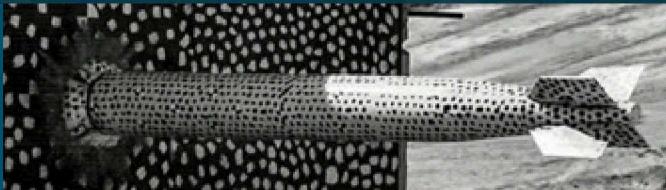


Particle-to-Fluid Merge in Hybrid Plasma Simulation



SAND2020-8934PE

PRESENTED BY

L. T. Meredith

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

- Motivation
- Method
- Results
- Conclusions and outlook

EMPIRE is a next-generation hybrid plasma code

The **Boltzmann eqn** models time evolution of plasma's **distribution f**

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{\mathbf{F}}{m} \cdot \frac{\partial f}{\partial \mathbf{v}} = \left(\frac{\partial f}{\partial t} \right)_{\text{collisions}}$$

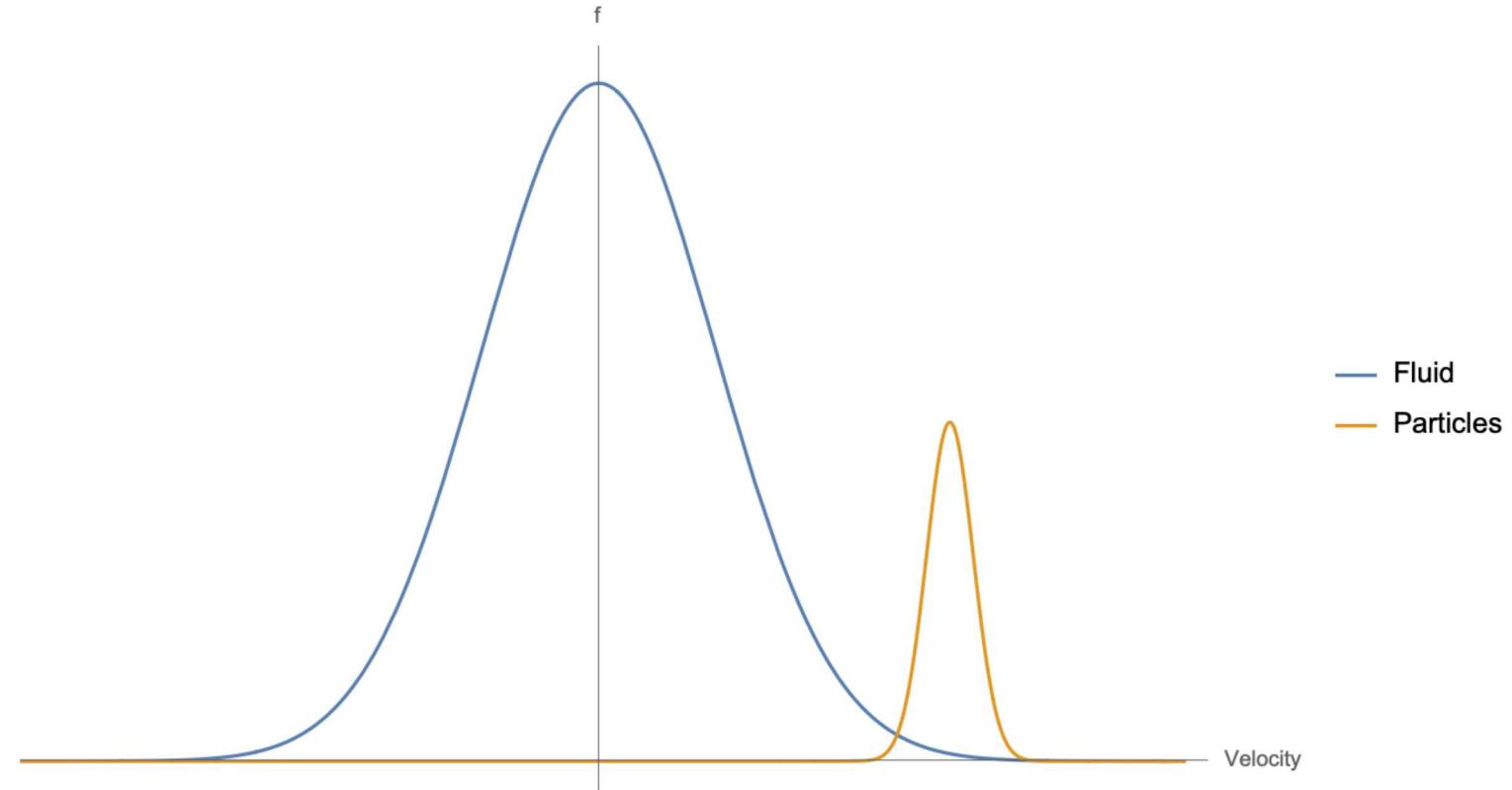
- $f = f(\mathbf{x}, \mathbf{v}, t)$ gives the number of particles near point \mathbf{x} with velocities about \mathbf{v} at time t
- Hybrid codes solve the Boltzmann eqn using both fluid and kinetic methods simultaneously
- **Fluid** methods solve this by taking kinetic moments
 - Multiply both sides of the eqn by \mathbf{v}^n and integrate to reduce dimensionality at the cost of more equations
 - Assumes that the distribution f is drifting Maxwellian (Gaussian)* ($\sim e^{-v^2}$) (*in most cases)
 - Fast and accurate but doesn't work at low densities
- **Kinetic** methods don't integrate away the velocity information; particle-in-cell (PIC) most popular
 - Populate domain with particles representing samples of f
 - Evolve Newtonian mechanics of individual particles
 - Slow and noisy but captures more physics

Hybrid codes can be applied to many far-from-equilibrium plasmas

- Pulsed power
 - Target design: targets treated as fluids, but fluids cannot capture particle ablation
 - Power flow: electrical current treated with PIC, but particle count becomes too high for PIC alone
- Magnetic confinement fusion
 - Electrons thermalize much faster than ions, so treat electrons as a fluid and ions with PIC
- Space physics
 - Coronal mass ejections: mostly Maxwellian but with a significant fraction of highly-energetic particles
 - Cosmic rays: energetic particles on a background of a cold neutral gas

Hybrid models split a plasma into PIC and fluid parts

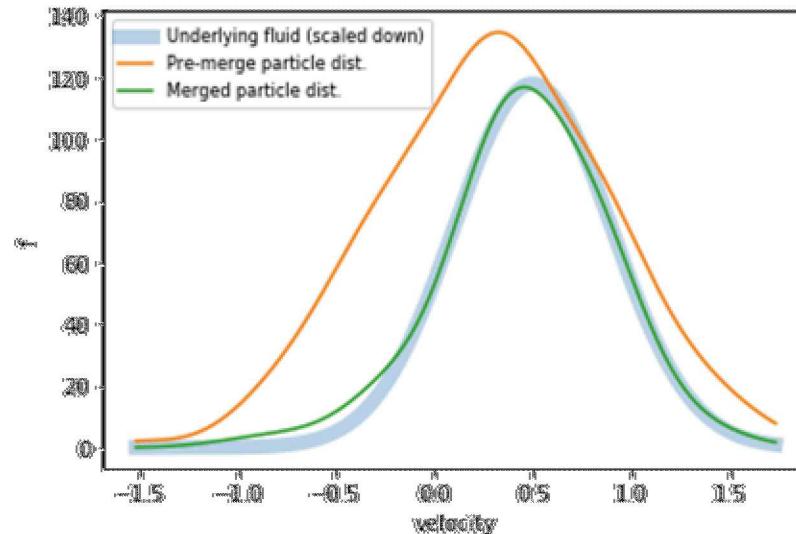
- Delta- f models have a well-behaved Gaussian fluid underneath a few far-from-equilibrium particles



- Particles more accurately represented by Dirac deltas, but this gives a sense of how the plasma is partitioned between fluid and PIC solvers

Tracking particles is expensive and a limiting factor

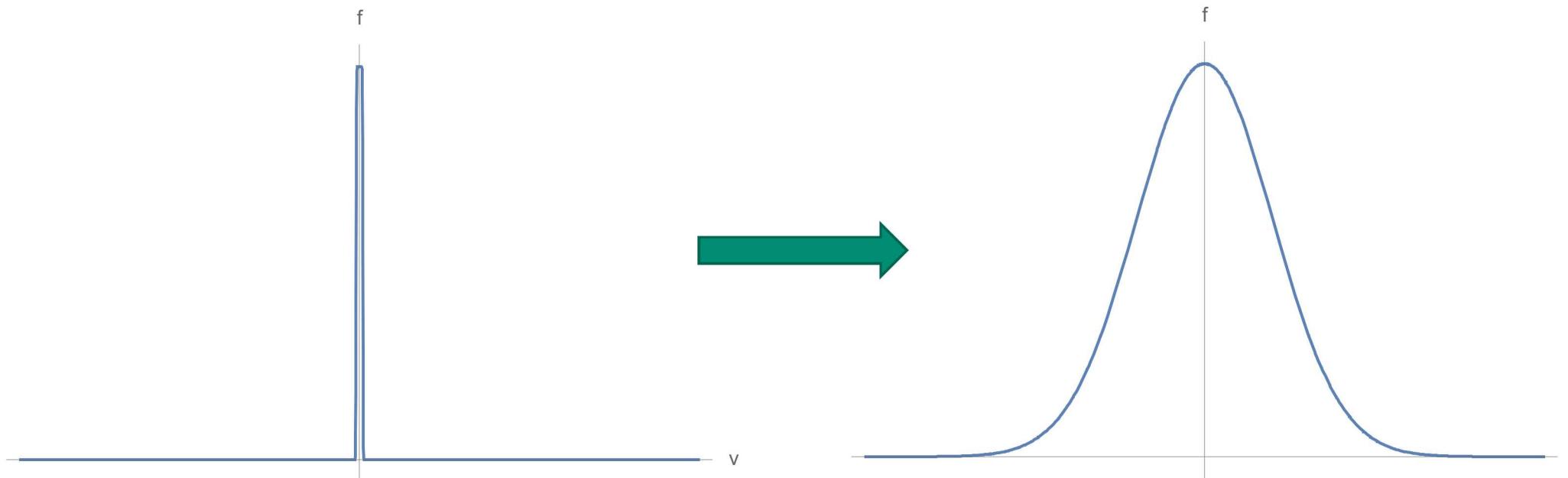
- Often, physics/numerics cause particle population to explode
- Want to reduce particles by identifying a “fluid-like” subset and merging them into the fluid
- Fluid-like means the particles won’t skew the fluid away from its nice Gaussian shape
- How do we choose particles to merge such that their distribution is the same as the underlying fluid’s?
- Pure statistics formulation: given a sample from some unknown distribution, how do we choose a weighted subset of the sample that represents a distribution we want?



- Motivation
- Method
- Results
- Conclusions and outlook

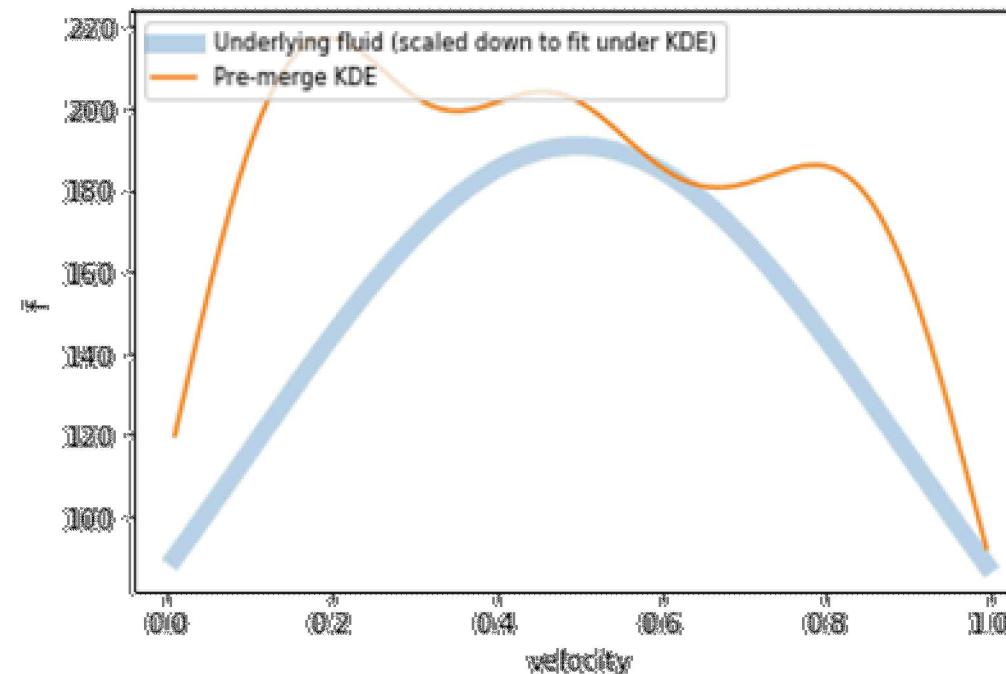
What does it mean for particles to “represent” a distribution?

- Classical particle is a Dirac delta in phase space – no uncertainty in position or velocity
- Must smooth out the delta to gain some info about what distribution the particle is from
- Generally called **kernel density estimator (KDE)**; replace the delta function with a **kernel**
- Width of kernel is determined by number of particles and sample standard deviation
- Distribution represented by the particles is just the sum of all the kernels
- Example: histograms



9 Select particles to merge whose KDE matches the underlying fluid

- That is, the selected particles should have a KDE with the same shape as the fluid
- Ensures that merging the particles won't skew the fluid, just scale it up a bit
- Particles can have non-integer weight (number of particles represented by macroparticle), so individual kernels can be scaled up or down to tune the KDE
- However, can't merge more weight from a particle than it originally had



The constraints on the weight suggest use of optimization techniques

- Point is to minimize some quantity representing error (**cost**) as a function of selected weights
- Choice of cost generally depends on what errors are considered significant
- In our case, KDE should equal a scaled-down version of the fluid distribution everywhere
- Too hard to enforce equality everywhere; just check at a few (**collocation**) points in phase space

$$\sum_{i=1}^N w_i K_h(v - v_i) = f(v)$$

KDE at point v

Fluid distro

(v_i is velocity of particle i ; w_i is its selected weight)

More important: KDE's moments should match fluid's

$$\sum_{i=1}^N w_i v_i^n = \int f(v) v^n \, dv$$

- Since fluid solver evolves moments, it's important that they incur as little error as possible
- Set some threshold n and compare moments for all integers $< n$
- In three dimensions, moments should be checked in each direction

Combine moments and collocation points to get a matrix equation:

$$\begin{cases} \sum_{i=1}^N w_i v_i^n = \int f(v) v^n \, dv \\ \sum_{i=1}^N w_i K_h(v - v_i) = f(v) \end{cases}$$

- This is linear in the weights for finitely many collocation points and moments
- Number of moments/collocation points can be chosen to suit individual problem needs
- Equivalent to $Aw = b$
- Due to constraints on weights, don't expect an exact solution
- Instead, find weights that minimize $|Aw - b|^2$ -- **constrained linear least-squares optimization**
- Very well-researched subject, lots of good optimization algorithms

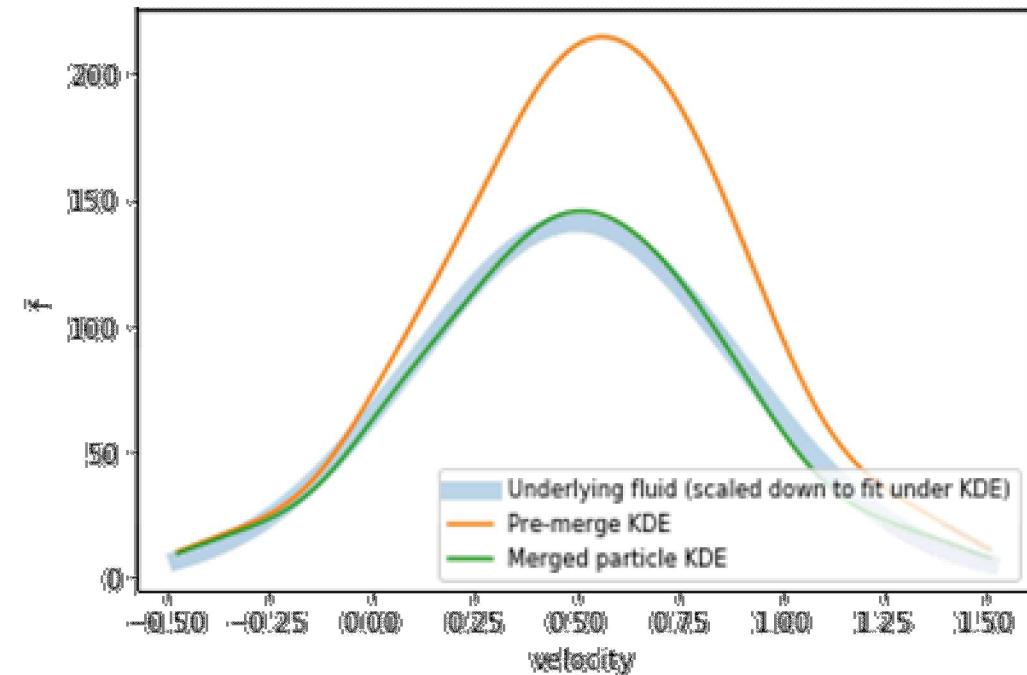
Outline

- Motivation
- Method
- Results
- Conclusions and outlook

Good matching when the pre-merge particles are already fluid-like

- Match moments up to order $n=4$, no collocation points, 200 particles

Error in moment of order n	
$n=0$	0.000000e+00
1	2.015724e-16
2	1.108475e-15
3	6.927222e-16
4	2.404612e-15

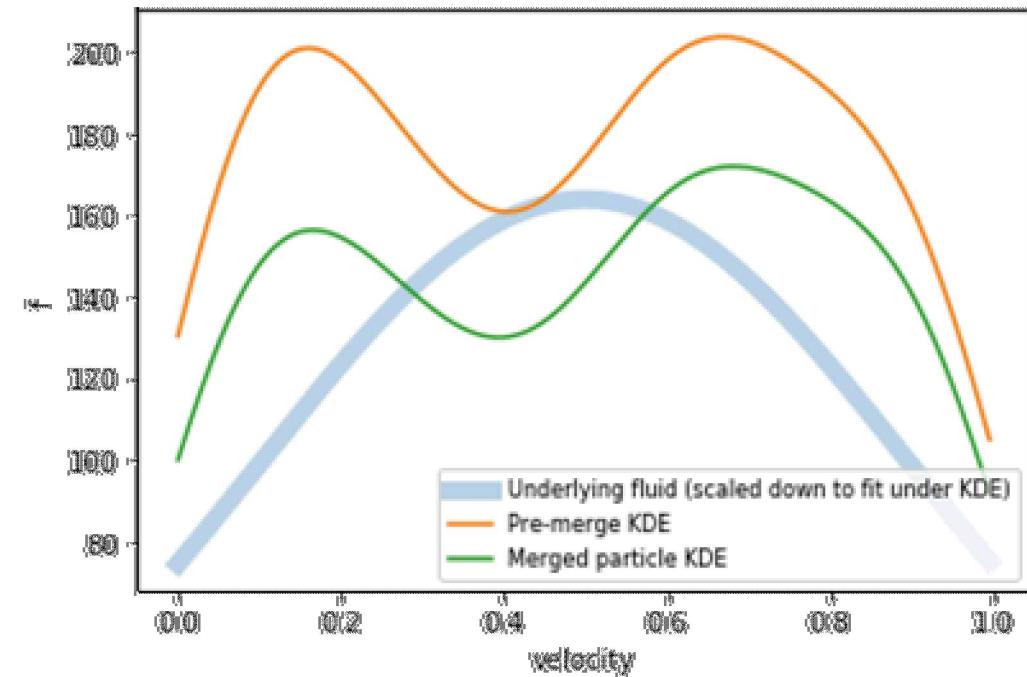


Without collocation points, algorithm struggles with uniformly distributed particles

- Match moments up to order $n=4$, no collocation points, 200 particles
- L2 error = 1401.81

Error in moment of order n

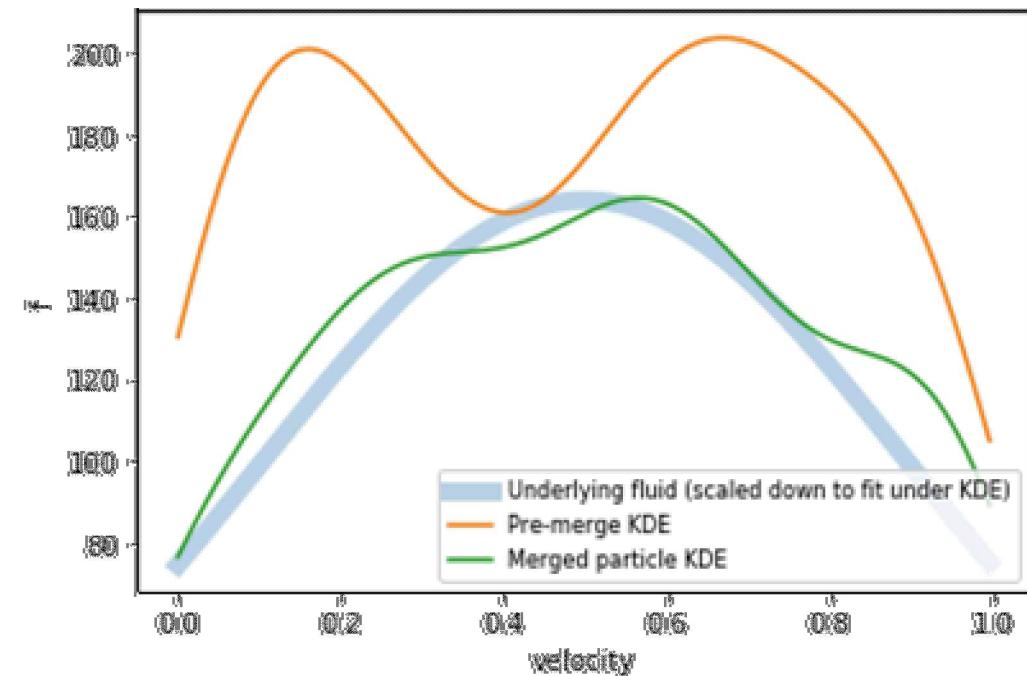
$n=0$	3.466062e-16
1	-1.733031e-16
2	-1.307062e-01
3	-2.259371e-01
4	-3.656592e-01



Adding collocation points sacrifices moment error for better “fit”

- Match moments up to order $n=4$, 10 collocation points, 200 particles
- Note that this is a particularly pathological particle sample; particles are expected to form a more Gaussian distribution
- Fit quantified by L2 error = 572.86

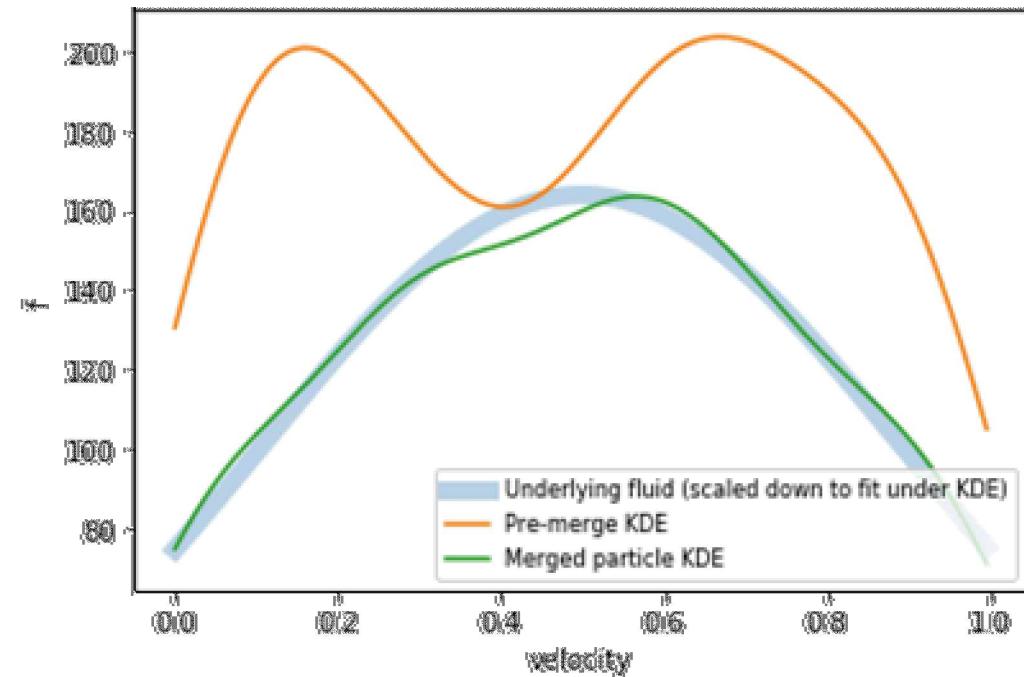
Error in moment of order n	
$n=0$	6.8734e-2
1	5.9558e-2
2	1.93157e-1
3	2.85557e-1
4	4.13122e-1



Can add arbitrarily many collocation points to improve L2 error

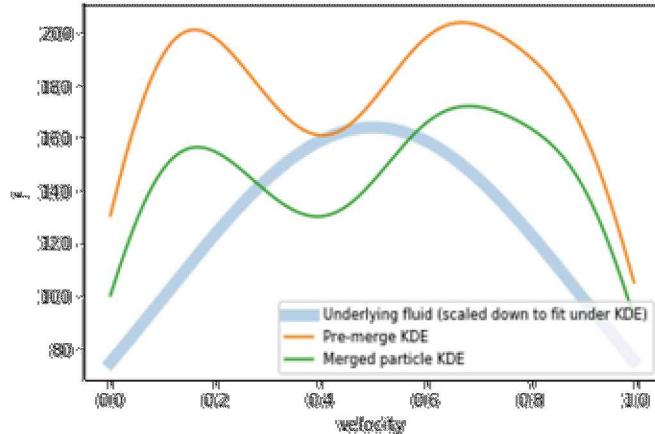
- Match moments up to order $n=4$, 100 collocation points, 200 particles
- This comes at the cost of error in moments
- L2 error = 506.62

Error in moment of order n	
$n=0$	$-1.20741\text{e-}1$
1	$-1.27833\text{e-}1$
2	$-2.67308\text{e-}1$
3	$-3.64794\text{e-}1$
4	$-4.87790\text{e-}1$



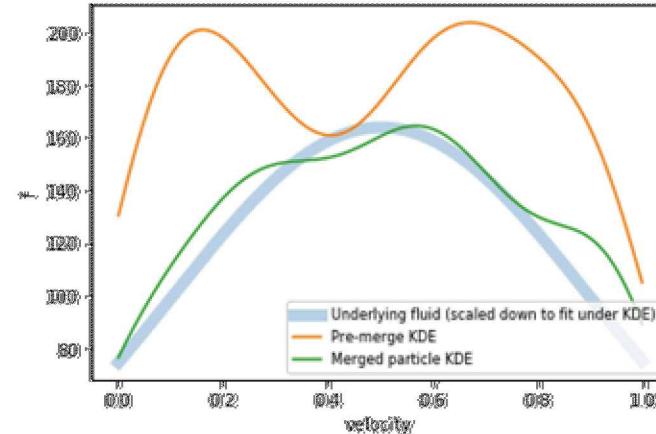
All three uniform attempts side by side

No collocation points



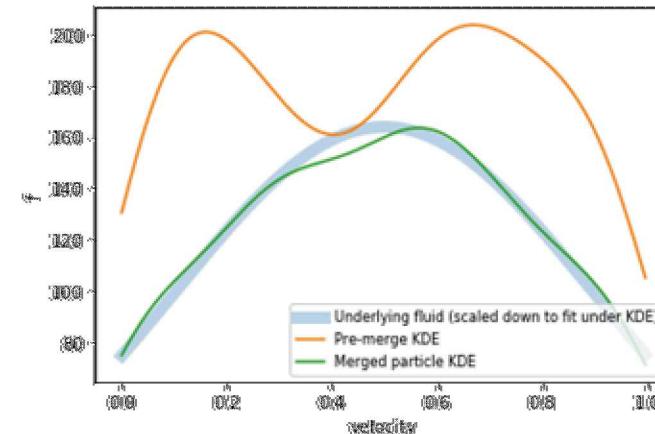
1401.81

10 collocation points



L2 errors
572.86

100 collocation points



506.62

Error in moment of order n

$n=0$	3.466062e-16
1	-1.733031e-16
2	-1.307062e-01
3	-2.259371e-01
4	-3.656592e-01

$n=0$	6.8734e-2
1	5.9558e-2
2	1.93157e-1
3	2.85557e-1
4	4.13122e-1

$n=0$	-1.20741e-1
1	-1.27833e-1
2	-2.67308e-1
3	-3.64794e-1
4	-4.87790e-1

Outline

- Motivation
- Method
- Results
- **Conclusions and outlook**

The hybrid merge algorithm tries to choose particles that will not skew the fluid when merged

- Kernel density estimation used to reconstruct shape of particle distribution
- Weighted kernels are chosen that best match the shape of the fluid distribution
- Error metrics used in optimization include moments and values of KDE evaluated at certain collocation points
- Algorithm shows very low error and good qualitative agreement when particle distribution is initially approximately Gaussian
- Agreement is less good for uniformly distribution particles, and there is a tradeoff between moment error and fit to fluid distribution as quantified by L2 error
- Particles expected to be mostly Gaussian with perturbations in real simulations, so uniformly distributed particles represents a worst-case scenario for the merge algorithm