], 9
"control-H':['X0"], 10
'max-time’: 100, 11
"initial-parameters’:[8.0] 12

1 13
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optimal_sigma = goat.optimize()[1][0] 15
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Fig. 3: Using the ControlOptimizer service, i.e. thg
XACC Optimizer plugin named “quantum-control”, t&
optimize for a m-pulse (X gate) using the GOAT methoci.(l)
Since this is an analytical method, we need to providg
the functional form of controls and the optimize(33
function will return the optimal parameters for thoszgi_)1
input control functions.

V. Demonstration
A. ControlOptimizer API

In this example, we show how the underlying quan-
tum control optimizer plugins can be used directly. This
type of usage fits physics-based experiments whereby
the system dynamics, target unitary, and method-
specific parameters need to be provided and are fully
customizable by users.

Fig. 3 is a Python snippet demonstrating the way that
underlying quantum optimal control modules (plugins)
are invoked. As shown in Fig. 2, all of those modules
are sub-components of the high-level ControlOpti-
mizer which is a generic XACC Optimizer with name
“quantum-control" (Fig. 3, line 4.)

In this example, we request the GOAT (Gradient
Optimization of Analytic conTrols) optimizer by spec-
ifying its key in the method field (Fig. 3, line 5.) The
XACC HeterogeneousMap utility allows us to pass flex-
ible data-structures in a type-safe manner to the un-
derlying native (C++) module. This makes the Python-
C++ integration seamless as demonstrated in this ex-
ample.

Those control parameters after the method field in
the getOptimizer() call are method-specific. For ex-
ample, since GOAT is an analytical method, users need
to specify the functional form of control envelopes.
It is also worth pointing out that due to the fact
that this is a direct invocation of an optimal control
module, there are quite a few parameters that need
to be specified, such as those related to the system
dynamics (Hamiltonian) and the target unitary. When

// Get QuaC accelerator (pulse-capable backend):

// systemModel contains Hamiltonian & channel configs.

auto quaC = xacc::getAccelerator("QuaC", {
std::make_pair("system-model", systemModel),

1)

auto compiler = xacc::getCompiler("xasm");

// Using the XASM compiler to compile ASM to IR

auto ir = compiler->compile(R"(__gpu__ void circ(gbit q){
H(ql0]);

H", quaC);

auto program = ir->getComposite("circ");

// Pulse IR transformation configs, using GRAPE:

Xxacc: :HeterogeneousMap configs {
std: :make_pair("method", "GRAPE"),
std::make_pair("max-time", 10)

}

// Get the pulse-level IR Transformation service

auto opt = xacc::getIRTransformation("quantum-control");

// Apply the transformation on the gate-level program

opt->apply(program, quaC, configs);

// After the transformation, the program is converted

// optimal pulse instructions which

// can be simulated on the QuaC backend

auto qubitReg = xacc::qalloc(1);

quaC->execute(qubitReg, program);

Fig. 4: Using the pulse-level IRTransformation ser-
vice to convert a quantum circuit, in this case, just a
Hadamard gate, into an optimal pulse instruction using
the GRAPE optimizer.

these underlying optimal control modules are invoked
within the IRTransformation workflow (Fig. 1), most
of these parameters will be derived automatically by
the high-level IRTransformation service.

B. PulseTransform API

As a system-level framework, optimal control mod-
ules within XACC are tightly integrated with the end-
to-end compilation, transformation, execution software
workflow. Fig. 4 demonstrates the use of our built-
in GRAPE optimizer to derive an optimal pulse shape
that implements a quantum circuit. The input circuit is
given as an assembly source (XASM dialect) which is
compiled into digital IR by XACC’s Compiler service.

This digital gate-based circuit, in this case, just
a single quantum gate, is given to the pulse-level
IRTransformation service along with a reference to
a pulse-capable backend and a set of configuration
parameters (see line 23, Fig. 4.) In this example, we
want to request the gate-to-pulse transformation via
the GRAPE method, which only requires a single pa-
rameter (maximum time horizon, max-time.) The rest
of the necessary parameters, e.g. the number of data
samples (GRAPE is a time-series based method), the
Hamiltonian, the target unitary, etc. , are deduced by
the IRTransformation service which has access to the



execution backend and the IR of the digital quantumny
circuit. 2

The input digital program is lowered to a corre-?1
sponding analog program at the end of the apply()s
procedure. This pulse program can then be executed®
on the backend as shown in lines 27-28 of Fig. 4. ;
C. External Python Package Integration 13

In an effort to take advantage of quantum optimeili
control modules which are currently available either
as open-source software, e.g., QuTiP, or as commer-
cial solutions, e.g. Q-CTRL [28], the XACC framql-i
work provides a set of Python bindings which can be
used to wrap external Python modules as plugins (see
Fig. 2.) The primary task of the wrapper is to translate
standardized data which the IRTransformation plu-
gin sends on to the user-requested quantum control
method into the implementation-specific data format.
For instance, after reading the input digital circuit,
the IRTransformation module will generate the target
unitary matrix represented by a complex-valued vector.
This bare array may need to be marshaled into the
expected data format of the external Python package.

As an example, we have implemented a wrapper for
the Krotov package which depends upon QuTiP. From
the top-level, i.e. IR Transformation, the usage is
completely analogous to other built-in optimal control
modules as can be seen in Fig. 6. The specific method
key, in this case, ‘krotov’ (line 14), is registered by
the wrapper service. The data generated by the Kro-
tov package while performing the pulse optimization

—-=-- guess

0.8 1 —— optimized

0.6 1

0.4+

control amplitude

0.24

0.0

time

Fig. 5: Optimal control signal generated by the Krotov
pulse optimizer plugin when invoked by the XACC IR-
Transformation service to optimize for an Hadamard
unitary. The dash line is the initial pulse (randomly
selected) and the blurred lines represent optimization
iterations until it converges to the optimized pulse (the
solid line.)

# Get the XASM compiler

xasmCompiler = xacc.getCompiler('xasm’);
# Composite to be transform to pulse: H gate = Y~(1/2) - X
ir = xasmCompiler.compile(’’’__qgpu__ void f(gbit q) {
Ry(ql0], pi/2);
X(ql0]);
Y, apu);

program = ir.getComposites()[0]
# Run the pulse IRTransformation
optimizer = xacc.getIRTransformation(’quantum-control’)
optimizer.apply(program, qgpu, {
# Using the Python-contributed pulse optimizer (Krotov

"method’: ’'krotov’,
"max-time’: T

]

Fig. 6: Using the pulse IRTransformation service with
an external Python plugin (Krotov) as the optimizer. In
this example, we optimize for, effectively, an Hadamard
gate (expressed as a XY1/? circuit.)

procedure is illustrated in Fig. 5. Starting with an
arbitrary guess pulse, it drives the pulse envelope to
an optimal shape via a method-specific update policy to
implement the target unitary. It is worth noting that, in
this example, we purposely specify the Hadamard gate
as a Y/2 — X gate sequence to demonstrate the total
unitary computation functionality of the IRTransfor-
mation service. The underlying optimal control module
will only receive the computed target unitary matrix as
a black box.
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Fig. 7: Execution results on the QuaC backend for
the optimal pulse derived by the IRTransformation
service using the Krotov optimizer. The IRTransfor-
mation transforms a Hadamard-gate equivalent circuit
(Y'/2 — X) into an analog pulse (top panel). The time-
domain response on the QuaC backend (expectation
values of the number operator and Pauli operators) in
the bottom panel confirmed a Hadamard response.



The optimal pulse IR after transformation can then
be executed on a pulse-capable backend (like lines 27-
28 of Fig. 4.) The verification results for the Krotov-
optimized pulse on our QuaC simulator backend is
shown in Fig. 7. The pulse shape, as executed on the
backend, is the output from the Krotov optimizer. The
expectation values of X, Y, and Z operators indicate
that this pulse indeed performs a Hadamard transfor-
mation (the initial state is |0).)

D. Comparison Across Techniques

One key benefit of having multiple pulse optimizers
implemented as plugins in a micro-services approach
is that users can easily examine different methods in a
plug-and-play manner. For instance, we can request an
X gate to be transformed into pulses in a similar way to
the code snippet in Fig. 6 (with a different XASM kernel
string), in which the method field can be either 'GOAT’,
"GRAPE’, or 'Krotov’. Correspondingly, the appropriate
plugin will be invoked to perform the optimization task
with the same set of inputs, i.e. the system Hamiltonian
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Fig. 8: Comparison between pulses generated by GOAT,
GRAPE, and Krotov optimizers when performing IR-
Transformation for an X gate: (top) pulse envelopes
and (bottom) excited state population (initial state =

0)).

dynamics encapsulated by the gpu instance and the
target unitary of the gate-based program.

The generated pulses and the excited state popula-
tion responses are shown in Fig. 8. It is worth noting
that the generated pulses strongly depend on the initial
guess pulses which are Gaussian, square, and random
for GOAT, Krotov, and GRAPE, respectively.

Similarly, we can also introduce non-ideal effects
such as finite qubit decay [29] or local-oscillator detun-
ing [30] (from the exact qubit frequency) to the simula-
tor backend and examine the performance of generated
pulses under such circumstances. The results for dis-
sipative and detuning experiments are shown in Fig. 9
and 10, respectively. The varying nature of the pulse
generated by the randomly-initialized GRAPE method
results in loss of fidelity under both the dissipative
condition (Fig. 9) and static detuning (Fig. 10).

The results presented here are model- and
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Fig. 9: Comparison between X-gate pulses generated

by GOAT, GRAPE, and Krotov optimizers with qubit

decay (17 = 10 X Tyate)-
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Fig. 10: Comparison between X-gate pulses generated
by GOAT, GRAPE, and Krotov optimizers with static
detuning (wro = (1 + 0)wo).
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configuration-dependent but demonstrating the
capability and utility of the new quantum control
extension to the XACC framework. The modularity
and compatibility of XACC services enable users to
quickly evaluate different quantum control solutions
on a unified API.

E. Multi-qubit Circuit

By integrating pulse optimization modules into the
IR transformation workflow, as shown in Fig. 1, we
can transform the whole quantum circuit consisting of
multiple gates into a monolithic pulse program imple-
menting the overall unitary. This might be beneficial,
e.g., for frequently used sub-circuits because one can
derive a unified set of pulses across multiple channels
to achieve the overall unitary of the sub-circuit, rather
than assembling individual gate pulses.

In the following example, we use the GRAPE pulse
optimizer (Fig. 11, line 9) to convert a two-qubit
Quantum Fourier Transform (QFT) circuit into a pulse
program. It is worth noting that the XACC framework
has built-in support for circuit generation of common
algorithms. Hence, the QFT circuit (line 1-4 in Fig. 11)
is automatically expanded to the gate sequence.

In this example, we consider a generic Hamiltonian
model in the form

Y wt)oPol)

kef{z,y,z}

1
+3° 3 dlmel), )

1=0 ke{z,y,z}

H =

where u(t), déi)(t) are control terms that our optimal
control plugin aims to optimize. This simplified model is
for illustrative purposes only and does not correspond
to any particular physical system.

The pulse waveforms for d,(j) (t) channels are shown
in Fig. 12. Similarly, we also obtained pulses for wuy(t)
channels which are not shown here for brevity. This

# Use XACC QFT circuit generator
gft = xacc.getComposite(’'qft’)
# Expand QFT circuit for 2 qubits
gft.expand({ 'nq’ : 2 })
# Run the pulse IRTransformation
optimizer = xacc.getIRTransformation(’quantum-control’)
optimizer.apply(qft, qpu, {
"'method’: ’"GRAPE’,
"'max-time’: T,
'dt’: dt
1

Fig. 11: Python code snippet demonstrates the pulse-
level IR transformation of a two-qubit Quantum Fourier
Transform circuit into a pulse program using the
GRAPE method.

pulse program can then be verified on the QuaC sim-
ulator backend, i.e. the gpu instance which was given
to the optimizer (Fig. 11, line 8).

F. Demo with physical hardware

The pulse IR transformation service of XACC also
provides a means for users to optimize for particular
gates that suit their needs. Hardware vendors usually
provide a minimal set of pulses which implement a
target universal gate set to which other gates are
decomposed. Using the XACC pulse IR transformation
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Fig. 12: Control signals for single-qubit operator terms
in Eq. (7).
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service, users can instead opt for a more custom ap-
proach as illustrated in Fig. 13 whereby a parametric
rotation gate at a specific angle is directly lowered to
a pulse instruction.

Using IBM Qiskit [2] we can examine the equiva-
lent pulse sequences compiled by the vendor-provided
pulse library to implement those parametric gates.
These pulses are what will be applied to the underlying
hardware when users submit gate-based circuits via
XACC, Qiskit, or other front-end tools to the cloud
backend.

Fig. 14 is a comparison between pulses that are opti-
mized by the XACC GOAT optimizer to implement R, ()
gates at specific 6 values vs. default pulse sequences
generated by the Qiskit transpiler for the IBM one-
qubit Armonk device. On average, pulses optimized
by the XACC optimizer have comparable fidelity to
the default ones. When using this IR transformation
method for longer gate sequences, we can potentially
have a significant gain in terms of execution time and
fidelity.

VI. Discussion and Future Work

We have expanded upon XACC'’s pulse-level program-
ming capacity by integrating several common quantum
optimal control algorithms into our framework. With
an emphasis on ease of implementation, we provide
users the ability to take their quantum circuits and
compile them to an optimally shaped control pulse. We
currently support algorithms such as GRAPE, GOAT,
and Krotov, in both C++ and Python, with plans to offer
more algorithms in the future. Additionally, we hope
to exploit the MPI parallelization feature of QuaC in
order to use cluster based computing resources such as
Oak Ridge’s Summit Supercomputer [31]. This would
allow for accurate simulation and subsequent control
optimization routines to be run on larger quantum
systems. Our long-term focus is both on maintaining
our database of calibrated quantum hardware system
models, as well as expanding the number of hardware

xasmCompiler = xacc.getCompiler(’xasm’);

ir = xasmCompiler.compile(

"7’ __qpu__ void Kernel(gbit q, double theta) {
Rx(q[0], theta);

Y, apu);

program = ir.getComposites()[0]

for angle in angles:
evaled = program.eval([angle])
# Run the pulse IRTransformation
optimizer=xacc.getIRTransformation(’quantum-control’)
optimizer.apply(evaled, qpu, { <options>})

Fig. 13: Pulse optimization for parametric gates.

Pulse Optimization vs. Default Transpile
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Fig. 14: Results from running Rz(f) gate with different
rotation angles on the IBMQ armonk (one qubit) back-
end. In the runs using XACC pulse optimization (green),
rotation gate at a specific angle is transformed into
a Gaussian-shaped envelope pulse (GOAT method). In
default transpile runs (blue), default Qiskit transpiler is
used. For each angle, 1024 shots are used to compute
the excited state probability. There are 10 runs for each
angle.

providers supported by our framework for pulse-level
control.
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