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» LABORATORY EXPERIMENTS

» NUMERICAL SIMULATIONS
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Sample preparation

1- Cast and cure cylindrical cement samples: A and B

2- Create fracture (Brazilian tension test)

3- Create offset and cast with Epoxy

Sample side view

Sample top view

6




Flow tests

Pore pressure : 0-11 MPa (0.1-1600)psi

5, Ji"" h. Fractured cement Sample FLOWMETER

Fluid (gas and oil) .

Confining stress: 1.3-13.8 MPa(190-2000 psi)

Pressure & Flowrate ——> Fracture permeability
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CK4 Does that image of the jet need to be attributed to its owner/creater?
Chojnicki, Kirsten, 8/21/2020

MH16 It is created by us
Mahya Hatambeigi, 8/24/2020



Permeability measurements

—VP = aQ + bQ? Forchheimer (1901)
U Bp |
a = U Viscous term b = p Inertial term
ff f
A : Cross-sectional area of the
VP: Pressure gradient k;: Fracture permeability fracture
(): Flowrate u: Dynamic viscosity of the fluid

f: Non-Darcy coefficient
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Hydraulic aperture

h3 = 12kA Cubic law (Witherspoon et al., 1980)

w

h: Hydraulic aperture

w: width of the fracture



1- Effect of
confining
stress cycles

(Sample A)
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2- Effect of
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3- Effect of pore
(gas and oil)
pressure on
hydraulic
aperture of
Sample B

Fracture props open with
pore pressure applied from
both gas and oll
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Mselection at the end -add

Ob.select= 1
_ob.select=1
-scene.objects.actiwg
Selected”™ + str(modifies
#wirror_ob.select = 0
ontext.selected_objs
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Hatambeigi et al., 2020
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CK1 what is the orange box on this slide?

Chojnicki, Kirsten, 8/21/2020

MH14 It was part of the slide design. | removed it to avoid confusion

Mahya Hatambeigi, 8/24/2020



Pressure build-up at surface in the cemented annulus

Cemented annulus pressure (Pa)
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—Constant aperture with visco-inertial flow

— -Varying aperture with visco-inertial flow
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Conclusions

» Elevated fluid pressure props wellbore cement fractures open

» Hydraulic aperture decreases when increasing the confining stress.

» Visco-inertial flow significantly slows the rate of pressure buildup.
» Pore pressure in the fracture accelerates the pressure buildup.

»Field measurements of pressure buildup or vent flow rate may be misinterpreted
if pore pressure and visco-inertial flow effects are ignored.

» Consider the effects of visco-inertial flow and pore pressure when simulating the
fluid flow through fractured wellbore systems.
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CK2 consider adding another 'impact' bullet: can you comment on how your results may impact inferring wellbore integrity from wells with non-zero behind casing
pressure?
Chojnicki, Kirsten, 8/21/2020

MH17 Added

Mahya Hatambeigi, 8/24/2020
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CK3 The SAND for the talk will be different than the SAND number for the paper so let's be sure to update this.
Chojnicki, Kirsten, 8/21/2020
MH15 Sure

Mahya Hatambeigi, 8/24/2020
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