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3 | EMPIRE is a next-generation hybrid plasma code

The Boltzmann eqn models time evolution of plasma’s distribution f
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oHybrid codes solve the Boltzmann eqn using both fluid and kinetic methods simultaneously

oFluid methods solve this by taking kinetic moments
o Multiply both sides of the eqn by v” and integrate to reduce dimensionality at the cost of more equations
o Assumes that the distribution fis drifting Maxwellian (Gaussian)* (~ .—% (*in most cases)

o Fast and accurate but doesn’t work at low densities

oKinetic methods don’t integrate away the velocity information; particle-in-cell (PIC) most popular
o Populate domain with particles representing samples of f

o Evolve Newtonian mechanics of individual particles

o Slow and noisy but captures more physics
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Hybrid codes can be applied to many far-from-equilibrium plasmas

oPulsed power
o Target design: targets treated as fluids, but fluids cannot capture particle ablation

o Power flow: electrical current treated with PIC, but particle count becomes too high for PIC alone

oMagnetic confinement fusion

o Electrons thermalize much faster than ions, so treat electrons as a fluid and ions with PIC

oSpace physics
o Coronal mass ejections: mostly Maxwellian but with a significant fraction of highly-energetic particles

o Cosmic rays: energetic particles on a background of a cold neutral gas
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Hybrid models split a plasma into PIC and fluid parts

oDelta-f models have a well-behaved Gaussian fluid underneath a few far-from-equilibrium particles

f

—— Fluid

—— Particles

Velocity

oParticles more accurately represented by Dirac deltas, but this gives a sense of how the plasma 1s
partitioned between fluid and PIC solvers



6 I Tracking particles is expensive and a limiting factor

oOften, physics/numerics cause particle population to explode
oWant to reduce particles by identifying a “fluid-like” subset and merging them into the fluid
oFluid-like means the particles won’t skew the fluid away from its nice Gaussian shape

oHow do we choose particles to merge such that their distribution is the same as the underlying
fluid’s?

oPure statistics formulation: given a sample from some unknown distribution, how do we choose a
weighted subset of the sample that represents a distribution we want?
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8 I What does it mean for particles to “represent” a distribution?

> Classical particle is a Dirac delta in phase space — no uncertainty in position or velocity

> Must smooth out the delta to gain some info about what distribution the particle is from

> Generally called kernel density estimator (KDE); replace the delta function with a kernel
> Width of kernel is determined by number of particles and sample standard deviation

> Distribution represented by the particles is just the sum of all the kernels

> BExample: histograms
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9 I Select particles to merge whose KDE matches the underlying fluid

° That is, the selected particles should have a KDE with the same shape as the fluid

o Ensures that mereino the particles won’t skew the fluid, just scale it up a bit
ging p > ] p

> Particles can have non-integer weight (number of particles represented by macroparticle), so
individual kernels can be scaled up or down to tune the KDE

> However, can’t merge more weight from a particle than it originally had
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10 I The constraints on the weight suggest use of optimization techniques

° Point is to minimize some quantity representing error (cost) as a function of selected weights
> Choice of cost generally depends on what errors are considered significant
° In our case, KDE should equal a scaled-down version of the fluid distribution everywhere

° Too hard to enforce equality everywhere; just check at a few (collocation) points in phase space

ZwiKh(v —v;) = f(v)

KDE at point v Fluid distro

(v;1s velocity of particle 7 w; 1s its selected weight)
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More important: KDE’s moments should match fluid’s

N
Z w;v; = | f(v)v"do
i=1

> Since fluid solver evolves moments, it’s important that they incur as little error as possible
> Set some threshold 7 and compare moments for all integers <7

° In three dimensions, moments should be checked in each direction



Combine moments and collocation points to get a matrix equation:

Zlez = [ f(v)v™dv
> sy wikp (v —v;) = f(v)

° This is linear in the weights for finitely many collocation points and moments

> Number of moments/collocation points can be chosen to suit individual problem needs
> Equivalent to Aw — b

° Due to constraints on weights, don’t expect an exact solution

° Instead, find weights that minimize \Aw — b‘ 2 __ constrained linear least-squares
optimization

° Very well-researched subject, lots of good optimization algorithms
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14 I Good matching when the pre-merge particles are already fluid-like

> Match moments up to order #»=4, no collocation points, 200 particles
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Without collocation points, algorithm struggles with uniformly
15 | distributed particles

> Match moments up to order #»=4, no collocation points, 200 particles
o L2 error = 1401.81

Error in moment of order n
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16 | Adding collocation points sacrifices moment error for better “fit”

> Match moments up to order #=4, 10 collocation points, 200 particles

> Note that this is a particularly pathological particle sample;
particles are expected to form a more Gaussian distribution

o Fit quantified by L2 error = 572.86
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17 I Can add arbitrarily many collocation points to improve L2 error

> Match moments up to order #=4, 100 collocation points, 200 particles

o This comes at the cost of error in moments
o .2 error = 506.62
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18 | All three uniform attempts side by side
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The hybrid merge algorithm tries to choose particles that will not skew
the fluid when merged

° Kernel density estimation used to reconstruct shape of particle distribution
> Weighted kernels are chosen that best match the shape of the fluid distribution

° Brror metrics used in optimization include moments and values of KDE evaluated at certain
collocation points

° Algorithm shows very low error and good qualitative agreement when particle distribution is
initially approximately Gaussian

> Agreement 1s less good for uniformly distribution particles, and there is a tradeoff between
moment error and fit to fluid distribution as quantified by L2 error

> Particles expected to be mostly Gaussian with perturbations in real simulations, so uniformly
distributed particles represents a worst-case scenario for the merge algorithm



