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Abstract—By processing in the frequency domain (FD), mas-
sive MIMO systems can approach the theoretical per-user
capacity using a single carrier modulation (SCM) waveform
with a cyclic prefix. Minimum mean squared error (MMSE)
detection and zero forcing (ZF) precoding have been shown
to effectively cancel multi-user interference while compensating
for inter-symbol interference. In this paper, we present a
modified downlink precoding approach in the FD based on
regularized zero forcing (RZF), which reuses the matrix inverses
calculated as part of the FD MMSE uplink detection. By reusing
these calculations, the computational complexity of the RZF
precoder is drastically lowered, compared to the ZF precoder.
Introduction of the regularization in RZF leads to a bias in
the detected data symbols at the user terminals. We show this
bias can be removed by incorporating a scaling factor at the
receiver. Furthermore, it is noted that user powers have to be
optimized to strike a balance between noise and interference seen
at each user terminal. The resulting performance of the RZF
precoder exceeds that of the ZF precoder for low and moderate
input signal-to-noise ratio (SNR) conditions, and performance
is equal for high input SNR. These results are established and
confirmed by analysis and simulation.

I. Introduction

With the advent of digital antenna arrays, massive multi-
ple input multiple output (MIMO) wireless communications
system have become a reality. Multiple user equipments
(UEs) can operate on the same frequencies through spatial
multiplexing techniques achieved through multi-user detection
on the uplink (UL) and multi-user precoding on the downlink
(DL). Previous work has shown that when the number of
base station (BS) antennas is much larger than the number of
UEs, detection and precoding are successfully implemented
using linear processing techniques [1]. It was also noted in [1]
that minimum mean squared error (MMSE) detection more
rapidly approaches the massive MIMO UL capacity bound as
the number of BS antennas increases, compared to matched
filter (MF) detection. Similar results were shown in [1] for
zero-forcing (ZF) precoding compared to time-reversal (TR)
precoding for the DL.

This manuscript has in part been authored by Battelle Energy Alliance,
LLC under Contract No. DE-AC07-05ID14517 with the U.S. Department of
Energy. The United States Government retains and the publisher, by accepting
the paper for publication, acknowledges that the United States Government
retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so,
for United States Government purposes. STI Number: INL/CON-20-60127.

Massive MIMO networks with widely dispersive channels
have traditionally used orthogonal frequency division multi-
plexing (OFDM) modulation. OFDM is particulary attractive
in these environments since it eliminates inter-symbol inter-
ference (ISI) by dividing up the signal into a large number of
subcarriers. Despite OFDM’s popularity in current wireless
standards, this modulation scheme has some drawbacks and is
not optimized for every scenario. For example, OFDM is often
criticized for its high peak-to-average power ratio (PAPR),
which results in a high power back-off to maintain linearity.
Consequently, OFDM systems have low power efficiency [2],
which is particularly detrimental to battery operated UEs. It
also affects DL operations at the BS.

To alleviate the power efficiency problem with OFDM,
single carrier modulation (SCM) has been reintroduced in
a number of scenarios [3]. When framed with a cyclic prefix
(CP) similar to OFDM, SCM can be effectively processed
in a massive MIMO scenario using frequency domain (FD)
processing, achieving the same capacity as OFDM. While
MF detection and TR precoding have been shown to be
optimal for SCM for operation at low input signal-to-noise
ratio (SNR) [4] & [5], multi-user interference (MUI) cannot
be overcome at moderate to high input SNR unless SCM uses
techniques such as MMSE detection [6] or ZF precoding [7].
The details of ZF precoding in the FD were presented in [7].
The implementation of the ZF solution is efficient given that
the computational complexity, which is dominated by a matix
inversion calculation, scales with the number of UEs rather
than by the number of BS antennas.

This paper provides the details for a regularized zero-
forcing (RZF) precoder in the FD that reuses the MMSE-
based matrix inverses that are calculated for the UL detector
in [6]. Because of the regularization factor in the matrix
inverses, there are three special accommodations that are
unique to the RZF solution. First, a RZF-specific scale factor
must be calculated to maintain the desired power at the BS,
depending on the SNR operating point. Second, on the UE
detection side, another specialized scale factor is calculated
to ensure an unbiased estimate. Both of these scale factors
can be pre-computed and accessed through table look-up. The
third accommodation results from the fact that RZF precoding
does not perfectly cancel MUI, which becomes an issue when
there are large variations in large-scale path loss for different
UEs. This issue is solved by optimizing the transmit power to



each UE such that the output signal-to-interference-plus-noise
ratio (SINR) is equal for all UEs. The resulting performance
of the RZF precoder exceeds that of the ZF approach for low
and moderate input SNR and has the same performance at
high SNR. The improved performance of the RZF precoder
may seem counterintuitive, but it will be shown that when
the regularization term starts to dominate the matrix inverse,
the precoder converges to TR precoding, which is optimal
at low input SNR. These results are accentuated by the fact
that the computational complexity required for the precoder
is reduced by an order of magnitude or more compared to
the ZF precoder in [7] for relevant numbers of simultaneous
UEs.
The remainder of this paper is organized as follows: Section

II introduces the system model that will be used to discuss DL
precoding in the FD; Section III details the calculations for
precoding the multi-user signal at the BS and detecting the
signal at each UE; Section IV compares the computational
complexity of RZF precoding to ZF precoding; the RZF
performance is analyzed in Section V; Section VI presents
the results of the DL simulation to verify the analysis; and
concluding remarks are in Section VII.

II. System Model
The time domain duplex (TDD) scenario modeled in this

paper assumes that the UEs do not have any channel state
information (CSI). Each UE is assumed to have knowledge
of the cell parameters such as the number of BS antennas and
number of simultaneous users. The BS has the CSI between
each of the  UEs and each of the " BS antennas, which can
be obtained by transmitting pilot signals from the UEs. This
paper assumes perfect CSI at the BS. The effects of channel
estimation are left to a future work.
The DL transmission is divided into frames, where the BS

transmits # unit variance symbols for each user. The symbols
designated for the : th UE are represented by the vector s: .
After precoding, a CP is added to the front of each frame
to preserve circular convolution. Since each user’s frame is
transmitted simultaneously with the other users, the frames
must be precoded to limit MUI. The precoding generates
a unique transmit vector for each of the BS antennas. The
received DL signal for user : after CP removal is expressed
as

y: =
1
√
?:

"∑
<=1

H<,:x<+w: , (1)

where 1/√?: is the scalar path loss between the BS to user
: , H<,: is the #×# circulant convolutional channel matrix
between antenna < and user : , x< is the precoded signal
vector for antenna <, and w: is the receiver noise vector at the
UE with variance f2

F . Let h<,: represent the channel impulse
response vector between antenna < and user : , which is of
length !ℎ . H<,: is formed by taking h<,: , appending #−!ℎ
zeros to form h<,: (0) , and then taking downward cyclic shifts
of h<,: (0) to create

H<,: =
[
h<,: (0) h<,: (1) . . . h<,: (#−2) h<,: (#−1)

]
, (2)

where the parenthetical subscript represents the number of
downward cyclical shifts applied to the base vector.

For convenience and without loss of generality, the av-
erage channel power for each user over all BS antennas,
1
"

∑"
<=1 hH

<,:
h<,: , is normalized to unity. Consequently, the

input SNR is 1/f2
F . Note that the individual channel power

values between each of the " antennas and user : are allowed
to vary widely.

The approach taken in this paper is to perform precoding
in the FD. Taking the #-point Discrete Fourier Transform
(DFT) of (1) results in

ỹ: =
1
√
?:

"∑
<=1

�<,: x̃<+w̃: , (3)

where the tilde represents the FD representation of the vectors.
The diagonal matrix �<,: contains the eigenvalues of H<,: .
This results from the fact that the circulant matrix H<,: is
diagonalized by the DFT matrix, F, where F is scaled such
that F−1 = F

H (i.e., H<,: = F
−1�<,:F) [8]. It follows that

taking the #-point DFT results in FH<,: = �<,:F. Let
_<,:,8 represent the 8th value along the diagonal of �<,: .
The eigenvalues can be obtained by taking the #-point DFT
of the channel impulse response h<,: , which is used to form
H<,: . For more efficient computation, it is noted that all of
the FD conversions can be performed with the Fast Fourier
Transform (FFT) instead of the DFT.

The precoding is performed on a frequency bin basis. We
represent the =th bin of the received signal for each user as
H̃1,=
H̃2,=
.
.
.

H̃ ,=

 = P−
1
2


_1,1,= _2,1,= . . . _",1,=
_2,2,= _2,2,= . . . _",2,=
.
.
.

.

.

.
. . .

.

.

.

_1, ,= _2, ,= . . . _", ,=



G̃1,=
G̃2,=
.
.
.

G̃",=

+

F̃1,=
F̃2,=
.
.
.

F̃ ,=

 ,
(4)

where P is a  × diagonal matrix with values of ?: and
G̃<,= is the precoded value in the FD for antenna < and bin
=. This can be succinctly represented as

ỹ:,= = P−
1
2 AT

=x̃:,=+w̃:,=, (5)

where AT
= is the  ×" matrix of eigenvalues and ( )T is the

transpose operator. We represent this matrix as the transpose
to be in line with the notation presented in [6].

III. Downlink Precoding and Detection
DL precoding is effectively performed in the FD for SCM

waveforms with a CP in a massive MIMO scenario. By
processing in the FD, the precoding can simultaneously cancel
the MUI and pre-compensate for ISI. A detailed analysis of
DL precoding for SCM with a CP has been presented in [7],
where the zero-forcing (ZF) algorithm is used to calculate
the precoded vectors for each antenna. The complexity of
the ZF solution is mainly driven by a matrix inverse with
dimension  × . In this section, we take a different approach
to the precoding, based on reusing the matrix inverse that is
calculated for the UL detection that was presented in [6].
This solution drastically reduces the number of computations



for the DL, compared to ZF precoding, without sacrificing
performance. To be specific, performance is maintained for
high SNR operation and exceeds the ZF performance in the
low SNR regime.
One aspect to consider for DL precoding is that the

distance from the BS may vary considerably from user to
user, resulting in a wide range of large-scale path loss values.
Traditionally, the BS transmits the signal intended for each UE
at a power corresponding to the inverse of the large-scale path
loss in order to achieve the same SNR at each UE. This power
variation is not a consideration for UL detection, where power
control is assumed. However, we will show that the matrix
inverse calculated for the UL under power control conditions
is still applicable to DL precoding, and performance can be
optimized for large variations in the large-scale path loss by
carefully allocating the power for each UE.

A. Zero-Forcing Precoding
The expression in (5) shows the FD representation of the

=th bin of the DL received signal vector for each of the UEs.
Each UE applies a scale factor to the received signal to obtain
the FD symbol estimate (i.e., ŝ: = y:/VZF in the present case).
We can thus express the received signal (excluding the channel
noise) in the FD as

s̃:,= =
1
VZF

P−
1
2 AT

=x̃ZF:,=, (6)

where x̃ZF:,= is the respective precoded transmit signal. Rear-
ranging (6), one will find that for the ZF precoding, [7],

x̃ZF:,= = VZFA∗= (AT
=A∗=)−1P

1
2 s̃:,=, (7)

where ( )∗ represents the complex conjugate operator. In order
to maintain the transmission power defined by tr[P], VZF must
be set to the square root of  divided by the gain associated
with A∗= (AT

=A∗=)−1, namely

VZF =

√
 

E{tr[(A∗= (AT
=A∗=)−1)HA∗= (AT

=A∗=)−1]}

=

√
 

E{tr[(AT
=A∗=)−1]}

=

√
 
 

"− 

=
√
"− . (8)

The first part of the second expression of (8) results from the
fact that (AT

=A∗=)−1 is Hermitian symmetric, and the second
part follows from Lemma 2.10 of [9]. The ZF precoding only
requires a  × matrix inversion, which is about the same
computational complexity as the detector used in [6] for the
UL.

B. Regularized ZF Precoding with Matrix Inverse Reuse
An alternative approach to forming the precoded vector is

to use the complex conjugate of the matrix inverse calculated
for the MRC-MMSE UL detector in [6] in place of the
matrix inverse in (7). We note that the complex conjugate
of the matrix inverse from the MRC-MMSE detector is

(
AT
=A∗=+f2

FI 
)−1, so it only differs from the matrix inverse

in (7) by a regularization factor. Consequently, we refer to
this precoding technique as regularized zero forcing (RZF).
The RZF precoding equation is given as

x̃RZF:,= = VRZFA∗=
(
AT
=A∗=+f2

FI 
)−1

P
1
2 s̃:,=. (9)

where x̃RZF:,= is the respective precoded DL transmit signal.
Reusing the matrix inversion calculation from the UL is
highly desirable because it drastically reduces the computa-
tional complexity of the DL precoding. In addition, perfor-
mance analysis will show that the RZF precoding technique
performs as well or better than ZF precoding over all input
SNR values.

As in the ZF case, a transmission scale factor is used to
maintain an average transmission power of tr[P]. Using the
same form as (8), we have the following equation:

VRZF =

√
 

E{tr[(A∗= (AT
=A∗=+f2

FI )−1)HA∗= (AT
=A∗=+f2

FI )−1]}

=
1√
E
{
_V

} , (10)

where E{_V} is the average eigenvalue of the matrix shown
in the first expression of (10). The second expression in (10)
results from the fact that the trace of a matrix is equal to the
sum of its eigenvalues [11]. Using the value of  from the
numerator, the trace can be replaced by the average eigenvalue
of the matrix. The average is dropped, since the expectation is
taken. Since AT

=A∗= is a Wishart matrix, its eigenvalues have
the following probability distribution function (PDF) based
on Theorem 2.17 of [9]:

5_ (I) =
1
 

 −1∑
:=0

(
:!

(
!"− 
:
(I)

)2

(:+"− )!

)
I"− 4−I , (11)

where !"− 
:
(I) is the Laguerre polynomial of order : .

After accounting for the differences between the matrix
from (10) and the Wishart matrix AT

=A∗=, the value of _V
is calculated as

E{_V} =
∫ ∞

0
5_ (I)

I(
I+f2

F

)2 3I. (12)

There is no closed form solution to the integral above, but
the E{_V} value can be calculated for a given value of f2

F

using numerical integration techniques. The resulting value of
VRZF for values of  and f2

F can be stored in a 2D look-up
table at the base station. An equivalent set of values is also
needed at each UE to properly scale the received signal. If the
UE is to operate in cells where the number of BS antennas
varies, then the table of VRZF values at the UE is expanded
to a 3D look-up to account for different values of " .

C. UE Detection
As shown in (5), the precoded signal is multiplied by

P− 1
2 AT

= as it traverses the channel. In order to produce an



unbiased estimate of the FD symbols, the received signal must
be properly scaled at the UE. The expression for the detected
symbols is

ˆ̃s:,= =
U

VRZF

(
P−

1
2 AT

=x̃RZF:,= +w:,=

)
= UP−

1
2 AT

=A∗= (AT
=A∗=+f2

FI )−1P
1
2 s̃:,=+

Uw̃:,=

VRZF
, (13)

where the scalar U is included to compensate for the scaling
that results from the matrix AT

=A∗= (AT
=A∗=+f2

FI )−1. The
unbiased condition is met if U is set such that

s̃:,= = UE
{
P−

1
2 AT

=A∗= (AT
=A∗=+f2

FI )−1P
1
2

}
s̃:,=. (14)

The expectation in (14) must be set to 1
U

I in order for
(14) to be satisfied. This result can be simplified as

1
U

I = E
{
P−

1
2 AT

=A∗= (AT
=A∗=+f2

FI )−1P
1
2

}
= E

{
AT
=A∗= (AT

=A∗=+f2
FI )−1}

= I −f2
FE

{
(AT

=A∗=+f2
FI )−1}. (15)

Since AT
=A∗= is a Wishart matrix, the expected value of the

off-diagonal values of (AT
=A∗=+f2

FI )−1 is zero. The expected
value of the diagonal entries is a constant. Hence, (15) can
be further reduced to

1
U

I = I −f2
F_UI , (16)

where _U is equal to E
{
tr
[
(AT

=A∗=+f2
FI )−1]}/ , which is

equal to the average eigenvalue of (AT
=A∗=+f2

FI )−1.
Although the expression for _U has no closed form solu-

tion, it can be calculated by computing the integral of the
probability distribution function (PDF). We note that AT

=A∗=
is a Wishart matrix, which has the PDF shown in (11) for its
eigenvalues. Using the PDF in (11), we can express _U as

_U =

∫ ∞

0

5_ (I)
I+f2

F

3I. (17)

The value in (17), can be readily calculated for a given value
of f2

F ,  , and " using numerical integration techniques.
Like the VRZF scalar, the values for U can be pre-computed
and stored in a 2D table based on  and f2

F . Once _U is
calculated, it can be used to compute U based on (16) as
follows:

U =
1

1−f2
F_U

. (18)

Asymptotes for the value of U are easily attained by
examining (13) in the low and high SNR regimes. In the
low SNR case, f2

F dominates the inverse in (13) such that it
converges to 1

f2
F

I . Since the expected value of each diagonal
element of AH

=A= is " , the asymptotic value for U in the low
SNR regime is f2

F

"
. In the high SNR case, the matrix inverse

converges to (AH
=A=)−1, resulting in a unity scaling for each

symbol. As a result, the asymptotic value for U in the high
SNR regime is unity.

D. Power Optimization
When the large-scale path loss varies greatly for different

UEs, the UEs that are close to the BS will see higher levels
of MUI than the UEs that are at the edge of the cell. Based
on (13), the output SINR for user : is

W: =
1

U2f2
od
(?total−?: )

?:
+ U2

V2
RZF
f2
F

, (19)

where f2
od is the variance for all of the off-diagonal ele-

ments of AT
=A∗= (AT

=A∗=+f2
FI )−1, and ?total =

∑ 
:=1 ?: . The

numerator of (19) is unity because the scaling previously
described results in an unbiased estimate. The first term in
the denominator is the MUI, which is based on the power of
the other users (i.e., ?total−?: ). The MUI is divided by ?:
due to the large-scale path loss for user : . The second term
in the denominator is the receiver noise with its appropriate
scaling. For the case of equal power with equal large-scale
path loss, we find that each UE achieves an output SINR of

Weq =
1

U2f2
od ( −1)+ U2

V2
RZF
f2
F

. (20)

In order to achieve the same SINR for each UE when large-
scale path loss is not equal, the amplitude scaling of P1/2 in
(9) and (13) is replaced by the diagonal matrix Q1/2, where Q
has diagonal elements of @: . In order to not introduce any bias
from the new scaling, each UE multiplies its received signal
by an additional scale factor of

√
?:/@: . Consequently, each

UE must have knowledge of the channel statistics as well as
the amplitude scaling factor applied by the BS. The estimates
of the FD symbols in (13) now change to

ˆ̃s:,= = UQ−
1
2 AT

=A∗= (AT
=A∗=+f2

FI )−1Q
1
2 s̃:,=+

UQ− 1
2 P 1

2 w̃:,=

VRZF
.

(21)
The values for @: are set to achieve the same SINR for each
user, W, while abiding by the power constraint of

∑ 
:=1 @: =

?total. The output SINR for each user with power optimization
is expressed as

W =
1

U2f2
od
(?total−@: )

@:
+ U2 ?:
V2
RZF@:

f2
F

. (22)

An expression for the achieved value of W is obtained by
rearranging (22) and summing over all  UEs, which yields

 ∑
:=1

W

(
U2f2

od (?total−@: )+
U2

V2
RZF

?:f
2
F

)
=

 ∑
:=1

@:

W

(
U2f2

od ( ?total−?total)+
U2

V2
RZF

?totalf
2
F

)
= ?total

W =
1

U2f2
od ( −1)+ U2

V2
RZF
f2
F

= Weq. (23)

The result in (23) shows that the power optimization produces
the same performance that is achieved in the case of equal
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Fig. 1. The number of complex multiplies per bin is plotted versus the
number of users for the two precoding implementations and for different
numbers of BS antennas (i.e., " = 32, 64, and 128). The ZF precoder, here,
follows the formulation presented in [7]. The RZF approach that reuses the
matrix inversion has significant savings, especially as  grows large.

power with equal large-scale path loss. Equating the expres-
sions in (22) and (23) and solving for @: we arrive at

@: =

f2
od?total+?:

f2
F

V2
RZF

 f2
od+

f2
F

V2
RZF

. (24)

By using (24) to optimize the transmit power, the SINR for
all UEs will be equal, providing the same quality of service
for near and distant UEs. Note that the value of @: must be
known at the BS and also at the : th UE.

IV. Complexity Comparison
By reusing the matrix inversion from the UL detector, the

RZF precoder is much more computationally efficient than the
ZF precoder of [7]. A comparison in terms of the number of
complex multiplies is presented here. Since both algorithms
require conversion to and from the frequency domain, this
operation is not considered in the comparison. Likewise, since
the amplitude scaling by P1/2 or Q1/2 is the same, it is
also excluded even though its contribution is insignificant. As
before, we assign  3 complex multiplies for a  × matrix
inversion. The number of complex multiples involved in a
matrix (or vector) multiplication is the product of the outer
dimensions times the inner dimension.
The following operations are required for each bin of the ZF

precoding in (7), resulting in a total of  2+ "+ 3+ 2"
complex multiplies per bin:
 2" Multiply ( ×") matrix by ("× ) matrix
 3 Invert the resulting ( × ) matrix
 2 Multiply ( × ) matrix by ( ×1) vector
 " Multiply ("× ) matrix by ( ×1) vector
To reuse the matrix inversion from the UL detector, the

complex conjugate is taken, which does not require any

complex multiplies. Thus, the computational complexity of
the RZF precoder in (9) is reduced to the a total of  2+ "
multiplies per bin:
 2 Multiply ( × ) matrix by ( ×1) vector
 " Multiply ("× ) matrix by ( ×1) vector

Fig. 1 shows a comparison of the ZF and the RZF precoder
for the computational steps considered here.

V. Performance Analysis
The DL performance of the RZF precoder is very similar

to the UL MRC-MMSE detector performance reported in [6].
The estimated symbol expression in (13) will be analyzed for
the low-SNR and the high-SNR cases, using the expressions
for VRZF presented previously for each case.

A. Low SNR Operation
When the noise variance dominates the expression for the

matrix inverse in (13), the matrix inverse will converge to the
identity matrix scaled by the inverse of the noise variance.
The value of U converges to f2

F/" , and VRZF = f2
F/
√
" in

the low-SNR regime as shown below:

VRZF,Low-SNR =

√
 

1
f4

F
E
{
tr
[
AT
=A∗=

]}
= f2

F

√
 

" 

=
f2
F√
"
, (25)

where the second expression results from Lemma 2.9 of [9].
The resulting expression for the Low-SNR DL symbol

estimates in the FD is

ˆ̃sLow-SNR,DL:,= =
1
"

P−
1
2 AT

=A∗=P
1
2 s̃:,=+

w̃:,=√
"
. (26)

The effect of the P matrices were discussed at the end of
Section III-D. With the aforementioned method of mitigating
the effect of large disparities in the path loss between users,
we can set P = I for the performance analysis. With this
convention, we see that the expected value of the diagonals of
AT
=A∗= are equal to " , which results in an unbiased estimate.

The noise variance of f2
F is divided by " . The resulting

SINR is equal to "/f2
F (i.e., performance gain of "), since

the noise dominates the MUI caused by the off-diagonal
elements of AT

=A∗= in the low-SNR regime. This is an identical
result to the low SNR UL case in [6].

B. High SNR Operation
At high SNR the noise variance becomes vanishingly small.

As a result, the matrix inverse in (13) reduces to (AT
=A∗=)−1,

which cancels the AT
=A∗= matrix. Then the P− 1

2 term cancels
with the P 1

2 term. At high SNR, U converges to unity, and
VRZF converges to VZF in (8). The expression for the symbol
estimates in the FD is simplified to

ˆ̃sHigh-SNR,DL:,= = s̃:,=+
w̃:,=√
"− 

. (27)
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Fig. 2. Ratio of output SINR to average input SNR is plotted versus the
average input SNR for the RZF and ZF precoder with perfect CSI. Curves
show multiple values BS of antennas (" = 128 and 64) and UEs ( = 14
and 28). For each case, the ideal array gain (" ) is provided for reference.

Based on (27), the high-SNR performance has a perfor-
mance gain of "− due to the scaling of the noise. Unlike
the low SNR case, the near-far effect does not contribute to
the interference at high SNR. This is an identical result to the
high SNR UL case in [6].

VI. Simulation Results
A single-cell DL scenario was simulated to show the per-

formance of the FD multi-user precoding techniques detailed
in this section. During each frame, # = 2048 samples are
transmitted. The BS transmits to  UEs simultaneously.
In order to reach each UE with the same power, the BS
must transmit more power to more distant UEs with higher
large-scale path losses. In this simulation, the excess path
loss for each UE is distributed between 0 dB and 20 dB.
Because of the additional MUI created by the large variation
in transmit power of the different signal components, the
power optimization method presented in Section III-D was
simulated. The resulting performance matches the case where
the large-scale path losses are equal.
Each channel impulse response between BS antenna <

and UE : is randomly selected with an exponential power
delay profile and a roll-off factor of 25 samples. The length
of the channel impulse response, !ℎ , is set to 130 samples.
It should be noted that the performance of this algorithm
is independent of the value of !ℎ as long as !ℎ ≤ !CP−1,
where !CP is the length of the CP. The average power of each
channel for each user is set to unity, but the individual power
values are uniformly distributed between 0.1 and 2.0. Slight
modifications to the scaling are made to maintain the unity
average power constraint after the individual power values are
chosen. These results assume perfect CSI is available at the
BS.
The main objective of the simulation is to measure the

resulting SINR after being detected at the receiver and then
averaged across all UEs. Because the BS has " antennas,
an ideal antenna gain of " would be expected for a single-
user case (i.e., the output SINR could be as high as " times
the input SNR), which is also the predicted performance at
low input SNR. Based on the value of VZF, the ZF precoder

performance gain is expected to be "− over all input SNR
values. This is also the predicted performance for the RZF
precoder case at high input SNR. Fig. 2 shows the results of
the simulation.

VII. Conclusion
This paper presented a RZF precoding solution that reuses

the matrix inverses calculated as part of the UL detection as
presented in [6]. Derivations for the scale factors necessary
to achieve the transmit power target and to obtain unbiased
symbol estimates at the UE were provided. In addition, a
transmit power optimization was presented that compensates
for MUI effects that reduce the average SINR at the UEs when
large variations in the large-scale path loss exist. Because of
the reuse of the matrix inverse for each processing bin, it was
shown that the RZF precoding solution requires drastically
fewer complex multiplies than the ZF precoder. The perfor-
mance analysis showed that the achievable output SINR from
the RZF precoder is greater than that of the ZF precoder
for moderate and low input SNR values. It was also shown
that the RZF precoder performance converged to that of the
ZF precoder for high SNR values. The analysis was verified
via simulation of a single-cell massive MIMO scenario with
64 BS antennas and 16 UEs. With the low computational
complexity and superior performance at moderate input SNR
values, we conclude that RZF is the preferred approach to
massive MIMO DL precoding for SCM waveforms with a
CP.
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