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Introduction

® Motivation

® Uncertainty quantification for high resolution numerical
models.

® fine mesh resolution
® many random parameters/variables

® Objective
® Develop scalable (numerical and parallel) algorithms to
quantify uncertainty in large-scale computational models.

® Methodology

® Exploit non-overlapping domain decomposition methods in
conjunction with an intrusive polynomial chaos approach.



Uncertainty Quantification Framework

Characterization
Probabilistic Model
=3 of Uncertainty
Stochastic PDE KLE/PCE

Step 1
Case Selection

Large-Scale Linear
System Solver
DDM

SSFEM Discretization
FEM/PCE

Step 2
Simulation

Data Assimilation

Response Statistics
PCE coefficients Sensitivity Analysis
mean/variance PCKF/GSA

Step 3
Analysis




Bayesian Estimation using Nonlinear Filtering

® Model Equation
uk+1 = Py (uk, fi,ay) — — Forecast Step

® Measurement Equation

di = hy (ug, €4) —— Assimilation Step

Sensors

it



Domain Decomposition Method for Stochastic PDFEs

® Spatial decomposition

oy aro [ 1=

® Polynomial Chaos expansion
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Domain Decomposition Method for Stochastic PDFEs
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Domain Decomposition Method for Stochastic PDFEs
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Block Sparsity Structure
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Extended Interface Problem
e The Extended Schur Complement System

SUr =Gr.
S =Y RI[Afr — AH(A}) AR,
s=1

® Develop parallel iterative algorithms.
® Formulate scalable preconditioners.
® Application to 2D and 3D Stochastic PDEs with non-Gaussian

coefficients.




Two-Level Domain Decomposition Methods for SPDFEs

M= TS HE + HY (S Ho,

s=1

® Condition Number Bound of Deterministic System
® One-level preconditioner

(M18) < C (1 +10g Ty
=R &h
® Two-level preconditioner

2

K(M™1S) < C(1+ log %)



Two-Level Domain Decomposition Methods for SPDFEs

® partitioning the interface nodes into remaining (M) and corner(®) nodes




Probabilistic Balancing Domain Decomposition with Constraints
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Probabilistic Dual Primal Domain Decomposition
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Two-Level Domain Decomposition Methods for SPDFEs
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Investigated numerical and parallel scalabilities:

Subber, W. and Sarkar, A., JCP, 2014

Subber, W. and Sarkar, A.,, CMAME, 2013

Desai, A., Khalil, M., Pettit, C., Poirel, D. and Sarkar, A., CMAME 2017




Implementational Framework
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Problem Setup for Numerical Fxperiments

® Model Problem:

—V - (ci(x,0) Vu(x,0)) = F(x), QxW,
u(x,0) = 0, 0 x W,
e Diffusion coefficient c¢; modelled as a lognormal process with

the underlying a Gaussian process having mean p, variance o
and exponential covariance function C (on a 2D domain).

2
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Block-Sparsity Structures
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Fixed mesh resolution N =~ 150, P, = 3 with L =3 and L = 5.
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Errors Analysis of PCE Coefficients of Solution Process:

Intrusive Vs Non-Intrusive

5 RVs, u2

Relative error norm
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Uil

) Ui
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uinll

coarse mesh (N =~ 150)

, 5 random variables, error in (i),



Scalability against Stochastic Dimensions:

Intrusive vs Non-Intrusive (Sparse Grid)
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Scalability against Number of Random Variables: NNC/BDDC
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Scalability against Number of Random Variables: NNC/BDDC

1000 — ! : '
o
_ 20 RVs
N _~ (1771 PCE)
L =
o 800F - 1
£ i
= e
c .-
B 9 15Rvs (816 PCE)
a &
g 600 27
w pad
v
Vé
rd
O 10RVs (286 PCE)
400+ 7 ,
o
O 5RVs (56 PCE)

48 246 704 1520
Number of subdomains (cores)

Fixed mesh (52704 nodes and 105410 elements), fixed problem
size per subdomain (= 60,000) and third order PCE



Parallel Scalability (Strong): NNC/BDDC
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Scalability using Large-Scale HPC' Cluster
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For the fixed mesh resolution (0.332 million nodes and 0.664
million elements.) and fixed number of PCE terms (P, = 56).



Scalability using Large-Scale HPC' Cluster
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Probabilistic Coarse Grid in Three Dimensions:

FExtended Wirebasket Grid

(-) - the global interface edge, (®) - vertices (*) - interface-edges
and (e) - interface-faces.



Deterministic Setting: Condition Number Bound Vertex vs Wirebasket-based
Methods
Ref. Book by Smith, Bjorstad and Gropp, 2004
For the vertex-based method in two dimensions
k< C(1+log(H/h))?,
For the vertex-based method in three dimensions

K < C(H/h)(1 + log(H/h)).

For the wirebasket-based methods in three dimensions

r < C(1+log(H/h))>.



Probabilistic BDDC/NNC using Eztended Wirebasket-based Coarse Grid

Fww Uw = dw,
Fuaw = Biy" (Siow — SivelSte " Stw ) Biv.
s=1

dw = > By (A — SiurlSEel Mz

s=1

Modified BDDC/NNC Preconditioner:

_ B L 3
Mihw = ZREDS(RE [SEe] 'REYDRSs + Ro [Fuw]  Ro.
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Numerical Experiments: Wirebasket based BDDC/NNC' solver

e Diffusion equation

—V - (ca(x,0) Vu(x,0)) = F(x), QxW,
u(x, 0) 0, A xW,

e Diffusion coefficient ¢y - lognormal process having underlying
a Gaussian process with exponential covariance C

Clxa,y1, 21 %2, y2, 22) = 0%~ Pel/belaonl/by—la—ail/be,




Characteristics of the Solution Process:

Diffusion Equation

u u
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— Y,

Mean and standard deviation.



Characteristics of the Solution Process
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Numerical Experiments: Wirebasket based BDDC/NNC' solver for PDE System

® |inear Elasticity

Stress tensor o
a(U(x,0)) = ANV -U(x,0)) ] + 2pue(U(x,0)),

where A\ = —E¥ __and 1 = are Lamé constants.
T)( ¥

v E
1-2v) 2(1+v)
® Young's modulus E - lognormal stochastic process (as before).



Characteristics of the Solution Process:

' U Magnitude
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1.9e-01




Characteristics of the Solution Process:

Linear FElasticity
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x,y and z components of the mean and standard deviation.



Characteristics of the Solution Process:

Linear FElasticity
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x,y and z components of the selected PCE coefficients.
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Execution time versus number of subdomains for fixed problem size
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Diffusion

Elasticity

Iteration count versus number of PCE terms for the fixed mesh
resolution with fixed number of subdomains.
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Stochastic Wave Equation

gtg(x t,0) +ng (x,t,0) — V.(co(x,0)Vu(x,t,0)) = f(x, t)

in Dx(0,T)xQ
U(X,070) = UO(X)
3,
52 (%.0.6) = w(x)
u(x,t,0) =up =0

where ¢y and u are the random wave velocity and acoustic wave pressure.
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MBI+ CoiF + K*u® = F°

M
[Kapli = CinKsg.i
i=1

M
[Caﬁ]fk = Z Dijkcfxﬁ,i

i=1

[Mapli = MG (Y (E)V(€))

[Folk = (Vi)

[Kasl® = Magl* 255 + [Casl* 7 + [Kagl®

5At2 BAt
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Numerical Experiments

A Gaussian pulse as the initial state with (xo, o) = (0.7,0.7),
B=1and a =0.01:

(_ (X - X0)2 + (y - y0)2)

uo(x0, o) = Bexp >

1.0e+00




Stochastic Wave Propagation
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Standard Deviation
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Stochastic Scalability
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Stochastic Scalability
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Conclusion

e Adaptation of two-level iterative substructuring techniques for
SPDEs in order to handle large number of random variables.

® Development of the wirebasket preconditioner for SPDEs in
three dimensions.
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