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2 | Five Point Synopsis

The choice of distribution used for survival (or time-to-event) analysis 1s often
motivated by precedent, ease of use, or empirically demonstrated best fit to the
data

However, each of the commonly used parametric survival distributions represents
a different fundamental underlying process mechanism

Choosing the model based on accepted practical considerations fails to leverage
process knowledge that could offer insight into the characteristic mechanism

Conversely, the model that best fits the data may offer insight into the dominant
mechanism governing the process at hand, accelerating comprehension

Simulation of the common distributions via atomistic representations of their
respective core mechanisms exposes informative heuristics for choosing
distribution models and interpreting model fit



3 | Addressing a Common Gap

* How often have you seen statements similar to these when reading scholarly
journals or technical works?

* The xxx distribution / hazard function can accommodate an appropriate shape for
matching. ..

* e.g., (Adelian et al., 2015), (Billinton & Allen, 1987)

* The yyy distribution has often been used to desctribe...
* e.g., (George, Seals, & Aban, 2014)

* The zzz distribution fits these data well...
* ec.g., (Surendran & Tota-Maharaj, 2015), (Zare et al., 2014)

* Such statements imply that the author has made a conventional, non-controversial
choice of distribution to describe the phenomena of interest — however:

* The relative suitability of the chosen distribution zs. alternatives may not be addressed
* Insight from the fundamental mechanism underlying the distribution may be lost



4+ I Common Distributions in Parametric Survival Analysis

Five of the most common distributions used in parametric survival analysis:

Lognormal — the logarithm of the distribution 1s normally distributed
Exponential — constant hazard rate (event probability)

Weibull — shortest time to failure for elements of a system depending on all
elements to function

Fréchet — longest time to failure for elements of a system depending on any of
multiple elements to function

Loglogistic — the logarithm of the distribution 1s logistically distributed — time to
event for a system comprised of cooperatively interacting elements

The shapes of the distributions differ because they
model fundamentally different system archetypes




s | Demonstration — Fit All Common Distributions to a Sample
Data Set
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Underlying Mechanisms




s I Mechanistic Perspective on the Normal Distribution

The Normal distribution 1s not commonly used for survival analysis; however, it
provides a familiar platform for introducing the mechanistic perspective.

The Central Limit Theorem has been framed in various ways — one construction is
that the distribution of sample means produced by randomly drawing samples from
any fixed distribution will yield the Normal distribution.

An implication of this perspective is that the normal distribution may be
contemplated as a summation of many small uncorrelated effects (€)).

t
X¢ = Xg + Zei
i=1




9 | Demonstration — Generate and Fit Synthetic Normal Data




0 I Demo Result — Generate and Fit Synthetic Normal Data
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Fitted Normal

Parameter Estimates

Type Parameter Estimate Lower 95%  Upper 95%
Location -0.005325 -0.016873 0.0062233
Dispersion o 041652 04085138 0.4248486
Measure

-2*LogLikelihood 5430.1772

AlCc 5434.1796

BIC 5447.2115
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11 I Mechanistic Perspective on the Lognormal Distribution

A simple mathematical form results if we adopt Kalecki’s approach to Gibrat’s law of proportionate effect, as

recast by Sutton (Kalecki, 1945; Sutton, 1997):

Each small random fluctuation €; increases or decreases X in proportion to

the current basis.

The value of x at time ¢ results from the multiplicative effect of many small

fluctuations on the original value of x at time 0.

Logarithmic transformation yields the corresponding summation.

For infinitesimal fluctuations €; < 1, In(1 + €;) may be approximated as

€; based on the Taylor series expansion.

Rearranging, the growth of x over the time interval is clearly lognormal, as
taking the logarithm reveals a summation of small fluctuations.

Xt — Xt—1 = €tXt—q

t

X = X 1_[(1 + €;)

i=1

t
Inx; = Inxy + Z In(1 +¢;)
i=1

t

Inx; = Inxgy + zei

i=1




12 | Demonstration — Generate and Fit Synthetic Lognormal Data




13 I Demo Result — Generate and Fit Synthetic Lognormal Data
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— LogNormal(-0.0107,0.83338)

Fitted LogNormal

Parameter Estimates

Type  Parameter
Scale p
Shape o

Measure

Estimate
-0.010656
0.8333788

-2*LogLikelihood 12260.154

AlCc
BIC

12264.157
12277.189

Lower 95%  Upper 95%
-0.03376 0.012448
0.8173079 0.8499834



14 I Mechanistic Perspective on the Weibull and Fréchet
Distributions

The Fréchet distribution represents maximal extreme values. For example, the
Fréchet may be used for a set of samples of observations drawn from a random
process where each sample is represented by its maximum value.

The Weibull distribution represents minimal extreme values. For example, the
Weibull may be used for a set of samples drawn from a random process where each
sample is represented by its minimum value.



s | Demonstration — Generate and Fit Synthetic Frechet Data




1« | Demo Result - Generate and Fit Synthetic Frechet Data
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7 | Demonstration — Generate and Fit Synthetic Weibull Data
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Demo Result — Generate and Fit Synthetic Weibull Data
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19 I Mechanistic Perspective on the Loglogistic Distribution

The demonstrations up to this point have all used independent samples. The Loglogistic distribution
is similar to the Lognormal, but occurs when the data in each sample are correlated.

This can be attained for small samples over short sequences by using autocorrelated data.

If Y1 and Y2 are independent normally-distributed random variables then correlated normally-
distributed random variables X1 and X2 may be generated as follows (Cordes, 2019):

Xy =cos¢ Y, +sing-Y,
X, =sin¢-Y, +cosp Y,

Where the value of ¢ necessary to produce the correlation coefficient is determined by:

1
¢=§sm‘1p-X1-X2



0 | Demonstration — Generate and Fit Synthetic Loglogistic Data




21 | Demo Result — Generate and Fit Synthetic Loglogistic Data
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Example — San Francisco
Zoning Variance Analysis




23 I The San Francisco Zoning Variance Process

I
Process Step |

Assemble Preliminary Variance Applicant fills out application form and gathers necessary
Application and Exhibits drawings, evidence, and justification per variance requirements

Preliminary Review and Revision Applicant has Intake Appointment with a Planner to ensure
application meets requirements

Applicant submits revised application and materials to Planning
Department
Assigned Planner checks plan against Planning Code, San
Francisco General Plan and Planning Department policies |
Planning Department notifies property owners within 300 feet
of subject property

Community Input Assigned Planner gathers comments and concerns from the
neighborhood during the notification period
Public Hearing Conducted by Zoning Administrator

Final Determination Zoning Administrator issues Decision

Process is characterized by substantial interaction among the Applicant, Assighed Planner, and
Local Property Owners, converging to a single formal decision by the Zoning Administrator




24 | Survival Analysis of San Francisco Zoning Variance Cases
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Summary of Survival
Distribution Heuristics
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Heuristics for Distribution Selection and Interpretation of
Empirical Results

Distribution Example

Lognormal Where the final outcome of a process is the result Plant growth / growth of terminal
iele[1aatey i l)7A0 of a long sequence of small, independent organs (Koyama, Yamamoto, &
Sl S0 0Tale) 8 incremental steps, each building on the result of  Ushio, 2016); Age of disease onset
all prior impacts (Limpert, Stahel, & Abbt, 2001)

Fréchet Where the final outcome of a process represents  Annual maximum daily rainfall
Maximum the greatest duration among an ensemble of (Papalexiou & Koutsoyiannis, 2013)
extreme values independent subprocesses

Weibull Where the final outcome of a process represents  Failure of a complex, non-
W= 4dd= 1= the least duration among an ensemble of redundant system
values independent subprocesses

Loglogistic Where the final outcome of a process results from San Francisco zoning variance
Cooperation the collective action of two or more entities approval process; Job offer
among groups having mutual influence over each other acceptance process



27 | Your Feedback Is Welcome!

* Was this presentation interesting?

* Do you think that considering the fundamental behavior addressed by each
common parametric survival distribution will help you make better
distribution model choices in your work?

* Do you think that considering these fundamental behaviors will help you to
better understand the processes you are analyzing?

Please address your comments to:
Thor D. Osborn
Sandia National I.aboratories

tdosbor(@sandia.gov
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