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ABSTRACT

The cloud microphysics scheme, CASIM, and the radiation scheme,
SOCRATES, are the two computationally intensive parts within
the Met Office’s Unified Model (UM). This study enables CASIM
and SOCRATES to use accelerated multi-core systems for optimal
computational performance of the UM. Using profiling to guide our
efforts, we refactored the code for optimal threading and kernel
arrangement and implemented OpenACC directives manually or
through the CLAW source-to-source translator. Initial porting re-
sults achieved 10.02x and 9.25x speedup in CASIM and SOCRATES
respectively on 1 GPU compared with 1 CPU core. A granular per-
formance analysis of the strategy and bottlenecks are discussed.
These improvements will enable UM to run on heterogeneous com-
puters and a path forward for further improvements is provided.
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1 INTRODUCTION

The Unified Model (UM), developed by the United Kingdom Met
Office (UKMO), is a widely used Earth system model for numerical
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weather and climate prediction. Over the last two decades, imple-
mentations of Message Passing Interface (MPI) and Open Multi-
Processing (OpenMP) have been used to improve parallel model
performance on Central Processing Units (CPU) [16]. However,
UM computations are approaching a billion degrees-of-freedom
with complex, multiphase physics calculations and are therefore
incredibly time-consuming [11]. Further optimizing the model with
finer resolution and more accurate simulations is always attractive
for UM developers and users.

The massive parallelism provided by Graphic Processing Units
(GPUs) is prompting developers to move their models to hybrid
CPU-GPU systems. A number of climate and weather modeling
centers have accelerated the computationally intensive portions
(hot spots) of their models by porting them to GPUs to exploit data
parallelism, generally with CUDA programming or directive-based
approaches. As one example, GPU acceleration of the Weather Re-
search Forecast (WRF) Single Moment 6-class (WSM6) microphysics
scheme obtained over 140x speedup compared with the CPU se-
rial version [18]. Further optimization of WSM6 within the Model
for Prediction Across Scales (MPAS) achieved 2.38x speedup for
WSM6 on one GPU compared to 48 CPU cores [9]. Wang et al. [17]
accelerated the Rapid Radiative Transfer Model for General circula-
tion models (RRTMG) by about 18.52x on GPU compared with the
CPU-based single-threaded version. Alvanos and Christoudias [1]
implemented GPU capabilities into the chemical kinetics module in
the global Atmosphere-Chemistry model ECHAM/MESSy (EMAC),
and reached a relative speedup of 22x in their experiments.

Although performance hot spots ran much faster on GPU, the
performance improvement was diluted when incorporated within
an entire component and Earth system model. For example, the GPU
acceleration of the Nucleus for European Modeling of the Ocean
(NEMO) achieved a computation speedup up to 77x, but the total
speedup was 50x [13]. Brown et al. [2] offloaded the entire Cloud
AeroSol Interacting Microphysics (CASIM) package to the GPU
using OpenACC. Their warm test case with 14,000 vertical columns
ran 6.7x faster on GPU compared with running on one single CPU
core. However, the overall speedup for the parent model, Met Of-
fice NERC Cloud Model (MONC), was only 1.4x. The performance
improvement dilution was mainly due to the substantial portions
of the model that were still running on CPU and the unavoidable
data transfer between the host and accelerator. In order to alleviate
the overhead of data exchange, some studies ported the models
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completely to GPU. One example is the GPU-accelerated Princeton
Ocean Model (POM), of which the performance on 4 GPUs was
equivalent to that on 408 CPU cores [19]. Another example is the
complete porting of LASG/IAP climate system ocean model by Jiang
et al. [8], which achieved a 6.6x speedup on 4 NVIDIA K80 cards
compared with 4 Intel(R) Xeon(R) E5-2690 v2 CPUs. Therefore, in
order to accelerate the whole model, it is important to find the
optimal long-term strategy that not only reduces the computational
time of the hot spots, but also minimizes the data transfers between
the CPU and GPU.

Considering these results, we chose two important and computa-
tionally expensive physics components within the UM [16] to target
for performance improvements. The Suite Of Community RAdiative
Transfer codes based on Edwards and Slingo (SOCRATES) [6, 10] is
the default radiative transfer model in UM and CASIM is a recent
addition to UM cloud microphysics. CASIM performs a detailed sim-
ulation of aerosol effects and in-cloud aerosol processing. Based on
the lessons learned from Brown et al. [2], we have enabled CASIM
and SOCRATES to use the GPU still using OpenACC but with a
more substantial refactoring strategy so as to more effectively use
the GPU. We present the benefits and limitations of GPU accelera-
tion of a refactored CASIM and SOCRATES as part of a long-term
strategy with the goal of enabling the UM to utilize the accelerated
node systems (CPU-GPU).

The rest of the paper is organized as follows. Section 2 describes
the methodology and strategy of our GPU implementation. Section
3 and Section 4 present the detailed code refactorings, porting ap-
proaches and performance comparisons for CASIM and SOCRATES,
respectively. Section 5 provides a conclusion of our current opti-
mization work and discusses the future plan.

2 METHODOLOGY

The refactoring strategy to prepare CASIM and SOCRATES for par-
allel execution on GPU was based on two profiling tools to identify
computational hot spots and compare performance of evolved code
versions. The General Purpose Timing Library (GPTL) [14] displays
detailed timing information, calling tree, and how many times each
subroutine is called. The NVIDIA profiler, NVPROF, allows users to
visualize the timeline of the application’s activity on CPU and GPU.
It can also detect potential performance bottlenecks and guide us
to performance improvement opportunities.

Our strategy was to use OpenACC directives to offload the cal-
culations to GPU and manage data transfer between CPU and GPU.
The OpenACC is a directive-based approach for GPU porting and
promises less complexity and programming effect compared with
rewriting the entire program using low-level CUDA functions. Sev-
eral climate models have used OpenACC and achieved acceptable
speedup (e.g., the CAM-SE climate model in Norman et al. [12],
the NICAM atmospheric model in Demeshko et al [5], and the
LASG/IAP Climate System Ocean Model in Jiang et al. [8]). Along
with manually implementing the OpenACC directives, we also uti-
lized a single column abstract (SCA) incorporation of the CLAW
compiler where appropriate [3, 4] to perform OpenACC-specific
code transformation for SOCRATES after we converted it to a single-
column structure.
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CASIM and SOCRATES are both serial codes that rely on their
parent models, the UM and MONC, to provide parallelization. How-
ever, running UM or MONC is not efficient for agile development.
Therefore, we used two simple serial models to drive CASIM and
SOCRATES respectively and performed verification and perfor-
mance against the CPU-based original codes. All test experiments
were conducted using one NVIDIA V100 GPU and one IBM POWER9
CPU core on Summit. When compiling the model with PGI com-
piler, the flag ‘-fast’ was used for automatic optimization, and ‘-
Mipa=inline:reshape’ was used for module inlining.

In all, our implementations of new code for GPU follows this
development cycle within SOCRATES and CASIM:

(1) Analyze: Profile the codes to identify computationally in-
tensive portions or performance bottlenecks.

(2) Parallelize and optimize: Refactor the code, reduce the
bottlenecks, and implement OpenACC directives to offload
calculations to GPU.

(3) validation and verification: Insure the accuracy and
robustness of modeling output and performance results.

(4) Repeat as new performance bottlenecks emerge to achieve
further performance improvement.

3 THE GPU IMPLEMENTATION OF CASIM

CASIM is written in modern FORTRAN with about 125 subroutines
among 50 modules, and 16,300 lines in total. The Kinematic Driver
(KiD) [15] was used as the parent model in our experiments. KiD
is a serial kinematic framework constraining the dynamics and
isolating the microphysics. Many test cases are provided in KiD
default repository. We chose the most computationally expensive
two-dimensional squall line case to verify our code refactoring and
compare the performance. The benchmark simulation on the CPU
was configured with 3200 columns and 52 vertical levels for 600
time steps.

3.1 Initial code refactoring

CASIM simulates the microphysics for 6 different moisture states:
vapor, cloud, rain, snow, ice and graupel. It also explicitly repre-
sents the effect and in-cloud processing of aerosol. However, the
parameterizations of cold microphysics and aerosol physics are still
being actively developed and tested in the Met Office. Therefore,
presently we focused on optimizing the warm microphysics.

The original calculations in CASIM are performed column by
column. The allocated variables are declared for the single column
on which CASIM is currently working. In order to work in parallel
on GPU, each allocatable array was extended by two dimensions
indexed by i and j coordinates representing the horizontal coordi-
nates of that column. CASIM uses a derived data type (DDT) to hold
the diagnostic tendencies of moisture in different states due to dif-
ferent microphysical processes. This DDT was flattened to a normal
array to avoid the errors we met when transferring DDT between
CPU and GPU. Additionally, $acc declare create(arrays) was
added under the declaration of all global variables to map them to
the GPU and keep their residency during the full execution. The
overview of this refactoring process is shown in Figure 1.
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11 Original cod@s-==s=--c=--

real (wp), allocatable :: pressure(:)
real(wp), allocatable :: gfields(:, :)
type(process_rate), allocatable :: procs(:, :)

!l Refactoring code-------------

real (wp), allocatable :: pressure(:, :,
real(wp), allocatable :: gfields(:, :
real(wp), allocatable :: procs_fl

subroutine initialise_micromain()

9
allocate(pressure(nz)) I$acc declare create(pressure, qfields, procs_fiat, ...)
allocate(gfields(nz, nq))
subroutine initialise_micromain()
allocate(procs(ntotalg, nprocs))
allocate(pressure(nz, is:ie, js:je))

allocate(gfields(nz, ng, is:ie, js:je))

do iproc = 1, nprocs
do ig = 1, ntotalq
allocate(procs(ig, iproc)%column_data(nz))
end do
end do end subroutine initialise_micromain

allocate(procs_flat(nz, ntotalq, nprocs, is:ie, js:;je))

Figure 1: Overview of initial code refactoring over arrays

3.2 Implementation of OpenACC

The GPTL profile of the benchmark simulation is shown in Figure 2
with the nested subroutine calling structure and the runtime of rel-
atively expensive subroutines illustrated. The interface subroutine,
casim_interface, allows the parent model to pass input variables
to the entry point subroutine, shipway_microphysic, in which the
i-, j-loops call the microphysics_common subroutine, which further
calls all other CASIM subroutines using a n-loop. The i-, j-loops are
the horizontal loops working over the columns, and are safe to be
parallelized because each iteration is completely independent. The
n-loop updates the diagnostic variables at each iteration until the
moisture field reaches a converged steady state, hence it must run
sequentially. The vertical k-loops are within the subroutines located
at the lower level of the call tree. Most of them can be paralleled
except the one in the sedr_1M_2M subroutine, which determines
the sedimentation rate and has vertical data dependency.

The computationally intensive loops are deep in the call tree and
called conditionally by the n-loop for each column. Significant code
refactoring would be required to extract each one out, port them to
GPU and keep the massively parallel GPU busy. For that purpose,
we would have to reorder the loops by pulling the n-loop up and
pushing the horizontal loops down. This would lead to substantial
difficulties analyzing the data dependencies, keeping the condition-
als, and maintaining the correctness of computation. Therefore, we
offloaded the entire microphysics_common to GPU. However unlike
Brown et al. [2], we have applied a two-level parallelism approach
to further exploit the data parallelism within microphysic_common
and all other subroutines that it calls.

The OpenACC implementation to CASIM is shown in Figure 3
with pseduo code. The original nested horizontal looping is split
into three parts. The first part inherits the variables from the parent
model, and transfers the data from CPU to GPU through " $acc
update device(list of variables)". The second part launches the kernel
and offloads the computation in microphysics_common subroutine
to GPU. Since the related variables have been mapped to GPU with
the "$acc declare create" clause, the "$acc present” clause is used
to indicate the existence of the storage address on the GPU, which
avoids duplicate data copies. The third part has "$acc update self(list
of variables)" to transfer data from GPU to CPU and transfer back
the tendencies.
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As shown in Figure3, the horizontal loops calling microphysics_common

subroutine are decorated with "$acc parallel loop", which gener-
ates a number of blocks in CUDA. The collapse(2) clause is used to
merge two horizontal loops into one because they are completely
independent. The n-loop is marked with $acc loop seq so that it
runs serially. The parallelizable inner loops and subroutines (e.g.,
sum_procs, condevp) are mapped to threads by $acc loop vector
collapse(number) and "$acc routine vector", respectively. The
sedr_1M_2M subroutine is treated carefully with $acc routine
seq to denote the inner calculations are done sequentially over the
vertical levels.

casim_interface
shipway_microphysics
i~ J-oop L. microphysics_common

ndoop| query_distributions

sedr_1M_2M

sum_procs

update_q

set_passive_fields
zero_procs

condevp

I~ ensure_positive

k-loops are within the subroutines 50 100 150 200
called by microphysics_common
Total walltime (s)

Figure 2: Overview of GPTL profiling results of KiD-CASIM
benchmark case on CPU

3.3 Results of the optimizations

A series of experiments over a range of domain sizes is conducted to
evaluate the optimization at different problem size. Each experiment
has the same number of vertical levels with the benchmark case,
completes 600 time steps, and is repeated ten times. The output and
performance results, reported as the wall clock time, are averaged
over the ten runs. The correctness of the modifications are verified
by comparing simulation output using the same configuration on
GPU versus CPU. The differences are visually indistinguishable in
all results reported here and the root mean square errors are within
the range of 1.0E-10 to 1.0E-7. These are considered acceptable to the
physics model developers because they are within the range of the
differences between the model results and observational data and
are likely associated with roundoff differences when performing
operations on the CPU or GPU.

Figure 4 indicates that all experiments achieved considerable
speedup in the microphysics_common module within CASIM, where
"speedup"” is defined as the ratio of the averaged CPU versus GPU
runtime for each configuration. As expected, the speedup factor
increases for larger domains, as GPU parallelization increases with
problem size. However, the computation time for the entire CASIM
does not decrease dramatically. NVPROF identifies less than 5.17%
of runtime on GPU is spent on data transfer between CPU and GPU.
The API calls are dominated by cuStreamSynchronize because our
porting did not involve asynchronization, thus execution on the
CPU is blocked until the GPU has finished all issued tasks. The allo-
cation and kernel launching expense is relatively small (e.g., about
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subroutine shipway_microphysic()

doj=js, je
doi=is,ie
qfields(:, i_qv) = gv_tmp(ks:ke, i, j)
dafields(:, i_qv) = dgv_tmp(ks:ke, i, j)
end do
end do
$acc update device(gfields, ddfields, ...)

1$acc parallel loop collapes(2) &
I$acc present(qgfields, dgfields, ...)

subroutine condevp(...)
I$acc routine vector

I$ace loop vector
dok=1,nz

end do
end subroutine condevp

subroutine sum_procs(...)
I$acc routine vector

I$acce loop vector collapse(3)

doj=js, je do ip =1, nprocs
doi=is, ie doig=1,nq
call microphysics_common(i, j, gfields, dqfields, ..) dok=1,nz
end do
end do end do
end do
$acc update self(tend, ...) end do
doj=js,je
doi=is,ie end subroutine sum_procs(...)
dqv_tmp(ks, ke, i, j) =tend(:, igv, i, j)
end do subroutine sedr_1M_2M(...)
end do I$acce routine seq

I$ace loop seq
dok=nz1,11

end subroutine shipway_microphysics
subroutine microphysics_common(i, j, gfields, dgfields, ...)
e dm = flux(k+1) - flux(k)
18acc loop seq
do n =1, nsubsteps end do
call condevp(...) end subroutine sedr_1M_2M
céll sedr_1M_2M(...)
call sum_procs(...)

end ao

Figure 3: Overview of OpenACC implementation on CASIM,
showing pseudo code.

4.25% for the experiment with 3200 columns), but is not negligible.
To sum up, the overheads of data transfer, memory allocation and
launching the kernels are the main reasons for less performance
improvement achieved for the entire CASIM compared to that for
the microphysics_common subroutine. Nevertheless, porting the en-
tire microphysics_common shows substantial performance benefit
by keeping the data transfer taking up only a small fraction of the
overall time in all experiments.

B Speedup for microphysics_common [ Speedup for entire CASIM
25

19.46

20

Speedup

5.41 5.47

320 640 1600 3200

Columns

Figure 4: The GPU speedup for microphysics_common and
the entire CASIM in experiments with different columns
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4 THE GPU IMPLEMENTATION OF
SOCRATES

SOCRATES contains both C and FORTRAN code, but the majority is
FORTRAN based and has been highly optimized for parallel, multi-
core CPU computing. The source code has 116 FORTRAN77 and
231 FORTRANO90 subroutines/functions, and about 124,018 lines
total, including comments. The serial driver used for SOCRATES is
I_run_cdf, which is an offline testing program that ingests meteoro-
logical and other data. SOCRATES has multiple scientific options
for calculating short- and long-wave radiation. The random over-
lapping gas absorption scheme is the most accurate, but also the
most computationally intensive scheme according to our perfor-
mance profiling. Therefore, we target the "random overlap” scheme
for GPU acceleration. Calculating long-wave and short-wave radia-
tion share most of the subroutines, and very few subroutines are
solely used to calculate long-wave or short-wave radiation. More-
over, according to our profiling, calculating long-wave radiation
is more expensive than calculating short-wave radiation. Hence a
test case for calculating long-wave radiation under a fixed solar
zenith angle using "random overlap" option is chosen for our ex-
periments as a benchmark case. This case is provided in the test
suite of SOCRATES’s repository.

4.1 Initial code refactoring

SOCRATES employs many FORTRAN77 features such as goto and
statement labels using numbers, which are obsolete and infeasible
for GPU porting. So we rewrote relevant code following the FOR-
TRANO90 standard and similar to the CASIM refactoring, flattened
the derived data type variables needed for access on the GPU.

4.2 Implementation of OpenACC

For SOCRATES, we used GPTL to profile a benchmark simulation
configured with 20 columns and 167 vertical levels. As shown in
Figure 5, the computational expense of the entire SOCRATES is
dominated by the solve_band_random_overlap subroutine for gas
absorption, within which the mix_column subroutine is the main
culprit because it contains the treatment of the vertical overlap
between different cloudy layers and is within the Exponential-Sum
Fitting of Transmission (ESFT) loop. Three hot spots are identi-
fied under the mix_column subroutine. They are trans_source_coeff,
two_coeff_cloud, and solver_mix_direct, which consume 27%, 12%
and 36% of the total runtime of radiance_calc, respectively. The
two_coeff_basic and ir_source subroutines are also included as tar-
gets for GPU optimization because they have many parallelizable
loops.

Unlike the GPU-based CASIM, the GPU-based SOCRATES in
present work utilizes the unified memory to share the data between
the CPU and GPU. Therefore, no explicit treatment is needed for
allocating and copying device memory, and this allows us to focus
on optimizing loops within the hot spots. Two approaches are used
to reorganize the loops and explore their GPU parallelism, thus
generating two versions of GPU-based SOCRATES for evaluation.

The first approach we term the "PUSHUP-SOCRATES" method as
we pushed horizontal loops under the solve_band_random_overlap
up to the radiance_calc and the solve_band_random_overlap be-
comes a single column model. This strategy was inacted so that we
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could incorporate the CLAW single column abstraction (SCA) (see
the left panel of Fig. 6). This method involved heavy refactoring of
the original SOCRATES code including array demotion, argument
change, subroutine modularization (where a subroutine is encapsu-
lated into a FORTRAN90 module), and loop removal. After that, as
illustrated in the right panel of Fig. 6, the OpenACC implementation
was performed automatically by the CLAW compiler, which pushed
the horizontal loop back to the solve_band_random_overlap sub-
routine and parallelized the inner horizontal and ESFT loops. The
vertical loops were not parallelized because the CLAW compiler
could not determine their data dependencies. All subroutines called
by the solve_band_random_overlap subroutine were treated as se-
quential OpenACC routines with the $acc routine seq directive
added by the CLAW compiler. In this approach, one big kernel over
the ESFT and horizontal loops is generated.

The second approach is termed the "PUSHDOWN-SOCRATES"
method, in which the ESFT loop in the solve_band_random_overlap
routine was pushed down and combined with vertical and horizon-
tal loops in subroutines at a lower level. In this case, the OpenACC
directives were implemented manually to parallelize the modified
loops within the hot spots. As one example, Figure 7 shows the
pseudo code blocks in the trans_source_coeff subroutine after the
ESFT(k) loop was pushed down into it (left panel) and an Ope-
nACC kernel (parallel region) was created (right panel). There is a
three-level tightly nested loop in the block and two expensive intrin-
sic functions (square-root and exponential functions) in the loop.
Therefore, the OpenACC parallel region was created around this
loop. Initially, five kernels in five subroutines are generated. They
are two_coeff_basic, trans_source_coeff, ir_source, two_coeff_cloud,
and solver_mix_direct, respectively.

4.3 Results of the optimizations

Two experiments with different spatial domain sizes are used to
evaluate SOCRATES performance on a single CPU core and a GPU.
The first experiment represents a simple field experiment with 20
columns and 169 vertical levels. The second is based on a UM global
simulation in which the entire domain is spatially decomposed into
205 chunks. There are 1500 columns/grids in each chunk. As the
SOCRATES computational costs highly depend on the input data,
especially cloud states, 5 chunks are randomly selected to account
for the effects of different cloud amounts and vertical distributions
on the performance. The performance of SOCRATES is evaluated
by averaging time of the simulations on the randomly selected
chunks.

As with the CASIM performance results, the definition of the
speedup factor is also same. Again, the mean of results from 10
runs were used to remove the performance fluctuations on Summit.
Similar fluctuations on Titan were observed by Evans et al. [7].

The speedup of the field experiment as a function of gangs,
workers, and vectors for the PUSHUP method is shown in Figure 8
and indicates poor performance on the GPU. As there is only one
large kernel, the number of gangs, workers, and vectors are the only
tuning parameters. Given the 4 workers and 32 vectors, increasing
the number of gangs from 1 to 80 leads to an increase of GPU
speedup from 0.52 to 1.07. Further increasing the number of gangs
from 80 to 160 does not get any performance improvement. There is
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Tlngle scattering all
single scattering
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T mix_column
two_coeff
L and | loop —two_coeff_basic
—_—
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Land | loop
— I—ir_source
Land | loo
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Land | loop
—_— " solver_ mix_direct
-
====== nt
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m—augment radiance augment channel
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Figure 5: Overview of GPTL profiling results of I_run_cdf
SOCRATE benchmark case on CPU (Band: spectral band
loop, K: Exponential-Sum Fitting of Transmission (ESFT)
loop, L: horizontal loop, and I: vertical loop)

11 codes after pushing up the horizontal loop (soc_hori)
11 in radiance_cale subroutine
SUBROUTINE radiance_cale(...)

D0 i_band=control%first_band, control%last_band

11 codes after complied the CLAW compiler
1! in radiance_calc subroutine
SUBROUTINE radiance_calc(...)
DO i_band=controlxfirst_band, controlilast_band

I$claw sca forward
DO soc_hori = 1, nd_profile

CALL solve_band_random_overlap(. .., soc_hori)
END DO END SUBROUTINE radiance_calc

CALL solve_band_random_overlap(...)

END DO 11 in solve_band_random_overlap
ND SUBROUTINE radiance_calc SUBROUTINE solve_band_random_overlap(..., nd_profile, nd_lay

I8ace data present(cld_frac_cloud,cld_w_cloud, ...}

I$ace parallel

I$acc loop gang vector &

I$claw define dimension icol (1:nd_profile)s I$acc private(cg_coef?,uplm_zero,upln_sol k_esft ...)
!$claw sca DO soc_hori = 1, nd_profile  !horizontal loop is pushed
DOk =1, n_tern 00 k=1, n_tern

1 in solve_band_random_overlap
SUBROUTINE solve_band_randon_overlap(..., nd_profile, nd_layer)

CALL gas_optical properties(...)
CALL monochromatic_radiance(...)
CALL augment_radiance(...)

CALL gas_optical_properties(...)
CALL monochromatic_radiance(. ..}
CALL augrent_radiance(...)

END DO END DO
IND SUBROUTINE solve_band_random_overlap END DO
END SUBROUTINE sclve_band_random_overlap

Figure 6: Overview of the implementation of the CLAW SCA
on the single column solve_band_random_overlap subrou-
tine of SOCRATES

no clear trend in the GPU speedup with the increase in the number
of workers or vectors. The best performance is achieved by 80 gangs,
2 workers and 32 vectors, and is only 1.32x faster than the serial
run on CPU. Further increasing the number of gangs and workers
leads to an out of memory (OOM) error.

Figure 9 illustrates how GPU acceleration varies with the number
of ESFT loops for the PUSHDOWN method for the field and global
experiments, from which we can see that the GPU acceleration
achieved approximately 3x and 8x speedup when the number of hor-
izontal grids is small (20) and large (1500), respectively. Performance
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1! codes after pushing down the k-loop
11 codes after pushing down the k-loop SUBROUTINE trans_source_coeff
SUBROUTINE trans_source_coeff .
!$acc parallel loop gang vector collapse(3)
00 k =1, n_term
D0 i=i_layer_first, i_layer_last
D0 1=1, n_profile

Do k =1, n_term
DO i=i_layer_first, i_layer_last
00 1=1, n_profile

xlambda = SORT(sum(1,i,k) * diff(1,i,k))
exponent ial=exp(-xlanbdastau(l,i,k))
exponent ial Z=exponentialsexponential

xlambda = SQRT(sum(l,i,k) * diff(l,i,k)}
exponential=exp(-xlambdaxtau(l,i,k))
exponent ial2=exponential#exponential

END DO END DO
END DO END DO
END DO END DO
END SUBROUTINE trans_source_coeff !sacc end parallel
END SUBROUTINE trans_source_coeff

Figure 7: Overview of OpenACC implementation on loops
in the trans_source_coeff subroutine of SOCRATES
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Figure 8: GPU speedups as a function of the number of
gangs, workers and vectors (gangxworkerxvector)

of individual kernels is also evaluated and shown in Figure 10. Most
kernels have achieved remarkable speedup, especially the kernels
in trans_source_coeff and solver_mix_direct, with 15.87x and 12.57x,
respectively. Although the GPU kernel in two_coeff_basic is slightly
slower, the average speedup for the solve_band_random_overlap
is about 9.25x. The NVPROF profiling results show that data mi-
grations of the unified memory for the PUSHDOWN-SOCRATES
dominates 5.6-9.7% of total time of OpenACC kernels depending
on the size of horizontal and ESFT loops. Less than 6% of total time
is spent on launching kernels. The overheads for GPU page faults
of the unified memory, however, can be as high as 49.2% of total
time when the size of horizontal and ESFT loops is large. Explicitly
implementing data directives or using CUDA data prefetching is a
feasible method and will become part of our future work.

Overall, the acceleration obtained in PUSHUP-SOCRATES is
much less than that in PUSHDOWN-SOCRATES. For the PUSHUP-
SOCRATES, the big kernel generated by the CLAW compiler in-
cludes multiple levels of nested subroutines, which in our exper-
iments easily reaches the bandwidth of memory, and causes an
OOM error. Besides, some non-optimal tasks other than paralleliz-
ing loops are done in this big kernel so only a small speedup is
promised by the PUSHUP method. In PUSHDOWN-SOCRATES,
small kernels with more efficient parallelism are used, hence reach-
ing better performance improvement.

Zhang et al.
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Figure 9: The GPU accelerations vary with the number of
ESFT loops for two experiments of 20 columns (a) and 1500
columns (b).

5 CONCLUSION AND FUTURE WORK

The cloud microphysics package, CASIM, and the radiation pack-
age, SOCRATES, are two of the most computationally-expensive
portions of UM weather and climate simulations. We have pre-
sented a refactoring and OpenACC implementation of CASIM
and SOCRATES for acceleration using NVIDIA GPU on OLCF’s
Summit supercomputer. Considerable speedup has been achieved
within targeted expensive kernels as well as the entire CASIM and
PUSHDOWN-SOCRATES modules. It is important to note that the
speedup is discussed by comparing the performance on one GPU
against one CPU core. The reason is that we only use the serial
model drivers for CASIM and SOCRATES on Summit at present. We
will implement the accelerated CASIM and SOCRATES to UM, then
enable the OpenACC build of CASIM and SOCRATES to be executed
on multiple GPUs using MPI, and compare the best performance
achieved by multiple GPUs and CPU cores.
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Figure 10: The GPU accelerations of five kernels and their
average when the number of ESFT loops is 3840 for the ex-
periment of 1500 columns.

The PUSHUP-SOCRATES strategy illustrated that heavy code
refactoring to organize the code into a single-column structure was
required so that CLAW could be applied. Although time-consuming,
it was still worthwhile as a learning experience, as the CLAW-
translated code provided good guidance to manual implementation.
We also learned that calling multiple levels of nested subroutines
in one big kernel could cause large overhead and easily use up the
GPU registers and memories. Therefore, after pushing the loops
down and using small kernels, more acceleration was achieved
in SOCRATES. We will also apply this PUSHDOWN method to
CASIM in the future.

Although the GPU-based CASIM and SOCRATES are running
for several test cases on the GPU, there is still work to optimize the
use of a large CPU-GPU computer like Summit. As kernels are opti-
mized, more profiling will detect new performance bottlenecks and
thus opportunities for further performance improvement. An im-
portant area of interest is to optimize memory access, for example
better use fast registers and caches in the GPU memory hierarchy.
In particular, both CASIM and SOCRATES have a large number of
arrays being read several times from the global memory in multiple
loops or subroutines, which takes time. Loop fusion and function
fusion to merge several loops or subroutines will allow the data to
be first read from the global memory and then read repeatedly from
a register. Scalar replacement is also being considered to replace
intermediate variable arrays as scalars that can be simply stored in
the registers. Another important area is to mitigate the thread diver-
gence due to if-statements. If possible, code refactoring can be done
to reduce the if-statements after careful analysis of the conditionals.
Specifically for SOCRATES, further performance improvement can
be achieved by managing the data locality with explicit OpenACC
data directives and increasing memory coalescing. It is also possible
to increase the concurrency of launching kernels and the overlaps
of kernel and memcpy, i.e. the kernels in clear-sky and cloud-sky
radiation calculation can be launched asynchronously, and short-
wave and longwave radiation can be computed in different GPUs
simultaneously. It is also necessary to adjust the number of gangs,

PASC ’21, July 05-08, 2021, Geneva, Switzerland

workers, and the vector length, but the optimal values are highly
dependent on the specific hardware and experiment.
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