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Abstract

In this study we compare the performance of various strategies in extracting features from gamma-
ray spectra for radionuclide identification. The primary objective of feature design is to reduce the
number of dimensions for the classifier, therefore improving performance while avoiding
overfitting. We used two feature extraction methods, principal component analysis (PCA) and peak
integration, and also used the raw spectra. Multilayer Perceptron (MLP) classifier was used to
compare the performance between the different feature extraction methods. Training and testing
samples were generated with a 3”x3” Nal detector model with a source library of 33 radionuclides
with a spanning set of shielding configurations. The drawn samples included variable background
and mixtures of SNM (Special Nuclear Material) with masking sources. The overall performance of
each feature design was assessed using the F1-score. Individual radionuclides that performed best
and worst in each feature design were compared as well.

! This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344. LLNL-PROC-825095



Introduction

Interpreting gamma-ray spectra to identify source radionuclides requires subject matter experts
which are fewer in number than the demand from the various deployed detectors. Algorithms can
fill this gap by allowing unskilled operators to identify the measured radionuclides. Machine learning
classifiers can perform such classification, given a representative training data set, and have been
studied in recent years as an alternative to custom-built expert systems. Neural networks are a
popular classifier, because of their ability to ingest a variety of data without the need of extensive
pre-processing.

There have been previous studies conducted on using neural networks to identify radio nuclides
from their gamma-ray spectra. Many of these studies use raw gamma-ray spectra as features to feed
into the neural network [2][5][6]. However, spectra distributed across many channels create a very
high dimensionality space in which noise can exist. This can potentially increase the difficulty of
the problem for the neural network as it has to be able to recognize a nuclide across any variation of
noise by itself.

Feature extraction, and pre-calculations of features are often employed in machine learning
problems. They can have benefits such as reducing noise, reducing dimensionality, and removing
irrelevant information. This work will focus on comparing different feature transforms when applied
to the spectra, and how it affects identification performance.

Neural Networks

Neural Networks

A simple neural network is a nonlinear mathematical model which tries to find an arbitrary
relation mapping R? to R!. It achieves this by using gradient-descent based methods. This data is
given a number of samples which allows it to train and optimize towards the relation which best fits
the data that is given. The model updates its parameters to find a nonlinear complex function to
model the relation.

Neural networks are often used when machine learning is applied to identification of
radionuclides [2][3][5][6].- They are a good baseline classifier as they have a robustness to perform
on many kinds of features without many constraints on the data it is fed. Therefore, neural networks
are capable of handling both raw spectra, and extracted features used in this work.

Optimization

In the implementation of our neural network, we used the ADAM optimizer due to the robustness
of the method in application across machine learning problems [1]. We chose to use commonly
applied ADAM parameters: a = 0.001, which changes the rate of learning in the model, and = 0.9,



6 = 099, ¢ = 107-8 which all affect the momentum in the gradient descent method. For
implementation of this method, we used the Scikit-learn implementation of the Multi-Layer
Perceptron classifier [4].

Features

In order to train a network to be robust to all variations of noise, background, and gain would
take a very large amount of data and would likely have a large training time. Pre-calculations to
account for noise, background, and reduce dimensionality help reduce the variations within the data
allowing for the classifier to be more robust without needing as much training data. Two feature
designs, Principal Component Analysis (PCA) and peak extraction, will be compared alongside
“raw” features (counts in all channels) from the full gamma-ray spectrum.

Sample Generation

Training and testing sets were constructed by sampling from a pre-computed spectra template
library of 33 radionuclides with a spanning set of shielding configurations. The PCA transform and
peak extraction are then performed on the generated spectra. This ensures that all the sets contain
data from the same spectrums for fair comparison.

Raw Spectra

The raw gamma-ray spectra are created via sampling from templates generated from GADRAS
for a Nal 3x3 detector model and bucketed into 2000 channels from 0 to 6000 keV [7]. The
background samples are composed of world average background and variable sub-components
which include the primordial terrestrial radionuclides. In any given background sample, the
proportion of the average background varies between 20% to 40% and sub-components comprise
the remaining 60% to 80%.

The source samples for each radionuclide include a spanning set of shielding configurations. The
background samples are combined with source samples in order to satisfy a specified signal-to-noise
ratio (SNR). In this case, the SNR is the proportion of the source counts to counts from the
background sample. In addition to the background, we include a Cs-137 intrinsic source which is
used in the real world for gain stabilization. The intrinsic source rate is assumed to be 100 counts
per second (cps) and the background rate varies between 150 to 400 cps. Each sample is drawn
between 30 to 60 seconds, and the chosen SNR along with aforementioned rates implies the
appropriate source sample counts to draw from a chosen template. For mixture sets, the samples are
a mixture of 60% to 80% of an arbitrary masking nuclide and 20% to 40% of Special Nuclear
Material (U-235 or Pu-239).



PCA Features

The PCA transform is a well-known transform which reduces the dimensionality of the feature
space By creating new axes along the vectors through the feature space which have the most
variance, the features can be reordered into corresponding eigenvectors and eigenvalues representing
the data. Then the features that account for little variance within the features space can be removed.
This allows the most information regarding the variance to be preserved in the fewest number of
features. The spectra were re-binned to a square root binning taking 256 bins from 20 - 3000 KeV.
This increases the volume of the information stored in each bin so that meaningful data can be
extracted from its variance.

Peak Extracted Features

The Benchmark for Radionuclide Identification Algorithm (BARNI) was used to extract peak
features [8]. BARNI uses a continuum estimator followed by a derivative method for finding the
peaks. If the peak is found within a predefined region-of-interest (ROI) then the counts in that peak
and the square-root of the continuum counts under that peak are added to that ROI features. The
regions are defined ahead of time by sampling each radionuclide with a high number of counts
(50k+) and automatically selecting the regions around a high density of peak locations. A set of
ROIs are defined for each radionuclide, which are normalized to the total counts in those sets of
regions, with the total counts representing their own feature.

Procedures

Performance Metric

The F1-score metric was used for the measurement of performance of general classification. This
ensures that for general classification a model has to be able to perform well identifying nuclides by
demonstrating both high precision and recall.

SNM masking cases are also evaluated for total accuracy of identifying concealed SNM. For
these masking samples, samples are counted correctly only if the model identifies the present SNM
in the samples. The accuracy is the ratio of the number of correctly identified samples over the total
number of samples.

Training and Testing Data Sets

In this study there were two main groups that were tested: single nuclide and masked SNM. Each
group was trained and tested over a range of SNRs, with masked SNM necessitating a higher SNR
in order to achieve reasonable performance.

Sets of “low” SNR ranges (1-5, 5-10, 10-15, and 15-20) were generated for the single nuclide
cases. Masking was not used as the SNR range is too low to get meaningful data to identify the



masked nuclide. Models were trained on each of these, then tested against all low SNR sets. They
were evaluated by F1-score performance.

Sets of “high” SNR ranges (50-100, 100-15, 150-200) were generated for both single nuclide
and masking cases. Models were trained on each of these, then tested against all other high SNR
sets. They were compared on metrics of F1-score for identification of single nuclides, F1-score for
identification of masking cases, and total accuracy of SNM identification for masking cases.

Results

F1-scores of Models Trained and Tested on Single Nuclide Samples Set

The performance of single nuclide trained models tested on single nuclide cases at low SNR
ranges is shown in Figure 1. At the lowest SNR bucket (1 to 5), identification was difficult with the
best model being a PCA feature oriented model trained on the same SNR bucket performing with an
Fl-score of 0.4. The majority of models tended to perform best on sets that have the same SNR
ranges to the sets that they were trained on, and often outperformed models from the same feature
design that were trained on other SNR ranges. This excludes the raw gamma-ray spectra featured
model trained on 1 to 5 SNR range which failed to identify the majority of nuclides. Overall
identification tended to become easier at the higher end of the SNR ranges for the majority of models.
PCA features performance was comparable to the raw gamma-ray spectra performance; meanwhile
the peak extracted featured models tended to perform worse overall in comparison to other featured
models.

The poor performance of the raw gamma-ray spectrum trained model may be attributed to the
fact that the raw spectra was trained off of a very high noise on an unprocessed spectrum, thus
preventing it from finding the meaningful ranges necessary for identification. This demonstrates that
feature extraction and selection can improve performance if the training set is noisy and has
relatively low amount of relevant signal.
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Figure 1 F1-Score Performance for Identification of Single Nuclides trained and tested at low
SNR ranges.

F1-scores of Models Trained and Tested on Single Nuclide and SNM Masking Sets

For this set of evaluations, we compared the performance of training on only the single nuclide
set against training with both single and SNM masking sets. The training models on the set that
included singles and masked SNM performed far better on SNM masking test sets than the models
trained purely on single nuclide sets, as shown in Figure 2. This came with a miniscule detriment to
overall performance in the single nuclide identification when trained on the single nuclide and SNM
masking set, as shown in Figure 3. Overall, the raw spectra tended to have the highest robustness to
the different kinds of sets, with raw spectra models being consistently the top contender for most
arbitrary nuclide as well as SNM identification tasks.

Interestingly, the models trained on the lowest SNR ranges tended to have the best performance
for identifying singles; the models trained on the 50 to 100 SNR bracket performed close to the top
for single nuclide sets for the single nuclide set trained models per their respective feature transforms
and the models trained on the 50 to 100 SNR bracket set tended to perform the best on single nuclide
identification for the single nuclide and SNM masking trained models per their respective feature
transforms. In the case of the single nuclide and SNM masking set trained models, this could be due
to the models being trained on a high amount of Pu-239, and U-235. This would cause the SNM to
have more weight in the total proportion of the cost function, causing classification of those nuclides
to be more important to the classifier. Training on the lower SNR range would have the MLP have
to identify the other nuclide from less source, potentially making the network be more sensitive to
those nuclides as the source is increased.
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Figure 2 Comparison of model performance (F1 score) trained on Single Nuclide Set (left) and
trained on both Single Nuclide and SNM Masking Set (right), tested against the SNM Masking Set.
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Figure 3 Comparison of model performance (F1 score) trained on Single Nuclide Set (left) and
trained on both Single Nuclide and SNM Masking Set (right), tested against the Single Nuclides Set.

Accuracy of SNM Indemnification of Models Trained on Single Nuclide and SNM Masking Sets

For identification of SNM sources masked by other nuclides, training on the set including singles
as well as masked SNM sources far outperformed training purely on single nuclides, as shown in
Figure 4. This is likely due to the fact that the single nuclide trained models were not trained on Pu-
239 or U-235 in quantities as low as the ones seen in the SNM masking set. For masked sources, the
peak extracted feature-trained models performed the best out of models trained on only the single
nuclide set. For overall performance on identifying masked SNM, the PCA features trained on the
single nuclide and masking sets performed the best, with each SNR bucket for the SNM masking set
being best identified by the PCA featured model trained on the same set.

For the models trained on only the single nuclide set, the best performance came from the peak
extracted features. This may be due to the extracted features pre-defining its regions of interest to



feed the model. The feature extracted model may perform better than the PCA or raw gamma-ray
spectra models as it is fed features specific to peaks from Pu-239 and U-235. This may lead it to be
easier to identify the SNM when it is present in a mixture compared to the other models as the peak
information and noise reduction allows for a more obvious distinction to the presence of SNM in the
sample.
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Figure 4 Accuracy of SNM identification for models trained on only Single Nuclide Set (left) and
trained on both Single Nuclide and SNM Masking sets (right).

Models Training Time

The comparison of model training times for the different feature extraction methods and raw
spectra is shown in Figure 5. The raw gamma-ray spectra models had the longest overall training
time across all models, often taking over double the duration of the other models to train. In general,
the preprocessed features took significantly less time to process.

The peak extracted features took the least time, despite having more feature dimensions than the
PCA feature extraction. This may be due to the feature extraction features pre-defining regions of
interest for classification. This would make the model not have to learn the many of peaks associated
with each nuclide from scratch allowing it to more quickly converge towards its optimum.

The lower amount of training times for pre-processed features will be useful as the variation in
the distribution of training data is increased and more samples will be required for training.
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Conclusion

Overall, raw gamma-ray spectra, as well as PCA extracted features had the best overall
performance when it came to identification of the source for gamma-ray spectrum. Though
performing well in most cases, raw spectra appeared to be more sensitive to the data it was trained
on then either of the other feature transforms, entirely failing to form meaningful identifications
when trained on some sets with high noise.

In addition, sometimes PCA featured models performed better than raw gamma-ray features by
a notable margin. This may be attributed to the square root binning of the spectra allowing for better
identification of nuclides at higher energies. Although the peak extracted features tended to perform
worse on most cases, there were cases where it performed better than the other models when trained
on a less complex set than what it was tested on. This may be useful when applying the extracted
features to real world data, as the more concise peak data may serve useful for identification when
the model has to look at data from distributions it has not seen. Feature extraction appears promising
in reducing the amount of training time as well as attaining adequate levels of performance. This
will be useful as the size of training sets scales up when the models have to be applied to real-world
data.

Neural Networks are capable of performing classification tasks for nuclides from Nal gamma-
ray spectra using various feature transforms and are capable of doing this across various SNR ranges.
The best feature design is dependent on the classification task and the data which it is trained on.
Future work will pertain to how calibration error affects each of the performances of the feature
designs.
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