
Evaluation of Probing Signals for Implementing
Moving Horizon Inertia Estimation in Microgrids

Manisha Rauniyart, Sterling Berg, Sunil Subedi
Timothy M. Hansen, Robert Fourney, Reinaldo Tonkoski

South Dakota State University
Brookings, South Dakota, USA

Email: t manisharauniyar@ jacks .sdstate.edu

Abstract—This paper investigates existing probing signals for
accurate estimation of inertia and damping constants in micro-
grids. Increasing utilization of renewable energy sources and their
different dynamics has created unknowns in time-varying system
inertia and damping constants. Thus, it is difficult to know these
parameters at any given time in converter-dominated microgrids.
This paper describes the design characteristics, considerations,
methodology, and accuracy level of different probing signals
in determining unknown parameters of a system. The main
goal of this paper is to find an effective probing signal with a
simple implementation and minimal impacts on power system
operation. The test-case model in this paper analyzes non-
intrusive excitation signals to perturb a power system model (i.e.,
square wave, multisine wave, filtered white Gaussian noise, and
pseudo-random binary sequence). A moving horizon estimation
(MHE)-based approach is then implemented in an energy storage
system (ESS) in MATLAB/Simulink for estimation of inertia and
damping constants of a system based on frequency measurements
from a local phase-locked-loop (PLL). The accuracy of parameter
estimates alters depending on the chosen probing signal; when
estimating inertia and damping constants using MHE with the
different probing signals, square waves yielded the lowest error.
Index Terms—Energy storage systems, probing signals, inertia

estimation, microgrids, moving horizon estimation.

I. INTRODUCTION

Increasing implementation of converter-based renewable
energy sources (RESs) is leading to a reduction in the power
system inertia. Low-inertia systems are more susceptible to
changes in load/generation that lead to a large rate of change
of frequency (ROCOF) [1]. The inertia of a power system
is traditionally estimated based on the number of online
synchronous generators. However, RESs such as photovoltaic
solar and wind typically do not add inertia as they replace
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traditional synchronous generators, causing the system inertia
to vary over time [2]. The stochastic nature of RESs makes
estimating the inertia of a power system more challenging.
Additionally, converters with virtual inertia control algorithms
can be used to connect RESs to benefit system stability,
further compounding the inertia estimation process [3]. Un-
der uncertain inertia estimates, deployment of fast-frequency
control/support strategies can be challenging.

Traditionally, inertia estimation has been performed using
offline methods, such as a polynomial approximation tech-
nique applied to a frequency transient waveform [4], after the
transient has occurred. Offline approaches to inertia estimation
may not be useful for real-time adaptive control techniques
as the true inertia value may change over time. Methods
for real-time online inertia and damping constant estimation
have been developed in [5], [6]. However, these approaches
may not be always available in microgrids [7]. Based on
the frequency transient measurements, the inertia constant
of the system has been estimated in [8], but the damping
constant was not considered in this approach. It becomes
computationally expensive to extract the inertia constant value
based on the ambient frequency measurements using a sys-
tem identification approach [6]. An estimation technique that
uses local measurements is preferable for a wider range of
applications, such as microgrids. Moving horizon estimation
(MHE) was recently shown as a viable approach to provide
real-time inertia and damping constant estimation using local
measurements from a phased-locked loop (PLL) of an energy
storage system (ESS) [7]. In [7], a MHE-based approach
was proposed to estimate the inertia and damping constant
of microgrid system based on perturbation from ESSs. The
microgrid was perturbed using a low-level square wave power
signal from an ESS, and the system response was analyzed
using MHE to estimate the inertia and damping constants.
Online parameter estimation often involves the use of an exci-
tation signal. The design of these signals has been investigated
for online power system identification and closed-loop inertia
estimation based on PMU measurements in [5], [9]. MHE
for estimating microgrid parameters is a new approach, and
the efficacy of this implementation depends on the excitation
signals employed. This paper evaluates the performance MHE
using different excitation signals reported in the literature
for online estimation of power system inertia and damping
constants.
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The paper is organized as follows: Section II introduces the
basic concept of MHE. Section III discusses the characteristics
of various probing signals. The design procedure of excitation
signals and simulation setup is explained in Section IV,
followed by the results and analysis in Section V. Finally,
the conclusions are provided in Section VI.

II. BASIC CONCEPT OF MHE

MHE is a finite horizon optimization based estimation
process that is used to infer state variables and parameters
of a system from its measurements. In this approach, one
uses measurements of the plant, plant model, and inputs to
estimate the plant states and parameters in the presence of
unmeasured disturbances and measurement noise [1 0]. Fig. 1
illustrates the basic concept of MHE, where N represents the
length of the estimation horizon window, T, represents the
estimator sampling time, the crosses represent the measured
outputs (possibly noisy) from the MHE model, and the solid
line with circles is the estimated values taken from the system.
The output of the system is represented by yk at discrete time
instant k. Once the data is collected for a fixed length of
N, the current process states and parameters are estimated
in each sampling time by solving an online optimization
problem that minimizing the error between the measurements
and predictions of the states from the plant model. In the
subsequent sampling instances, the horizon moves forward,
but the length of the horizon window remains constant at N.

x
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Horizon Estimate
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Fig. 1: Basic concept of moving horizon estimation.

III. PROBING SIGNAL CHARACTERISTICS AND DESIGN
CONSIDERATIONS

The objective of probing signal design is to create an
excitation signal that gives accurate estimates of states and
parameters of system, while minimizing impact on the opera-
tion of the power system and energy medium. The choice of
probing signals has a substantial influence on the estimated
data, which will be shown in Section V. A number of
important design factors need to be considered while designing
a probing signal, described in detail for traditional approaches
in [5], [9]. To minimize the impact on the power system and
the ESS lifetime, probing signals with sharp transitions and
high ramp rates may need to be avoided. The peak amplitude
of the probing signal should be small when probing for a long

duration, and often must be limited to prevent damage [9].
In this paper, the efficacy and characteristics of four probing
signals are investigated: 1) Multisine Wave, 2) Ramp-limited
Square Wave, 3) Filtered White Gaussian Noise (FWGN), and
4) Pseudo-Random Binary Signal (PRBS).

A. Multisine Wave Probing Signal

A multisine signal is composed of the sum of multiple
sinusoids:

x(t) = Aicos(wit f9i) (1)
i=i

The frequency spectrum of a multisine signal can be designed
by selecting the sinusoidal component amplitudes, Ai, and
frequencies, wz, that compose the signal, x(t), where 0,
represents the phases of each component.

Signals with higher amplitudes and higher signal-to-noise
ratio (SNR) provide better system parameter estimates in both
traditional and MHE approaches [7], [9]. However, because
the peak amplitude of the probing signal often needs to be
limited to minimize the power system impact, it is desirable
to minimize the crest factor of the signal for a higher SNR. The
crest factor (Cr) of a signal is defined as the ratio between the
peak value Vpk and the RMS value VRA [11]. Minimizing
the crest factor increases the amount of the signal that is above
a given noise floor. For example, if a square wave (Cr = 1)
and sine wave (Cr = '\/) have the same peak amplitude, the
square wave will have a higher average magnitude than the
sine wave. The crest factor of multisine waves can be reduced
using the method described in [1 1].
The period of the multisine wave T is another important

consideration, because the resolution of component frequen-
cies A,/ = +, is directly related to the period of the multisine
wave. Longer periods require longer tests and may make
averaging results more difficult, but will increase the resolution
of frequency domain analysis [9].

B. Square Wave Signal

Square waves are a simple signal to generate from an
ESS inverter and have a crest factor Cr = 1. However,
the high ramp rates of square waves may be detrimental to
the lifetime of different ESSs. In addition, restrictions from
power conversion systems can create additional challenges to
implement the signal. Using a ramp-limited square wave is an
option for reducing the impact on ESSs, however decreasing
the ramp-rate of a square wave will increase the crest factor
and possibly affect the peak amplitude, potentially reducing
estimation accuracy.

C. FWGN and PRBS Signal

For periodic signals, such as the multisine and ramp-limited
square waves, a specific group of frequencies are excited by
a single signal. To excite a higher number of frequencies, a
non-periodic signal, such as FWGN or PRBS, can be used.
The spectral energy of the FWGN can be manipulated by
the type of filter used on the noise. The energy of a PRBS
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can be concentrated in a desired frequency band using similar
techniques. Design of these signals is described in more detail
in Section IV-A.

IV. METHODOLOGY

A. Design of Excitation Test Signals

The excitation signals were designed using a method similar
to that described in [5], [9]. The multisine wave was optimized
by placing sinusoidal components in the frequency band of
interest and minimizing the crest factor. Fig. 2 shows a
flowchart for the design of the multisine wave. First, 100
random multisine waves based on (1), were generated using
frequencies in the band of interest (0.1-0.5Hz) with random-
ized amplitudes and phases. This frequency band corresponds
to a typical inertial constant range of 2 — 10 s [12], which must
be adequately excited for identification [9]. The multisine wave
with the lowest crest factor was selected from the randomly
generated multisine waves. Then, an algorithm similar to that
described in [11] was applied to this multisine wave to further
reduce the crest factor.

Start

Generate random
Ak,Ok

Collect 0 and A
from FFT

No

—0- Generate MS

Pick MS will
lowest Cr

Clip time domain —0. Collect Ok FFT
analysis

Cr
good?

IFFT
Using new Ok
and original Ak

1117e s

Scale Amplituda—). Stop

Fig. 2: Flowchart representing the design of multisine wave signal.

The algorithm used to minimize crest factor while still
maintaining a multisine shape is shown in Fig. 2 [11]. First, the
Fast Fourier Transform (FFT) was performed on the original
waveform and the amplitudes and phases were recorded. Next,
the time domain waveform was clipped to 75% of the peak
magnitude. After clipping, another 1-F1 was performed on the
clipped signal and the new phases were recorded. Then, a new

;-

cl 2
4-4

CA

1  
0 10 20 30 40 50

Iterations
Fig. 3: Multisine wave crest factor optimization.

time domain signal was constructed by applying an inverse
FFT (IFFT), using the original amplitudes and the phases of
the clipped signal. This process was repeated 50 times, or
until the crest factor no longer significantly decreased. Fig. 3
shows the results of an application of the algorithm from [11]
where the crest factor was reduced from 3.05 to 1.85. The time
domain plot of the multisine signal used is shown in Fig. 4.
The FWGN signal, shown in Fig. 4(b), was generated by

filtering white Gaussian noise with a bandpass filter. The noise
was generated using the wgn() function in MATLAB [13], and
was filtered using a minimum-order bandpass filter with a stop
band attenuation of 60 dB [13]. The PRBS signal, Fig. 4(c),
was created by ceiling and flooring the positive and negative
values of the FWGN signal to the desired amplitude, allowing
for the frequency spectrum of the PRBS to be manipulated.
Finally, the square waves were generated with amplitudes
varying from 0.02-0.2 p.u. and ramp rates ranging from 0.5-5
p.u. per second. Ramp-limited square waves with ramp rates
lower than 0.5 p.u./s yielded high error in estimation and were
not considered for comparison and analysis. A sample square
wave signal is shown in Fig. 4(d).
The different distributions of energy can be seen in the

frequency spectrums of the four different excitation signals
in Fig. 5. The signals were designed such that the energy
would be concentrated in the frequency band of interest (0.1-
0.5 Hz). The multisine wave and FWGN signals have a large
percentage of their total energy concentrated in that band, 98%
and 97%, respectively. PRBS and the square wave signals also
have comparative percentages of energy in the band of interest,
38% and 23%, respectively. In theory, the signal will be more
efficient if the energy is limited to the frequency range of
interest [5].

B. MHE and Simulation Setup

The isolated power system model described in [14] is used
in this paper to test the MHE with designed excitation signals.
The simulation setup in MATLAB/Simulink implemented with
MHE is shown in Fig. 6. The simulation parameters for the
equivalent generator model are given in Table I. The probing
signals designed in Section IV-A are used as the excitation
signals to perturb the frequency and ROCOF of the system.
The online measurements of frequency and ROCOF are likely
to contain noise, assuming they are made from a PLL of
an ESS. To make the measurements more realistic, white
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Fig. 4: Time domain excitation signals: (a) Multisine
FWGN. (c) PRBS. and (d) Square wave.
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Gaussian noise was added to model frequency measurements
with a covariance of 10-7 and SNR of 60 dB, which is typical

for PLL measurements [15]. The MHE uses measurements

at each sampling instant to estimate the inertia and damping

constant of the power system model.

TABLE I: Summary of Simulation Parameters
Parameter Values

Inertia constant (M) 10 s

Damping coefficient (D) 1.5%

Speed regulation droop (Rp) 5%

Turbine-Governor time constant (Tg) 0.5 s

Sample time 0.02 s

In [7], the following estimation algorithm was presented to
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Fig. 5: Frequency spectrum of the excitation signals.
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Fig. 6: Simulation setup for parameter estimation using different
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estimate the inertia and damping constant using MHE:

1) Set time horizon and sampling time;
2) Take frequency and ROCOF measurements at sampling

times;
3) Collect N data points for the measurement matrix;
4) Guess an initial state and parameter;
5) Estimate states and parameters by MHE;
6) Remove the oldest measurement and append the newest

measurement; and
7) Use the last estimate as an initial guess for upcoming

iterations.

The MHE was implemented with an estimation horizon N =
30 and sampling time T, = 0.02 s. More details regarding the
implementation are available in [7]. In this paper, we focus on
investigating the effect using the design excitation signals on
the performance of the MHE.

V. RESULTS AND ANALYSIS

The results of inertia and damping constant estimates for
various excitation signals can be seen in Figs. 7 and 8, respec-
tively. The true value of system inertia constant is initially set
to 10 s, which changes to 5 s at a simulation time of 25 s.
The damping constant is kept constant at 1.5% throughout the
simulation. The accuracy in parameter estimation is illustrated
by performing two different test cases on the Simulink model
and comparing the RMSE values from the different excitation
signals. RMSE values for inertia and damping constants are
estimated for different time instants of the simulation. The
RMSE calculation is done when the parameters are in steady
state. In the first case (RMSE1), the RIVISE estimation is
performed from time instant t = 10 s to 25 s. Similarly, the
RMSE was calculated from time instant t = 35 s to 50 s
for the second test case (RMSE2). RMSE1 and RMSE2 in

10 20 30 40 50

Time [s]
(d)

True Value
Estimated Value .

10 20 30

Time [s]
(d)

40 50

Figs. 7 and 8 represent the measurement window used for
calculating RMSE. The RMSE for different excitation signals
are compared in Fig. 9.
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Fig. 9: Comparison of RMSE when estimating true values of M and
D fox different excitation signals. . .

the stochastic, non-penodic signals (i.e., FWGN and
PRBS) yielded relatively poor estimation results. The high
crest factor of FWGN likely explains why it performed worse
than the multisine wave. This does not explain the large
difference in performance between PRBS and square wave
excitation signals. PBRS and square waves have similar time
domain shapes and percentages of spectral energy in the band
of interest as square waves. However, the square wave signal
has higher amplitude frequency components than the PRBS
signal that may enable a better estimation even in the presence
of measurement noise.
The MHE performed well with the multisine excitation

signal. The multisine estimation had a higher error while
estimating when the inertia constant was 10 s compared to the
case when the inertia constant was 5 s. This is because when
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the true inertia constant is lower, the same excitation signal
leads to higher changes in system frequency and ROCOE
Based on the observations from the different excitation signals,
the square wave signal had the highest accuracy for inertia and
damping estimation. However, other considerations like the
amplitude, ramp rate, higher frequency component amplitude,
and difficulty of implementation should be considered when
choosing an excitation signal.
To observe the impact on estimation accuracy, a sweep of

amplitude and ramp rate of the square waves was performed.
Amplitude was varied in the range of [0.02, 0.2] and the ramp
rate was varied in the range of [0.1, 5]; each with 20 data
points. The results were summarized in Fig. 10 using heat-
maps, where lower (i.e., blue) is better for variations in RMSE
values of inertia and damping constant estimation.

Higher amplitude excitation signals produced better esti-
mation results due to higher SNR as can be observed from
Fig. 10. For the simulated measurement noise with covariance
of 10-7, if the amplitude of the excitation signal was less than
approximately 0.05 p.u., the accuracy of estimation decreased
significantly. As long as the peak amplitude was not affected
by limiting the ramp rate, ramp-limited square waves still
showed high accuracy. This suggests that for a given amplitude
and frequency, the ramp rate may be limited to preserve the
lifetime of ESS and reduce the impact on the system without
negatively affecting the accuracy of MHE.

VI. CONCLUSIONS
The objective of this research was to evaluate low-level

excitation signals that result in accurate MHE of inertia
and damping constants without affecting the power system
operation and limiting the impacts on the ESS. The charac-
teristics and design considerations of the probing signals were
discussed from the perspective of power system identification
theory. The accuracy of parameter estimates alters depending
on the chosen probing signal and signal parameters. When
estimating inertia and damping constant using MHE with
different perturbation methods (i.e., square wave, multisine,
FWGN, and PRBS signals), square waves yielded the lowest
RMSE. The ramp rate of a square wave excitation signal can
be limited without significantly reducing its effectiveness. It
may be computationally expensive or difficult to generate the
other signals in the ESS inverter to meet all requirements.
Furthermore, the square wave has a higher frequency com-
ponent amplitude in the signal in comparison with the PRBS
signal. Thus, the resulting RMSE was found to be the best
for the square wave perturbation method, however, the impact

on frequency deviations and ROCOF has not been considered
and is part of our future work.
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