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Slide Coating
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). A method ideal for precisely coating multiple
layers or more

) Stack multiple layers via gravity driven flow

and coat them simultaneously on a moving
substrate.

➢ Premetered method thickness is set by flow
rate and coating speed

) Developed originally by photographic film

industries

) Emerging application: Multilayer structures for

energy -> polymer membrane fuel cell (PEMFC)
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Polymer Electrolyte Membrane Fuel Cells (PEMFC)
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https://www.physics.nist.gov/MajResFac/NIF/pemFuelCells.html 

Anode Reaction

Convert hydrogen gas into protons and electroi

2H2 411+ + 4e-

Ions Transport

• Transport protons through the membrane

• Transport electrons around the membrane through

external circuit 4 electricity

Cathode Reaction

Combine protons, electrons, and oxygen to form water

and heat

02 + 4H+ + 4e- —> 2H
2
0

➢ Use slide coating to manufacture
membrane-electrode-assembly (MEA)

➢ Target speed: /- 10 min/min

➢ Target wet thicknesses:

o Anode/cathode: 60 — 150 µm.

o Membrane:250 pm
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Slide Coating Model

Cauchy momentum pu • Vu —V • T —pg =

Continuity V • u

Die Surface
u = 0

inflow

Specify velocity profile,
(flow rate)

> Two-dimensional steady state model

> Free surface shape is not known apriori 4
need to be solved as well

Downstream Meniscus

n • T = 21--/an + patinn

> Arbitrary Lagrangian Eulerian (ALE) method
— pseudo solid elasticity

> Solved with Galerkin finite element method
— G/FEM

Dynamic Contact Line
,

tn:T=— 
1 
t•oi-U )

/6

o

0

Outflow
"Open"or"Free"

Web
Surface
u = Uw

Upstream Meniscus

n • T = 2Han + p„,n
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Platinum — Vulcan 3% or 7.5%, 1-

propanol 10%, l/C 1.05

• Platinum — High Surface Carbon

(HSC) 3% or 7.5%, 1-propanol 10%,

l/C 1.05

Membrane:
• NafionTM D2020 — lonomer 20%,

Water 34%, 1 Propanol 46%

➢ Particles-laden ink system —
highly shear thinning

➢ All layers are miscible4 no
interfacial tension

➢ Wide ranges of viscosity values 4
tailor ink rheology to improve
coatability
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Mapping Vacuum Limits

Front View of Bead — Low Vacuum Limits

Front View of Bead — High Vacuum Limits

Tjiptowidjojo, K., & Carvalho, M. S. (2011). Operability limits of

slide coating. Chemical Engineering Science, 66(21), 5077-5083.

➢ Typically a "vacuum" pressure is applied on
upstream meniscus to stabilize the bead

➢ Too little vacuum -* rivulets — low vacuum
limit

➢ Too high vacuum 4 weeping, leakage —
high vacuum limit

➢ Strongly correlates with upstream

meniscus (contact lines) location

➢ Solve an augmenting condition for
vacuum pressure needed to place

upstream contact line in either edge of die
face 4 solve for vacuum limits.
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Speed
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Simulation Tool: Goma 6.0

loin) 2014 R&D 100 Award Winner

• Multiphysics finite element code, suitable for

both research and production

• Fully-coupled and segregated free and moving

boundary parameterization — ALE, Level Set, etc.

• Modular code; easy to add equations — currently

has 200+ differential equations

• Open source! Available at http://goma.github.io

• Goma 6.0. training is available!

Goma has been used successfully in coating manufacturing for 3 decades!
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Single Layer Vacuum Limits

Nafion — hwet = 250 Itm

Speed:0.599999766795 m/min

Vacuum: -1590.28027033 dyne/c

Pressure (dyne/cm^2)

-1 949e+03 -1448 -947 -446 5.486e+01

350
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1.500e-01 0.49
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Pt-V 7.5% — hwet = 64 gm

Speed:0.599999766795 m/min

Vacuum: -415.52 dyne/cmA2

Viscosity (Poise)

0.83 1.16 1.500e+00

➢ Increase speed with constant ket 4 calculate
flow field and required applied vacuum to keep

upstream static contact line at either die face
edge

➢ Downstream vortex disappear at higher speed
(and vacuum)

➢ Nafion vacuum limits are higher than Pt-V 7.5%

due to shear thinning of catalyst ink
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Stability of Flow

Buerkin, Cornelia K., et al. "Investigation of interfacial

instabilities with a two-layer slide coating process." Journal of
Coatings Technology and Research 14.5 (2017): 991-1001.

➢ Predict vacuum limits — onset of 3-D flow
instabilities with heuristics from visualization

➢ Enable prediction of vacuum limits with a

model.

➢ Other defects commonly found in multilayer
slide coating: Interfacial instabilities.
Manifestation: Dewetting, waves, vortices

➢ No known heuristics to predict onset, some

rules of thumbs available 4 Buerkin et al.
(2017).

Predict stability of flow with 2-D base flow model 4 linear stability analysis

EL
NATIONAL RENE ABLE ENERGY LABORATORY

Sandia
National
Laboratories

9



Linear Stability Analysis
Examining flow behavior due to infinitesimally small disturbances

[Governing equations: p —
au 
+ u•Vu

at
—V•T—pg = 0 ; T—pI+p[Vu+VuT]

V•u = 0

Express solution in terms of base (steady state)
solution and small disturbance:

u = uo

p = po

+ Eul

+ E p1

Base Disturbance
(steady)

Substitute into PDE, eliminate o(s2) and higher order terms, discretize with G/FEM:

d Lu- u- 
_
u N

M — = J Express solution in terms of eigenmodes: = 1 xi exp (Ait)
= dt p - p Pl i=i

Generalized eigenvalue problem: 2,Mx, = _ Jx/ Re(k) > 0 4 unstable mode

Re()) < 0 4 stable mode
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Previous Work Single Layer
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Yih, C.S. (1963) "Stability of liquid flow down an inclined

plane." The Physics of Fluids 6(3): 321-334.

➢ Fully developed Newtonian flow down an inclined plane — 2-D linear stability of 1-D flow

➢ Neutral stability curve (Re(X) = 0) depends on plane inclination a.

➢ Small wavenumber (long wavelength) modes are most unstable. Smaller wavelength
modes are dampened with surface tension

➢ For inclination of 30°, critical Re = 1.44
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Linear Stability Analysis of Slide Flow

Cauchy momentum pu • Vu — V • T — pg = 0

Continuity V • u 0

Downstream Meniscus

n•T = 21-fan +p„„n

➢ Two-dimensional 2-D stability analysis

➢ Use rheological properties of nafion

➢ Solve generalized eigenvalue system with

varied Re (density) — we use dimensional
formulation in Goma.

Outflow
"Open"or"Free"
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Conclusions

> Complete single layer and two-layer slide coating flow model

> Augment the flow model to solve for applied vacuum pressure needed to locate upstream

contact line at either die face edge 4 expedite vacuum limits mapping by continuing in

speed and vacuum simultaneously

> Verify linear stability analysis implementation with single-layer slide flow study

Research Plans

> Complete three-layer slide coating flow model

> Complete stability analysis of two-layer and three-layer slide flow

> Use the model and stability analysis to guide ink and process condition selections
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Linear Stability Analysis
Examining flow behavior due to infinitesimally small disturbances

[Governing equations: p —
au 
+ u•Vu

at
V •u

Express solution in terms of base (steady state)
solution and small disturbance:

—V•T—pg = 0 ; T—pI+p[Vu+VuT]

u = uo + Eul

p = Po +

Base Disturbance
(steady)

Substitute into PDE and eliminate o(6.2) or higher order terms

o(1) term:

o(s) term:

puo • Vuo — V • To — pg

V •uo

p[
au,
— +uo •Vul +u1•Vuo
at

V • u,

0 Solve base flow fields uo and /90 with finite
element method

—V •T, = 0
Use base flow solution to solve
for disturbance flow fields.
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Generalized Eigenvalue Problem

Finite element method transforms the PDEs into a system of differential algebraic equations

M
= dt

d Jupi
Express solution in terms of eigenmodes:

Generalized eigenvalue problem:

J

u

p

u

_19

i exp(ilit)
i=i

Jx.

Re()) > 0 4 unstable mode
Re()) < 0 4 stable mode

:';NREL
NATIONAL RENE ABLE ENERGY LABORATORY

Sandia
National
Laboratories

17


