
PRESENTED BY

Thor D. Osborn, PhD, MBA, CAP

1

liffr NffSit

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2020-8985C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



2 I Five Point Synopsis

• The choice of distribution used for survival (or time-to-event) analysis is often
motivated by precedent, ease of use, or empirically demonstrated best fit to the
data

• However, each of the commonly used parametric survival distributions represents
a different fundamental underlying process mechanism

• Choosing the model based on accepted practical considerations fails to leverage
process knowledge that could offer insight into the characteristic mechanism

• Conversely, the model that best fits the data may offer insight into the dominant
mechanism governing the process at hand, accelerating comprehension

• Simulation of the common distributions via atomistic representations of their
respective core mechanisms exposes informative heuristics for choosing
distribution models and interpreting model fit



3 I Addressing a Common Gap

• How often have you seen statements similar to these when reading scholarly
journals or technical works?
• The xxx distribution / hazard function can accommodate an appropriate shape for

matching...
• e.g., (Adelian et al., 2015), (Billinton & Allen, 1987)

• The yyy distribution has often been used to describe...
• e.g., (George, Seals, & Aban, 2014)

• The zzz distribution fits these data well...
• e.g., (Surendran & Tota-Maharaj, 2015), (Zare et al., 2014)

• Such statements imply that the author has made a conventional, non-controversial
choice of distribution to describe the phenomena of interest — however:
• The relative suitability of the chosen distribution vs. alternatives may not be addressed

• Insight from the fundamental mechanism underlying the distribution may be lost



4 I Common Distributions in Parametric Survival Analysis

Five of the most common distributions used in parametric survival analysis:

• Lognormal — the logarithm of the distribution is normally distributed

• Exponential — constant hazard rate (event probability)

• Weibull — shortest time to failure for elements of a system depending on all
elements to function

• Frechet — longest time to failure for elements of a system depending on any of
multiple elements to function

• Loglogistic — the logarithm of the distribution is logistically distributed — time to
event for a system comprised of cooperatively interacting elements

The shapes of the distributions differ because they
model fundamentally different system archetypes



5 Demonstration — Fit All Common Distributions to a Sample
Data Set



6 Demo Result — Fit All Common Distributions to a Sample Data
Set
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Underlying Mechanisms



8 I Mechanistic Perspective on the Normal Distribution

The Normal distribution is not commonly used for survival analysis; however, it
provides a familiar platform for introducing the mechanistic perspective.

The Central Limit Theorem has been framed in various ways — one construction is
that the distribution of sample means produced by randomly drawing samples from
any fixed distribution will yield the Normal distribution.

An implication of this perspective is that the normal distribution may be
contemplated as a summation of many small uncorrelated effects (E1).

t

Xt = ,X0 + lEj

i=1



9 Demonstration — Generate and Fit Synthetic Normal Data



10 Demo Result — Generate and Fit Synthetic Normal Data
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Parameter Estimates

Type Parameter Estimate Lower 95% Upper 95%
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11 I Mechanistic Perspective on the Lognormal Distribution

A simple mathematical form results if we adopt Kalecki's approach to Gibrat's law of proportionate effect, as

recast by Sutton (Kalecki, 1945; Sutton, 1997):

Each small random fluctuation Ei increases or decreases x in proportion to

the current basis.

The value of x at time t results from the multiplicative effect of many small

fluctuations on the original value of x at time O.

Logarithmic transformation yields the corresponding summation.

For infinitesimal fluctuations Ei « 1, ln(1 + Ei) may be approximated as

Ei based on the Taylor series expansion.

Rearranging, the growth of x over the time interval is clearly lognormal, as

taking the logarithm reveals a summation of small fluctuations.

xt — xt_i = EtXt_i

Xt = X0

t

11(1 + Ei)

i=i

t

ln xt = ln .x0 + 1 ln(1 + Ei)

i=i

t

1 ln xt = ln .x0 + Ei

i=1

Xt yt r
= ez-at=i --i

xo



1 2 Demonstration — Generate and Fit Synthetic Lognormal Data



1 3 Demo Result — Generate and Fit Synthetic Lognormal Data
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14 I Mechanistic Perspective on the Weibull and Fréchet
Distributions

The Frechet distribution represents maximal extreme values. For example, the
Frechet may be used for a set of samples of observations drawn from a random
process where each sample is represented by its maximum value.

The Weibull distribution represents minimal extreme values. For example, the
Weibull may be used for a set of samples drawn from a random process where each
sample is represented by its minimum value.



1 5 Demonstration — Generate and Fit Synthetic Frechet Data



1 6 Demo Result - Generate and Fit Synthetic Frechet Data
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17 Demonstration — Generate and Fit Synthetic Weibull Data



1 8 Demo Result — Generate and Fit Synthetic Weibull Data

Min(Sq Normal)

oHimigkipopeet 4...# • # • • •

2 0 O. 0.1 0 12 0.14 0.16 0 18

Pr
ob
ab
il
it
y 
Ax

is
 

0.995
0.95

0.6
OA

02
0.1
O.

0.02
0.01
0 5-

I I I
0.01 01 

03 1 2 4

Weibull

Model Comparisons
Distribution AICc -2Loglikelihood

Weibull 24272346 2426 44

Loglogistic 25004.558 25000.556

Lognormal 25285.879 25281. 77

Frechet 27997.787 27993.784

Exponential 29120290 29111 .289

BIC

242 5.378

25017.590

25298.911

2 010.819

29126.806

•



19 I Mechanistic Perspective on the Loglogistic Distribution

The demonstrations up to this point have all used independent samples. The Loglogistic distribution
is similar to the Lognormal, but occurs when the data in each sample are correlated.

This can be attained for small samples over short sequences by using autocorrelated data.

If Y1 and Y2 are independent normally-distributed random variables then correlated normally-
distributed random variables X1 and X2 may be generated as follows (Cordes, 2019):

X1 = cos $1) • Y1 + sin II) • Y2

X2 = sin 0 • Y1 + cos $1) • Y2

Where the value of (I) necessary to produce the correlation coefficient is determined by:

1
0 = —

2 
sin-1 p • X1 • X2



20 Demonstration — Generate and Fit Synthetic Loglogistic Data



21 Demo Result — Generate and Fit Synthetic Loglogistic Data
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Example San Francisco
Zoning Variance Analysis



23 1 The San Francisco Zoning Variance Process

Process Step
Assemble Preliminary Variance
Application and Exhibits
Preliminary Review and Revision

Submit Plan

Verify Need for Variance

Community Notification

Community Input

Public Hearing
Final Determination -ii

Applicant fills out application form and gathers necessary
drawings, evidence, and justification per variance requirements

Applicant has Intake Appointment with a Planner to ensure
application meets requirements
Applicant submits revised application and materials to Planning
Department
Assigned Planner checks plan against Planning Code, San
Francisco General Plan and Planning Department policies
Planning Department notifies property owners within 300 feet
of subject property
Assigned Planner gathers comments and concerns from the
neighborhood during the notification period
Conducted by Zoning Administrator

Zoning Administrator issues Decision

Process is characterized by substantial interaction among the Applicant, Assigned Planner, and
Local Property Owners, converging to a single formal decision by the Zoning Administrator

I

1



24 Survival Analysis of San Francisco Zoning Variance Cases
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Summary of Survival
Distribution Heuristics



26 Heuristics for Distribution Selection and Interpretation of
Empirical Results

Distribution Characteristic Uti lit
Lognormal
Product of many
small fluctuations

Fréchet
Maximum
extreme value

Weibull
Minimum extreme
values

Loglogistic
Coopera tion
among groups

Where the final outcome of a process is the result
of a long sequence of small, independent
incremental steps, each building on the result of
all prior impacts

Where the final outcome of a process represents
the greatest duration among an ensemble of
independent subprocesses

Where the final outcome of a process represents
the least duration among an ensemble of
independent subprocesses

Where the final outcome of a process results from
the collective action of two or more entities
having mutual influence over each other

Plant growth / growth of terminal
organs (Koyama, Yamamoto, Et
Ushio, 2016); Age of disease onset
(Limpert, Stahel, Et Abbt, 2001)

Annual maximum daily rainfall
(Papalexiou Et Koutsoyiannis, 2013)

Failure of a complex, non-
redundant system

San Francisco zoning variance
approval process; Job offer
acceptance process



27 I Your Feedback Is Welcome!

• Was this presentation interesting?

• Do you think that considering the fundamental behavior addressed by each
common parametric survival distribution will help you make better
distribution model choices in your work?

• Do you think that considering these fundamental behaviors will help you to
better understand the processes you are analyzing?

Please address your comments to:

Thor D. Osborn

Sandia National Laboratories

tdosbor@sandia.gov
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