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Slide Coating

» A method ideal for precisely coating multiple
layers or more

>

Stack multiple layers via gravity driven flow
and coat them simultaneously on a moving
substrate.

Premetered method —> thickness is set by flow
rate and coating speed

Developed originally by photographic film
industries

Emerging application: Multilayer structures for
energy -> polymer membrane fuel cell (PEMFC)
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Polymer Electrolyte Membrane Fuel Cells (PEMFC)

Electric Circuit

{40% - 60% efficiency) Anode Reaction
Convert hydrogen gas into protons and electrons

2H, > 4H" +4¢

Fuel input QO <— Oxygengas
(humidified (from air) input
hydrogen gas) lons Transport
et i85 * Transport protons through the membrane
Anod X=> Heat (85 °C)
o * Transport electrons around the membrane through
external circuit = electricity
Unused hydrogen <—— (%] ——> Air + Water output CathOde Reaction
gas output recirculated 3
Oxygen Combine protons, electrons, and oxygen to form water

and heat

O,+4H" +4e” > 2H,0

Catalyst N Gas

Gas
electrode diffusion \

diffusion

backing backing

Oxygen gas from
air in serpintine flow

wamesscem| 3> |Jse slide coating to manufacture
membrane-electrode-assembly (MEA)

Hydrogen gas from
serpintine flow field
finds a pathway to [~
catalyst ayer ‘

Pathway of water
from catalyst layer

Corbon nancoarids m;;um s m » Target speed: 1- 10 min/min

o _ » Target wet thicknesses:
https://www.physics.nist.gov/MajResFac/NIF/pemFuelCells.html

o Anode/cathode: 60 — 150 um.
o Membrane:250 um
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Slide Coating Model

Cauchy momentum pu-Vu-V-T-pg = 0
Continuity V-u = 0

Die Surface

u=_0 .
Downstream Meniscus

Inflow n-T=2Hon+p, n
Specify velocity profile, 7 - Outflow
(flow rate) “Open”or”Free”

» Two-dimensional steady state model

> Free surface shape is not known apriori >
need to be solved as well

» Arbitrary Lagrangian Eulerian (ALE) method _ .
— pseudo solid elasticity Dynamic Contact Line

tn:l“:%t-(u—UW)

Web

Surface

> Solved with Galerkin finite element method u=U,

— G/FEM Upstream Meniscus
n-T=2Hon+p,.n
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Coating Materials
Hydrogen
= Q e Q h Anode/Cathode:
A4 = * Platinum — Vulcan 3% or 7.5%, 1-
- propanol 10%, I/C 1.05
e Platinum — High Surface Carbon
(HSC) 3% or 7.5%, 1-propanol 10%,
I/C 1.05

Flow Plates Cathodel/Catalyst

« - Water/Heat

Oxygen
| Membrane:

Catalyst PEM Cataiyet * Nafion™ D2020 — lonomer 20%,

https://www.energy.gov/eere/fuelcells/fuel-cell-animation-text-version Water 34%, 1 Propanol 46%

» Particles-laden ink system —
highly shear thinning

N\ 7.5% Pt-HSC

7.3% Pt-Vulcan

-
o
s
I
1
T

. I > All layers are miscible=> no
interfacial tension

Viscosity (Poise)

e

2

2

Q

=h

@)

=]

—
o
o
-+
®
@
]
T

®o0e, I » Wide ranges of viscosity values =
(] + ° ° s

] 2 tailor ink rheology to improve

10-1 +——HH——— e Coatabi“ty

1073 1072 10" 10° 10" 102 10° 10*

Shear Rate (s'1)
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Mapping Vacuum Limits

Front View of Bead — Low Vacuum Limits

» Typically a “vacuum” pressure is applied on
upstream meniscus to stabilize the bead

> Too little vacuum = rivulets — low vacuum
limit

» Too high vacuum = weeping, leakage —
high vacuum limit

» Strongly correlates with upstream
meniscus (contact lines) location

» Solve an augmenting condition for
vacuum pressure needed to place
upstream contact line in either edge of die
face = solve for vacuum limits.

Tjiptowidjojo, K., & Carvalho, M. S. (2011). Operability limits of
slide coating. Chemical Engineering Science, 66(21), 5077-5083.
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Simulation Tool: Goma 6.0

%Eég 2014 R&D 100 Award Winner

i ' Speed
1.9e+01

- e Multiphysics finite element code, suitable for

12,629

Ewm
63145

both research and production

i v e Fully-coupled and segregated free and moving

boundary parameterization — ALE, Level Set, etc.

e Modular code; easy to add equations — currently

has 200+ differential equations

e Open source! Available at http://goma.github.io

e Goma 6.0. training is available!

Goma has been used successfully in coating manufacturing for 3 decades!
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Single Layer — Vacuum Limits

Nafion — Ay = 250 pm Pt-V 7.5% — hyet = 64 pm
Speed:0.599999766795 m/min Speed:0.599999766795 m/min

Vacuum: -415.52 dyne/cmA2

Vacuum: -1590.28027033 dyne/c

Viscosity (Poise)
1.500e-01 0.49 0.83 1.16 1.500e+00
LiLl

Pressure (dyne/cm”2)
-1.949e+03 -1448 947 -446  5.486e+01
111 | | |

I

350 ; ; f f : 5 )
—High Vacuum - Nafion U< » Increase speed with constant A = calculate
3004 [*'Low Vacuum - Nafion 4 . . .
L High Vacuum - PtV 7.5% ™ o flow field and required applied vacuum to keep
T 2504 LoLow Vacuum - Pt-V 7.5% e + upstream static contact line at either die face
= ”
§200-- ” “ T edge
st
> 504 + s :
3% - - » Downstream vortex disappear at higher speed
S0t i B B S e +  (andvacuum)
< T R L
0T S NRPPTILT TRty i . .. .
2 T e » Nafion vacuum limits are higher than Pt-V 7.5%
et ...I....--------l--unnunnn----l -------- : : . . .
S ; J : : 0 »  due to shear thinning of catalyst ink

Speed (m/min)
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Stability of Flow

e —

» Predict vacuum limits — onset of 3-D flow
instabilities with heuristics from visualization

, » Enable prediction of vacuum limits with a 2-D
Spreading .
» Other defects commonly found in multilayer
slide coating: Interfacial instabilities.
Vortices Manifestation: Dewetting, waves, vortices

Buerkin, Cornelia K., et al. "Investigation of interfacial
instabilities with a two-layer slide coating process." Journal of . .
Coatings Technology and Research 14.5 (2017): 991-1001. rules of thumbs available = Buerkin et al.

(2017).

» No known heuristics to predict onset, some

Predict stability of flow with 2-D base flow model = linear stability analysis
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Linear Stability Analysis

Examining flow behavior due to infinitesimally small disturbances

Governing equations: p[i—quu-Vu}—V-I—pg = 0 ; T= —pI—I—,u[Vu+VuTJ
¢ =

V-u = 0

Express solution in terms of base (steady state) u = u, + é&u

solution and small disturbance: p = p, + &p

Base Disturbance
(steady)

Substitute into PDE, eliminate o(¢?) and higher order terms, discretize with G/FEM:

d|lu u u -
M— = J Express solution in terms of eigenmodes: = in eXp(/Lt)
= dt| p —| P P i=1

Generalized eigenvalue problem: AMx. = Jx. Re()) > 0 = unstable mode

Re()) < 0 > stable mode
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Wavenumber

Previous Work — Single Layer

Neutral
stability

Yih, C.S. (1963) "Stability of liquid flow down an inclined
plane." The Physics of Fluids 6(3): 321-334.

Re=24
U

» Fully developed Newtonian flow down an inclined plane — 2-D linear stability of 1-D flow

—cotox
6

» Neutral stability curve (Re(Lh) = 0) depends on plane inclination o.

» Small wavenumber (long wavelength) modes are most unstable. Smaller wavelength
modes are dampened with surface tension

» For inclination of 30°, critical Re = 1.44
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Linear Stability Analysis of Slide Flow

Cauchy momentum pu-Vu-V-T-pg = 0
Continuity V-u = 0

Die Surface

u=20 .
Downstream Meniscus

n-T=2Hon+p,,n

Outflow
“Open”or”Free”

» Two-dimensional 2-D stability analysis
» Use rheological properties of nafion

» Solve generalized eigenvalue system with

varied Re (density) — we use dimensional
formulation in Goma.

NV GNREL  (rh) i

Laboratories




Conclusions

» Complete single layer and two-layer slide coating flow model
» Augment the flow model to solve for applied vacuum pressure needed to locate upstream
contact line at either die face edge = expedite vacuum limits mapping by continuing in

speed and vacuum simultaneously

» Verify linear stability analysis implementation with single-layer slide flow study

Research Plans

» Complete three-layer slide coating flow model
» Complete stability analysis of two-layer and three-layer slide flow

» Use the model and stability analysis to guide ink and process condition selections
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Linear Stability Analysis

Examining flow behavior due to infinitesimally small disturbances

Governing equations: p[i—quu-Vu}—V-I—pg = 0 ; T= —pI—I—,u[Vu—I—VuTJ
¢ =

V-u = 0

Express solution in terms of base (steady state) u = u, + é&u

solution and small disturbance: p = p, + &p

Base Disturbance
(steady)

Substitute into PDE and eliminate o(&?) or higher order terms

. pu,-Vu, -V-T —pg = 0 Solve base flow fields uy and p, with finite
ol 1) term. V.u B — 0 element method
" =
. ou, Use base flow solution to solve
o(¢) term:  p o W Vo -V |-Vl = for disturbance flow fields.
V 'u] = O
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Generalized Eigenvalue Problem

Finite element method transforms the PDEs into a system of differential algebraic equations

RN

u

P

}z Z.ZN;X" exp(Az)

Express solution in terms of eigenmodes: {

Generalized eigenvalue problem: AMx. = Jx.

Re()) > 0 = unstable mode
Re()) < 0 > stable mode
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