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2 University of lowa: dusty plasma physics
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3 Extreme conditions in a fusion reactor

Image: iter.org

Fusion reaction:

D + T 4 He + n° (14.1 MeV)

requires confinement of extremely hot (>100,000,000 °C)

and dense plasma
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4 Divertor materials

Image: iter.org

tungsten is a leading candidate material
• highest melting point
• low sputter yield
• high thermal conductivity

hydrogen effects on tungsten surfaces

• material degradation
• embrittlement
• blistering

• tritium retention and inventory
• one 5 min shot with ITER - 105 Ci of T
• 10 shots in 1 day = 106 Ci of T
• -10 Ci into environment—track -10 ppm!
• 5 pL of T20 is lethal



5 DFT can provide insight into hydrogen-tungsten interactions

Bond centered (BC) site on W(111) predicted using density functional theory (DFT)

by our collaborators: Zack Bergstrom and Brian Wirth at University of Tennessee

Experimentally validate DFT results:

DFT provides inputs for larger scale models

• interatomic potentials

• dissociation Et recombination of H
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Z. Bergstrom et al., J. Phys. Condens. Matter, (2019).



LEED
6 Challenges for detecting surface H

(a)

wikipedia.org

Direct detection of surface H is challenging:

• Direct detection impossible for many techniques (XPS, AES)

• Challenging to disentangle H signal from substrate (LEED, STM, HAS)

• Ambiguous surface/location information (TPD)
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Flowers et al., J. Chem. Phys. (1993).
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XPS

AES

Electron collis Auger electron e ssion

wikipedia.org
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Kerber et al., J. Vacuum Sci. Tech. (1996).
Sykes et al., PNAS (2005).

Rieder and Engel, PRL (1980)



7 LEIS and DRS for H detection

i_ow energy ion scattering (LEIS

ESA

E

rDirect recoil spectroscopy (DRS)

ESA

• both techniques are performed simultaneously

• energy of detected ion gives compositional information

• DRS 4 direct detection of surface hydrogen



8 ARIES:Angle- esolved on nergy pectrometer

MCP backscaltered
ions and neutrals

fonivard-scaftered
and recoiled ions



9 lon energy spectrum for I keV Ne+4W(I I I)

1 keV Ne+ —> W(111)
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recoiled H+ (DRS)

 11

Ne+ scattered
off W (LEIS)

Key advantages of LEIS Et DRS

1) direct detection of hydrogen on surface

2) structural information from W(QS) signal

3) surface specificity (monolayer sensitivity)



10 Constructing multi-angle maps with ARIES
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11 Shadow cones: insight into structure

incident
ion flux

ShLdow cone
Agostino et al., Surf. Sci. 384, (1997).

Focusin 2 effect

large signal

small signal

1) Shadow cones arise from ion focusing

2) Enhanced signal when cone's edge coincides with neighboring atom

3) Structural information obtained with "shadow lines"



1 2 Shadow line analysis

Cone coincides with neighbor for various a,

incoming
ion beam

Neighbor inside shadow cone

Shadow line:
• traces out a, that shadow cone coincides with W atom

• delineates region of enhanced scattering from diminished scattering



1 3 Shadow lines a natural initial guess
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• In the literature: shadow lines applied for
:‹i'

only the first monolayer 00
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• Insufficient to describe the signal

• Need to consider multiple layers
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14 Multi-layer shadow line analysis

• Shadow lines of first 3 layers are required

to describe the signal

• Multi-layer effects will play an important

role in understanding H recoil maps
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1 5 Determining H binding sites
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1 6 Modeling DRS measurements

Molecular dynamics (MD): necessary, but stow

1What assumpt

• Fini' 1 r•et size (2 W la ers + H)

• 1 in gid6
cT3 0.5

• Only' in
0.0

ea
ns.

n
can we make to speed the sim

co
ulation up?

cl 1H-ve a-1

x-distance [A]

R Fynrcseos HErutde9:ns:Simulations peArggiii

• surface relax. a t Alift VI)arlAgABFAIRAggingergies (<

• saturated H .cdre%KtFilW1,9ultiple surface atoms sim

• count that have carrect traiector.y to reach detectoilf-
rannn-1- use binary couision approximat.wn...must use MD!

10 eV

ultaneou

Kolasinsk.

lir*
vlieN-Ar

Anlistritir
AralitsVAP"Vir

AtirtAWArtnitirgIrS„
Atir**SrAvorritArSrlt.,

• .1.4Altiteellicit***NAr
.1ortrIONVeitAtt*"*Aler

egoirolINCONIVAt AMAMI,
Itrvirierfr*-14rAry

ItroltireonilreltAllgr
10111.4*Whilrit

Aritlr• • W atoms
• Ne+ projectile
• H atoms

1

*DFT calculations performed by B. Wirth at U. Tenn [1] Karolewski, Nucl. Instrum. Methods Phys. Res. B 230, (2005).



17 MD simulation compared to ARIES measurement

(
DFT prediction

• 1st layer W
• 2nd layer W
• hydrogen
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18 Constraining adsorbate height and position

h = 1.0 ± 0.1 A
DFT prediction:
0.95Å h 1.10Å

dBc = 1.6 ± 0.1 A
DFT prediction:
1.5 A dBc 1.7 A
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19 Understanding the H multi-angle map
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[1] Kolasinski et al., PRB, (2012).



20 Development of a new MD simulation capability using LAMMPS

S-ome limitations of Kalypso:

• Not designed for large-scale parallel simulations

• Lacks flexibility for modeling more complex surfaces

• Poor scaling for larger system sizes
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1000

800

600

400

200

60 120 180 240 300 368

azimuthal angle [0]

I am developing a Python code that uses LAMMPS [1] to simulate LEIS Et DRS

Experiment: ARIES Simulation: Python—LAMMPS

• -500 million simulated ion-target collisions

• well beyond existing LEIS MD simulations

• currently tuning choices in parameters

[1] S. Plimpton, J. Comp. Phys. (1995).



21 Summary of W(I I I)+H(ads) study

1. Advancement of surface hydrogen characterization:

complex binding geometry and corrugated surface

2. Most extensive MD simulations of LEIS to date:

constrained H adsorbate height and location

3. Using LAMMPS to improve our existing MD models

bond centered (BC)

H2 (g) dosing

60 90 120 150

C.-S. Wong, J. Whaley, Z. Bergstrom, B. Wirth, and R. Kolasinski, Phys. Rev. B 100, 245405 (2019).
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24 The divertor

Image: iter.org

Fusion reaction:

D + T 4 He + n° (14.1 MeV)

requires confinement of extremely hot (>100,000,000 °C)

and dense plasma
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25 Effect of hydrogen on ion-channeling

bond-centered (BC)
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26 Adsorbate enhancement of ion channeling

• 1st layer W
• 2nd layer W
• hydrogen

bond-centered (BC)
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27 Channeling into the surface breaks symmetry

backscattering measurements:
minimum <=> channeling into surface

DRS hydrogen signal
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28 Constraining adsorbate position

We find dBc = 1.6 ± 0.1 A

DFT prediction:
1.49 A dBc 1.69 A
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29 MD simulation for multi-layer scattering

3 keV Ne+ —> W(111), e = 45°, cr = 76°
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