
A Performance-Portable Nonhydrostatic
Atmospheric Dycore for the Energy Exascale Earth

System Model Running at Cloud-Resolving
Resolutions.

Luca Bertagna

Sandia National Laboratories
PO BOX 5800, 87122

Albuquerque, NM, USA

lbertag@sandia.gov

Jeff Larkin

NVIDIA Corporation

Santa Clara, CA, USA
jlarkin@nvidia.com

Oksana Guba

Sandia National Laboratories
PO BOX 5800, 87122

Albuquerque, NM, USA

onguba@sandia.gov

Andrew M. Bradley

Sandia National Laboratories

PO BOX 5800, 87122
Albuquerque, NM, USA
ambradl@sandia.gov

ABSTRACT

We present an effort to port the nonhydrostatic atmosphere
dynamical core of the Energy Exascale Earth System Model
(E3SM) to efficiently run on a variety of architectures, in-
cluding conventional CPU, many-core CPU, and GPU. We
specifically target cloud-resolving resolutions of 3 km and 1
km. To express on-node parallelism we use the C++ library
Kokkos, which allows us to achieve a performance portable
code in a largely architecture-independent way. Our C++
implementation is at least as fast as the original Fortran
implementation on IBM Power9 and Intel Knights Landing
processors, proving that the code refactor did not compromise
the efficiency on CPU architectures. On the other hand,
when using the GPUs, our implementation is able to achieve
0.97 Simulated Years Per Day, running on the full Summit
supercomputer. To the best of our knowledge, this is the most
achieved to date by any global atmosphere dynamical core
running at such resolutions.

Index Terms—Atmospheric modeling, Multicore processing,
High performance computing

I. JUSTIFICATION FOR GORDON-BELL PRIZE

We present an efficient and performance portable imple-
mentation of the Energy Exascale Earth System Model's
nonhydrostatic atmosphere dynamical core. Using Summit's
27600 GPUs, we obtain record setting performance of 0.97
simulated years per day on a realistic cloud-resolving com-
munity benchmark.

Mark A. Taylor

Sandia National Laboratories
PO BOX 5800, 87122

Albuquerque, NM, USA

mataylo@sandia.gov

James G. Foucar

Sandia National Laboratories
PO BOX 5800, 87122

Albuquerque, NM, USA

jgfouca@sandia.gov

Sivasankaran Rajamanickam Andrew G. Salinger

Sandia National Laboratories Sandia National Laboratories

PO BOX 5800, 87122
Albuquerque, NM, USA

srajama @ sandia.gov

PO BOX 5800, 87122
Albuquerque, NM, USA

agsalin@sandia.gov

II. PERFORMANCE ATTRIBUTES

Attribute title Attribute value
Category achievement
Type of method used

Results reported on the basis of

Precision reported
System scale
Measurement mechanism

Time-to-solution
Finite element with implicit/explicit
time-stepping
Whole application excluding I/0 and
initialization
Double precision
Results measured on full-system scale
Timers

III. PROBLEM OVERVIEW

Climate models are a critical tool used to evaluate the
risks and impacts of climate change on society. The impacts
are potentially devastating, but uncertainty in the predictions
makes it difficult to assess the cost of inaction, mitigation,
or adaptation. Models uniformly agree on the anthropogenic
causes of global warming, but disagree on important details
such as how much warming, how quickly it will occur, and
changes to the frequency of extreme events [1]. Reducing the
uncertainty in global climate simulations is one of the grand
challenges for the climate modeling community [2], [3].
One of the major sources of uncertainty is due to the

parameterized effects of convective cloud systems [4], [5].
Current climate models are run at horizontal resolutions (av-
erage grid spacing at the Equator) as fine as 25 km, which
require the effects of these cloud systems to be approximated
by parameterizations. Resolving these cloud systems starts to
become possible at cloud-resolving resolutions in the range of
1-3 km [6], [7], the resolutions targeted in this paper.
The NICAM model was the first global cloud-resolving

model (GCRM) capable of running global atmosphere sim-

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

SAND2020-8904C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

ulations at 3.5 km resolution [8]. Since then, several mod-
eling groups have developed GCRMs, such as the 9 models
participating in the DYnamics of the Atmospheric general cir-
culation Modeled On Nonhydrostatic Domains (DYAMOND)
intercomparison project [9]. These models all require top-500
class CPU systems and obtain throughput rates in the range
of several simulated days per wall clock day (SDPD). This
throughput is suitable for short weather forecast type simu-
lations, such as the 40 day simulation used in DYAMOND.
But running GCRMs for century-long simulations will require
throughput in the simulated years per wall clock day (SYPD)
range. This throughput remains out of reach, but we are
rapidly approaching this capability with a combination of new
algorithms and upcoming exascale computing architectures.

Here we present a step towards this goal, and describe the
performance of the atmosphere dynamical core (henceforth
dycore) used in the GCRM being developed for the Energy
Exascale Earth System Model (E3SM) project [10], [11]. The
dycore solves the fully compressible Navier-Stokes equations,
with molecular diffusion replaced by a turbulence model, and
additionally transports several constituents, including multiple
forms of water and various aerosols. It is typically the most
expensive component of a GCRM, representing more than
half the cost. It also contains all of a GCRM's inter-node
communication, and is thus the most challenging component
to run at scale on parallel computers.
We note that in a full Earth system model, there will be

many additional concerns, one of the biggest being memory.
For the E3SM, we often run each component model on
independent nodes so that they each have access to the full
memory of each node. For the atmosphere, this will entail
running a suite of physical parameterizations in addition to
the dynamical core described in this work. We have a Fortran
version of this physics running on the KNL architecture, where
we have run the full cloud resolving atmosphere model at 3 km
resolution on 1536 nodes, each with 96 GB. We thus anticipate
that atmosphere model will fit entirely in the GPU memory
on Summit, where each Summit node contains 96 GB of GPU
memory spread across 6 GPUs.
We present results for two cloud-resolving resolutions. The

first contains 7.2 billion grid points, with a horizontal resolu-
tion of 3 km, where we use a standard community benchmark,
allowing us to compare our performance with several other
models, including a previous Gordon Bell finalist. The second
has 65 billion grid points, with a 1 km horizontal resolu-
tion. With 16 unknowns per grid point, this finer resolution
corresponds to over 1 trillion total degrees of freedom. For
both problems, we use 128 vertical levels, equally spaced in
pressure. This results in an average vertical resolution of 0.4
km, dropping to 0.05 km at the Earth's surface.

A. The HOMMEXX-NH dycore

Our work is implemented in the High Order Methods Mod-
eling Environment (HOMME) [12]—[14]. HOMME contains
the Fortran-based hydrostatic dycore used by E3SM [15], [16]
and the Community Earth System Model (CESM) [17], [18].

This dycore was recently rewritten in C++, using the Kokkos
library [19] for on-node parallelism, in a work (henceforth,
HOMMEXX) that showcased the ability of Kokkos to provide
competitive or improved on-node performance on a variety
of architectures including KNL and GPUs [20]. For cloud-
resolving resolutions, the hydrostatic approximation used in
HOMMEXX is not appropriate and we require a nonhydro-
static dynamical core [7]. Building on the success of [20], we
have thus developed HOMMEXX-NH, a new implementation
combining the performance portable approach of HOMMEXX
and the nonhydrostatic formulation of the equations recently
developed in [21].

We follow a common approach to nonhydrostatic modeling
of solving the fully compressible Navier-Stokes equations
written in a terrain following mass based vertical coordinate
[22], [23]. This results in a set of prognostic equations for the
three components of the velocity field, the mass-coordinate
pseudo-density, the geopotential height and a thermodynamic
variable, for which we use virtual potential temperature.
We also transport an arbitrary number of additional species,
representing water vapor, liquid and ice water, and various
aerosols. The number of such tracers varies depending on the
types of atmosphere parameterizations used. In the benchmark
problems presented here, we always transport 10 species.

The prognostic equations consist of the time-reversible
adiabatic terms from [21], combined with hyperviscosity fol-
lowing [13], [24]. For the adiabatic terms, we use a structure
preserving formulation in order to preserve the discrete Hamil-
tonian and produce an energetically consistent model. The
horizontal discretization uses the collocated mimetic spectral
element method from [25], with conservative and monotone
tracer transport [26]. The vertical discretization uses a Lorenz
staggered extension of the mimetic centered difference from
[27]. Figure 1 depicts the space discretization of HOMME.
With a Lorenz staggering, prognostic variables are located at
level midpoints, with the exception of the vertical velocity
and geopotential, which are located at level interfaces. For
the vertical transport terms, we continue to use HOMME's
vertically Lagrangian approach adapted from [28].

• •

• •

• •

• •

• •

s
p
n
a
j
 T
o
w
A

(a) Two 2D neigh- (b) Structure of one 3D ele-
bor elements ment

Fig. 1. Horizontal and vertical structure of DOFs, marked as dots, in
HOMME. As shown in (a), DOFs along the edges of 2D elements are
duplicated on each element. In (b), 3D element consists of a stack of 128
2D elements, each with 16 DOFs (GLL) points.

For the temporal discretization, we use a Horizontally
Explicit Vertically Implicit (HEVI) approach [29], discretized
with an IMplicit-EXplicit (IMEX) Runge Kutta method [30].
The HEVI splitting decomposes the equations into a set of
terms which represent vertically propagating acoustic waves,
and the remaining terms which include all horizontal deriva-
tives. While the latter can be treated explicitly, we treat the
vertical acoustic waves implicitly, due to the significantly finer
grid spacing in the vertical direction. This allows the model to
use timesteps substantially larger than the ones required by a
fully explicit method. We use a highly efficient IMEX method
from [31], with a 2nd order accurate coupling of a high-
stage high-CFL scheme for the explicit terms and a Diagonally
Implicit Runge Kutta (DIRK) scheme for the implicit terms.
Due to the use of the Laprise mass coordinate, the vertical
acoustic waves are isolated to only two terms in the two
equations solved at level interfaces, leading to an implicit
system for a single variable. The details of the nonlinear solve
are presented in Section V-A.

IV. STATE OF THE ART

A. Overview of GCRMs

GCRMs have long relied on the world's fastest computers,
with NICAM first running at near cloud-resolving resolutions
on the Earth Simulator (Ranked #1 in 2002, [32]), followed
by the first sub 1 km GCRM simulations [33] running on the
K-computer (Ranked #1 in 2011). More recent results include
Gordon Bell awardee [34] and finalist [35] running on the
Sunway TaihuLight (Ranked #1 in 2016). Our work continues
this trend, presenting results on Summit (Ranked #1 in 2019)
and representing one of the first GCRMs to make use of GPU
acceleration.

It is difficult to compare the performance of different
GCRMs across different hardware since models can be config-
ured with different horizontal and vertical resolutions, include
different physical parameterizations and number of prognostic
tracers. Similar difficulties were confronted during the U.S.
National Weather Service's (NWS) process to select the at-
mosphere dynamical core for their next generation operational
weather forecast model. To address these issues, the NWS
established the Next Generation Global Prediction System
(NGGPS) which evaluated several GCRMs [36], developed
a standard dycore 3 km GCRM benchmark problem, and
compared the performance of several GCRMs on the Edison
supercomputer (Ranked #18 in 2014) [37]. Here we rely
heavily on this NGGPS 3 km benchmark, and also present
results from this benchmark at 1 km resolutions.

Despite Edison's age and lower ranking in the Linpack
based top500 list, its Intel Xeon Ivy Bridge CPU performed
quite well on the finite volume and finite element codes typical
in GCRMs. The GCRM performance on Edison remains
competitive, and exceeding this performance on today's pre-
exascale architectures requires significant innovations. In the
original NGGPS Edison benchmarks, the fastest result was
obtained by the NMM-UJ dycore [38] at 0.34 SYPD in single
precision. The FV3 dycore [28], obtained a throughput of 0.16

GCRM Model Computer (LINPACK
Benchmark)

NGGPS
Benchmark

FV3
HOMME

HOMMEXX-NH

Edison (2.6 PF)
TaihuLight (125 PF)
Summit (200 PF)

0.16 SYPD
0.34 SYPD
0.97 SYPD

TABLE I
NGGPS STANDARD 3 KM GRCM DYCORE BENCHMARK (DOUBLE

PRECISION)

SYPD (double precision) and 0.26 SYPD (single precision).
Weather forecast models are often run in single precision,
which can improve throughput by c-:-: 60% compared to double
precision. Here, we present only double precision results, as
most climate models use double precision due to the length of
the simulations and the importance of conservation properties.

FV3's record level of performance was broken in a 2018
Gordon Bell submission [35]. In that work, a substantial
rewrite of the HOMME dynamical core was able to achieve
0.34 SYPD (double precision). This was using the HOMME
hydrostatic model and the performance will be slightly lower
when this model is upgraded to the nonhydrostatic equations
necessary for a GCRM. For example, in the NGGPS bench-
mark on Summit for 4096 nodes, HOMMEXX-NH is 27%
slower than the hydrostatic HOMMEXX.

For our work, described in detail below, HOMMEXX-NH
runs at a record setting 0.97 SYPD in the NGGPS benchmark.
We summarize these results in Table I. The results span 6 years
of hardware, software, and algorithm developments, and illus-
trate the difficulty of improving the performance of climate
models on modern architectures. The Sunway TaihuLight is 48
times faster than Edison in terms of Linpack FLOPS, but only
achieves a 2.1 x speedup in the NGGPS benchmark. We have
been able to improve this ratio, where the 76 x faster Summit
(Linpack FLOPS) is 6 x faster on the NGGPS benchmark.

B. Regional Cloud-Resolving Models

There have been several efforts to run regional cloud-
resolving atmosphere models at global scales. Two recent
results include the 2016 Gordon Bell winner [34] and the
COSMO effort [39]. These models are difficult to compare
directly with GCRMs, since they would need to be adapted
from running on logically Cartesian domains to grids which
cover the entire Earth's surface. This requires addressing the
pole problem, which presents several challenges which impact
either computational performance or parallel scalability [40].
However, to put these results in perspective with the NGGPS
benchmark results, we note that on the Sunway TaihuLight,
[34] reported obtaining 1 SYPD at 3 km and 0.07 SYPD
at 0.5 km resolution. They used a benchmark problem with
the same number of vertical levels as the NGGPS benchmark
(128), but on a domain that only covers 32% of the Earth's
surface, and the transport of one water variable instead of 10.
COSMO was one of the first regional models to be ported to
a GPU system, and in [39] it is benchmarked on Piz Daint
(Ranked #3 in 2016). They present results using a 80°S to
80°N domain (covering 98.4 % of the Earth's surface), with
fewer vertical levels (60) and fewer tracer species (7), but

significantly more complex physical parameterizations. At 1.9
km this configuration obtained 0.23 SYPD, and at 0.93 km
resolution obtained 0.043 SYPD on Piz Daint supercomputer
(Ranked #3 in 2016).

C. The Kokkos programming model

Kokkos [19] is an open source C++ library (with C++11
standard required) for efficient on-node parallelism using
threads. It uses template metaprogramming to create abstrac-
tions that allow the user to write a single code base, with
Kokkos mapping the code to the underlying thread model
(possibly using architecture-specific code).

In particular, Kokkos offers constructs for the most common
parallel patterns (for, reduce, and scan), abstracting key con-
cepts such as execution space (the threading model used, such
as Cuda or OpenMP), or execution policy (how the work is go-
ing to be distributed among threads). The latter is particularly
important when trying to expose maximum parallelism (a key
performance requirement on GPU architectures). In Kokkos, a
RangePolicy represents the overall work by a linear range
of integers, and the kernel is executed for each integer in the
range, with different threads processing different work items.
On the other hand, with a TeamPolicy, available threads are
grouped into teams, and each team is assigned a different work
item. A range policy is usually preferable in case of tightly
nested loops, while a team policy is preferable when there are
multiple inner loops, where teams of threads can cooperate to
perform shared work.
Kokkos also implements a multidimensional array, called

View, built on abstractions such as data type (the C++ type of
the data stored), memory space (where the data is physically
stored on the hardware), layout (how the multidimensional
array is mapped into a linear array in memory), and memory
traits (how the data is meant to be handled/accessed).
We point out that Kokkos is just one of several libraries

available for performance portability. Other notable ones are
RAJA [41], Charm++ [42], OCCA [43], HEMI [44], and HPX
[45]. Other approaches for performance portability relying on
the compiler pre-processor are also worth mentioning, such as
OpenACC [46], OpenMP [47], and the Claw DSL [48].

V. INNOVATIONS REALIZED

A performant and portable version of hydrostatic HOMME,
HOMMEXX, was introduced in [20]. Here we built on its
success to develop HOMMEXX-NH, a nonhydrostatic ver-
sion of HOMMEXX. Spherical differential operators, pack-
ing/unpacking, and MPI halo exchange routines implemented
in [20] were reused here with minimal changes. Given the
different set of equations solved in the nonhydrostatic model,
some functors from HOMMEXX had to be adjusted or added.
In particular, we introduced functors for implicit solves in an
IMEX Runge-Kutta timestepping method.

In this work, following [20], we use cubed-sphere grids,
where the surface of the sphere is tiled by quadrilateral ele-
ments, partitioned among MPI ranks. The surface of the sphere
is decomposed into 6 panels (the faces of an inscribed cube),

and then in each face we use an array of two-dimensional
rte x ne spectral elements, for a total of 6n2, elements. An
example of a low resolution mesh with 10 elements per cube
edge (ne = 10) is shown in Fig. 2. Each element contains a
tensor product of 4 x 4 Gauss-Lobatto-Legendre (GLL) nodes
with 128 levels in the vertical/radial direction, as depicted in
Fig. 1.

Fig. 2. Example of a cubed-sphere quadrilateral mesh with ne = 10, yielding
600 elements.

When writing the new dycore, we used the same fundamen-
tal principles that drove the design choices in [20]. Namely,
we highly leveraged Kokkos team policies to expose maximum
parallelism, used packs of doubles to enhance vectorization on
CPU, and carefully minimized memory movement. It is worth
noticing that using Kokkos does not significantly increase the
complexity of the GPU port effort, when compared with a
raw CUDA approach. For the most part, the cost of using
Kokkos is an increase in templates syntax (which can be partly
hidden via usage of aliases and typedefs), and the consequent
increase in compilation time. In our experience, the biggest
challenge when porting an existing code to GPU is how to take
advantage of the massive amount of parallelism offered by the
device, which is not related to the approach used (Kokkos or
raw CUDA), but rather to the structure and data dependency
of the algorithm used. Nevertheless, in this context, Kokkos
structures for hierarchical parallelism are helpful to clearly
mark all the layers of parallelism while keeping the code
syntax closer to the original algorithm, and are clearer than
low-level checks on threadIdx and blockIdx structures
in raw CUDA. Most critically for our project, we expect that
the Kokkos abstraction will greatly reduce our effort in porting
the code to subsequent architectures.

Compared with [20], refactoring the nonhydrostatic dycore
presents a few additional challenges. The nonhydrostatic dy-
core requires an iterative solver of implicit equations that
correspond to acoustic terms. On GPU, data dependencies in
the solver make exposing maximum parallelism challenging.
Efficient implementation of the solver on GPUs is crucial to
achieve our performance results. Also, at very high resolutions,
we need to manage GPU memory much more carefully than
at low resolution. Finally, for the first time, the model is run at
scale on a large GPU-based supercomputer. To efficiently run
on Summit we searched for the most optimal set of parameters
for parallel job execution and for MPI.

In the remainder of this section we highlight the handling
of the nonlinear solver and the optimization of temporary
buffers usage. These two components are the most innovative
additions in this work and may be of interest to other projects.

A. DIRK nonlinear solver

The vertically implicit part of the HEVI time integration
method solves a nonlinear equation in three dimensions for
vertical velocity w and geopotential cb at interfaces. The equa-
tion must be solved at each stage of our DIRK time integration
scheme. The equation involves derivatives only in the vertical
direction; there is no coupling in the horizontal direction.
Thus, the 3D equation decouples into many independent 1D
equations, one for each vertical column. Let rilev be the number
of vertical level midpoints in the model. Each 1D equation
has 2me, unknowns for w and 0 but can be immediately
rewritten to have just me, unknowns. The Jacobian matrix
of the resulting 1D nonlinear equation in me, unknowns is
tridiagonal and strictly diagonally dominant. Newton's method
with a full Newton step is generally sufficient to solve the 1D
equation. Occasionally, the step must be decreased to obtain a
physically valid iterate, but this situation happens rarely and
so the procedure is not described here. We use an analytical
Jacobian that is factored at each Newton iteration. The solver
termination criterion is a sufficiently small relative change
in the iterate. In practice the average number of iterations
required is 4, with the maximum never exceeding 10.
The original Fortran implementation uses LAPACK's gen-

eral tridiagonal solvers DGTTRF and DGTTRS [49]. When
developing our C++ implementation, we first proved that
the Jacobian matrix is strictly diagonally dominant We then
exploited this fact in three ways. First, we use unpivoted
solvers on both CPU and GPU. Second, an unpivoted solver
can batch data across multiple 1D equations to obtain perfect
vectorization on CPU architectures. Third, since pivoting is not
required, on the GPU we can use cyclic reduction to expose
substantial parallelism. We package our diagonally dominant
tridiagonal solvers into a library. In the following, we discuss
these points in further detail.

Because the data dependencies are purely in the vertical
direction, it is optimal in both equation assembly and linear
equation solution to arrange data so that the fastest index
corresponds to GLL points in the horizontal direction. On
a vector processor, GLL points are packed explicitly for
vectorization. On the GPU, the lowest level of parallelism is
along the GLL points. For example, since we use 16 GLL
points per element, with AVX512 each horizontal 2D element
packs into two 8-double packs, while on GPU it packs into
half of a warp. This data layout requires transposes from the
standard HOMMEXX layout into the DIRK solver layout and
then out of it.

Because the Jacobian matrix is tridiagonal and strictly
diagonally dominant, on the CPU, the Thomas algorithm, an
unpivoted specialization of Gaussian elimination to tridiagonal
systems, solves the equation efficiently. Our implementation
packs along GLL points; thus, each arithmetic operation is

a vector operation. For our problem, the Thomas algorithm
can occupy up to 16 threads, one for each 1D equation in
an element, which is not enough parallelism for the GPU.
On the GPU, the solver must be able to use 16 warps-
512 threads—effectively, since we use a thread block of
16 warps for each element. Cyclic reduction (CR) or the
parallel cyclic reduction (PCR) variant are work inefficient but
parallel efficient choices. With 512 threads and 16 deployed
in each row, there is 32-way parallelism across rows. PCR is
suboptimal relative to CR if it is not fully parallelized. Thus,
we use CR. A hybrid approach, in which PCR is used to
solve the 32-row CR subproblem [50], may be best, but our
implementation uses pure CR.
The DIRK solver is divided into two kernels. A short

kernel uses the standard HOMMEXX computational pat-
terns to compute an initial guess. The second, main ker-
nel runs the Newton iteration. Thus, repeated linear equa-
tion assembly and solution occur in one kernel. The fol-
lowing alternative would be necessary if we were to use,
e.g., cuSPARSE's cusparseDgtsv2stridedBatch or
cusparseDgtsvInterleavedBatch. In each Newton
iteration, one kernel would assemble all equations for all
elements. Then the solver would be called. Then a kernel
would evaluate the step and termination criterion. The first
and third could be fused. Thus, at minimum, there would
be twice as many kernel invocations as Newton iterations,
each sweeping across all elements. Our approach solves the
equations in an element fully in two kernels total. On the
CPU this approach has the obvious benefit of caching. On
the GPU it naturally permits a flexible number of iterations
per element, substantially fewer kernel invocations, and less
persistent memory. The DIRK solver's code differs between
GPU and CPU only in team thread and vector configuration
and choice of tridiagonal linear equation solver from the solver
library.

B. Handling of temporary buffers

Following the design choices and patterns established in
[20], the vast majority of the kernels of the nonhydrostatic
dycore use a team policy. The kernels involved in the explicit
and implicit steps of the DIRK method are particularly large,
and require the calculation of several intermediate quantities.
As a result, each team of threads ends up requiring a relatively
large number of temporary buffers. A proper management of
these buffers is crucial in order to keep the memory movement
and usage limited.
The first solution we use to minimize memory usage is to

use the same raw memory buffer for all the functors. In our
application, the functor executions do not overlap, so that a
functor is guaranteed to have completed its execution before
the next one will start. An application using multiple CUDA
streams would use one buffer per stream.
The second optimization is to make sure that each individual

functor uses as little memory as possible. First, where possible,
we rearranged the body of the functor so that each team
of threads can use as few buffers as possible, by virtue

of recycling the same buffer to store several intermediate
quantities. Secondly, we implemented a handful of routines
(which we collectively refer to as workspace manager, or
WSM) that manage the use of buffers across thread teams,
with the idea that, once a team has completed all its work on
the current work item (usually, a single 3D element), its buffers
can be released, and assigned to any other team, without
the risk of overwriting important data. In other words, we
only allocate enough buffers to accommodate the maximum
number of teams that will be concurrently running (NTmax).
In particular, we need to be able to compute NTrnax (or a
reasonable upper bound), and to assign an id in [0, NTmax) to
each thread team, which we will then use to access buffers.

This task is relatively easy on CPU, where for each thread
we can uniquely identify the team it belongs to, based on
thread ID and team size. On GPU, it would be tempting to
use the Cuda block ID as the team ID (recall that a team
in Kokkos maps to a Cuda block). However, the block ID is
bound by the number of blocks to be run, rather than the ones
concurrently running For large workload per node, this would
yield a number larger than NTT„„ .

Instead, we can get a good upper bound for NTmax as
NTmax = (#SM x (threads/ SM)max)Iteam_size. On a
V100 GPU (which are the GPUs on the Summit supercom-
puter), we have 80 Streaming Multiprocessors (SM), with a
maximum of 1024 threads per SM. A typical team size for our
kernels is 512, which means we only need (80 x 1024)/512 =
160 copies of each buffer to accommodate all teams. An
array of integers is used to mark team IDs as currently in
use or available. The WSM loops over this array (accessing
it atomically) to find an available team id, and, upon work
completion, it releases the team id. For performance reasons,
we also add an over-provision factor, so that the number of
buffer slots provided by the WSM is slightly larger, speeding
up the search for an available team ID. By doing several
trials, we concluded that a factor of 25% was a reasonable
compromise between the need of increasing speed (obtained
by increasing the over-provision factor) and the need to keep
memory usage limited. In fact, increasing this factor above
25% did not appear to significantly affect how fast the WSM
was able to retrieve an available team ID.
In Fig. 3 we show the single-node performance of some

key functors, as well as the main time stepping loop, with and
without the WSM enabled (at compile time), for a handful
of different values of n,. The metric reported is thousands of
3D elements processed per second. The version with WSM
disabled (in blue) runs out of memory for n, > 21, while
the version with WSM enabled was able to accommodate also
ne = 24 and 30.

It is important to notice that the WSM comes at a runtime
cost even at low ne, where we would have enough memory
to accommodate a separate buffer for each work item (rather
than each team). Therefore, we turn this logic on at compile
time only if we know our runtime configurations will yield a
workload per node large enough to trigger this need.

It is worth mentioning that the memory reduction of WSM

▪ 14

13

• 12

11
u

o

2

ou

70

65

60

6

prim main loop

12 18 24
ne

dirk stage

30

--o

6 12 18 24
ne

30

le 60

F3 58

t 56

54
u

11 40

:4
35

u • 30

6

6

caar compute

12 18 24
ne

tracer advection

12 18 24
ne

30

30

Fig. 3. Processing rate of key functors as well as main time loop timer for
the workspace manager (WSM) enabled (red) and disabled (blue).

was crucial to be able to run the 1 km benchmark on as little
as 2048 summit nodes (see Fig. 6).

vI. HOW PERFORMANCE WAS MEASURED

A. Full system performance

The throughput of the overall application is measured in
the unit Simulated Years Per (wallclock) Day (SYPD), with
365 days in a simulated year. This is an intrinsic version
of the time-to-solution metric, which permits evaluating the
performance independently of the time horizon used in the
simulation. Initialization time is excluded, and diagnostics and
file I/0 are turned off. The elapsed wallclock time is the
maximum value across ranks of the timer over the top-level
time-stepping loop. HOMME relies on the GPTL library [51]
for wallclock time measurements.

B. Individual kernels poformance

For the purpose of this performance study the NVIDIA
Tools Extensions (NVTX) API was added to the GPTL library
to enhance GPU profiles with application-based annotations.
Additionally the Kokkos Tools [52] were used to aid in kernel
profiling. Additionally, the NVIDIA Nsight tools were used
to gather performance metrics related to the GPU. NVIDIA
Nsight Systems is a node-level tracing tool that gathers high-
level information about the relative importance of various GPU
kernels, NVLINK and PCIe data transfers, and CPU utiliza-
tion. Once a high-level analysis is performed, NVIDIA Nsight
Compute is used to gather the performance characteristics of
individual kernels. Since gathering performance counters is an
expensive operation, requiring kernels be rerun multiple times,
only the first instance of each kernel was profiled and only for
kernels that run for more than a few percent of the total GPU
runtime.

Runtime percentages and kernel performance metrics were
gathered on a problem configuration with mesh refinement
level of ne = 16, on a single node of Summit. This con-
figuration results in the same workload per GPU of the full
ne = 1024 grid when run on 4096 nodes, but allows iterating
on performance experiments more quickly without wasting
computing time on full machine runs.

Kernel performance analysis in this paper will use the
roofline model [53] [54], which presents the performance of
individual kernels relative to the peak memory bandwidth and
peak floating point operations on the GPU. The diagonal line
on the plot represents memory bandwidth and the horizontal
line represents peak floating point performance. The dots on
the graph represent arithmetic intensity, the ratio of measured
floating point operations to memory operations. The closer
to one of these lines a dot appears, the more bounded by
bandwidth or FLOPS a kernel is, with kernels never able to
appear above either line, but may appear below the lines if
other performance limiters apply, such as memory latency.
Figure 8 shows the roofline analysis for the key kernels in
the application, as measured by Nsight Compute.

C. Architecture details

The results presented in this paper were obtained on the
Summit supercomputer [55], [56], located at the Oak Ridge
Leadership Computing Facility (OLCF) at Oak Ridge National
Laboratory (ORNL), and on the NERSC Cori-KNL parti-
tion, located at the Lawrence Berkeley National Laboratory
(LBNL).

Summit is based on the IBM AC 922 system architecture.
It contains 4608 compute nodes, each constructed with 2 IBM
Power 9 CPUs and 6 NVIDIA® Tesla® V100 GPUs with
512GB of DDR4 CPU memory and 16GB of HBM2 memory
per-GPU. Summit has a Mellanox EDR 100G InfiniBand
interconnect between nodes and an NVIDIA NVLINK® inter-
connect among GPUs, arranged in two groups of three GPUs.
The Tesla V100 GPUs have a peak double precision floating
point performance of 7.8 TFLOPS and a peak bandwidth of
900 GB/s.
Cori-KNL is based on the Intel Xeon Phi (Knights Landing,

or KNL) 7250 processor. It contains 9688 compute nodes,
each containing a single socket KNL processor, with 68
cores organized into 34 tiles, each comprising two cores
sharing a 1MB L2 cache. Each core has 2 512-bit vector
processing units, 4 hardware threads, and has a theoretical
peak performance of 44.8 GFLOPS. Each node is equipped
with 96GB of DDR4 2400 MHz memory, with 109GB/s peak
bandwidth, as well as 16 GB of MCDRAM (multi-channel
DRAM), with 460 GB/s. Cori-KNL has a Dragonfly topology
Cray Aries interconnect.

D. Verification of the refactored code

The dynamical core implemented in the original Fortran
code was verified using idealized dynamical core tests, includ-
ing the baroclinic instability test [57] and a suite of test cases
from the Dynamical Core Model Intercomparison Project

(DCMIP) [58], and convergence studies [21], [31]. Validation
of the model implemented in the original Fortan code is out
of the scope of this project. We focus on verification of the
performance-portable code using the Fortran code as the base.

Testing is a crucial part of our refactoring process. In the
early stages of development, we set up a harness of unit tests
to verify individual refactored kernels using random inputs
against their Fortran counterparts. Once the refactored code
neared completion, we set up the baroclinic instability and
DCMIP test cases to confirm end-to-end correctness of the
new code.
We test the code in two regimes: bit-for-bit (BFB) and

non-bit-for-bit (nonBFB). The former is used for testing and
development, while the results presented in Section VII were
obtained with the latter.

For the BFB regime we use the following optimiza-
tion flags: —fp—model strict —00 for Intel compil-
ers, — f fp—c ont r act =o f f —02 for GNU compilers, and
— fmad= fal se for nvcc (the NVIDIA CUDA compiler). In
addition, in refactored GPU code, scans and reductions are se-
rialized to allow BFB comparison with the original CPU code.
For the nonBFB regime we use the following optimization
flags: —fp—model fast —03 —DNDEBUG for Intel, —03
—DNDEBUG for GCC, and —fmad=true for nvcc.
To ensure correctness of the refactored code, in the BFB

regime we run both unit tests and test cases. Additionally,
since the two regimes contain different implementations for
scans and reductions, we also verified the nonBFB regime
by running the dry baroclinic instability test case at 26 km
resolution for 15 days with timestep 70 sec (18514 total
timesteps) on Summit, with the original Fortran code launched
on CPUs and the refactored code launched on GPUs. Figure
4(a) contains a sample output of the relative vorticity field at
day 15 for the refactored code. In 4(b), we plot the difference
between the Fortran code and the refactored code. Overall,
differences are of order 1e-11. In addition, for both runs we
compared differences in surface pressure, pseudodensity, rel-
ative vorticity, nonhydrostatic pressure, potential temperature,
velocity, and geopotential using cprnc, a common tool to
evaluate Netcdf output for climate applications (shipped within
the E3SM software). The biggest normalized Root Mean
Square (RMS) error between the two codes is of order le-7.
Considering the chaotic nature of the model, such small errors
in the output after long time integration confirm correctness
of the refactored code.

VII. PERFORMANCE RESULTS

A. Problem Configuration

We use the NGGPS benchmark [37]. This benchmark was
originally designed to evaluate dycores for cloud resolving
weather forecast models, and includes a 12 km and 3 km
problem. The benchmark requires the dycore to be configured
exactly how it would be run in a realistic weather forecast
model or climate model. This includes the vertical resolution
(128 levels) and timesteps of all the various subcomponents.
The benchmark includes 10 tracers, which is fewer than what

60N —

30N —

60N

30N

135W 90W 45W

-0.000128 0.000448 0.001024 0.0016

(a) Refactored code

135W 90W 45W

[[[[[[ETE
-2.12e-11 1 e-11 4.12e-11

(b) Difference

Fig. 4. Baroclinic instability test case. (a) Relative vorticity computed by
HOMMEXX-NH. (b) Difference of relative vorticity between the original
and refactored codes.

is used by low resolution climate models, but is typical of
GCRM models which typically do not include aerosol indirect
effects. The tracers are initialized with a 0/1 checkerboard
pattern to ensure that the tracer monotonicity limiters are
active. The dynamics are initialized in a geostrophically bal-
anced flow with a small perturbation that triggers a realistic
baroclinic instability [59]. As an example, in Fig. 5 we show
a snapshot of the water vapor after the baroclinic instability is
fully developed.

For our 1 km benchmark, we keep all details of the 3 km
benchmark and only change the horizontal resolution to 1
km. For HOMMEXX-NH, at 3 km, rte = 1024 with a 10
s dynamics and tracer transport timestep and a 20 s remap
timestep. At 1 km, n, = 3072 with a 3.125 s dynamics and
tracer transport timestep and a 6.25 s remap timestep. For
both resolutions, there is one application of hyperviscosity per
dynamics and tracer timestep.

B. Scaling studies

Figure 6 shows our main result, strong scaling of the dycore
in terms of the SYPD metric, for different implementations and
for different resolutions. The grey line represents the slope of
a perfect scaling. Numerical values for Fig. 6 are reported in
Table II.
The MPI and threads configurations for runs in Fig. 6 are

as follows. In CPU-only runs on Summit (marked with '3
km, CPU, Fortran' and '3 km, CPU, C++'), each node is
assigned 42 MPI ranks, and each rank uses four OpenMP
threads (SMT4). In GPU runs on Summit (marked with '3 km,
GPU, C++' and '1 km, GPU, C++'), each node is assigned 6
MPI ranks, and each rank is associated with a GPU; OpenMP
threads are not used. Finally, in KNL runs on Cori (marked

Fig. 5. Turbulent eddies in water vapor on the 500 hPa model layer from a
HOMME-NH 3 km horizontal resolution simulation of baroclinic instability.

Node
count

Summit Cori
P9 GPU KNL

Fortran C++ C++ C++ C++ Fortran
3 km 3 km 3 km 1 km 3 km 3 km

512 0.010 0.011 0.16 0.012 0.008
1024 0.021 0.022 0.31 0.25 0.018
1536 0.030 0.033 0.42
2048 0.041 0.043 0.54 0.022 0.05 0.035
3072 0.055 0.064 0.71 0.033 0.054
4096 0.90 0.044 0.064
4600 0.97 0.049
8192 0.139
9216 0.152 0.15

TABLE II
SYPD METRIC FOR DIFFERENT RUN CONFIGURATIONS.

THE SAME DATA ARE PLOTTED IN FIG. 6.

with ̀ 3km, KNL, Fortran' and ̀ 3km, KNL, C++'), each node
is assigned 64 MPI ranks, and each ranks uses 2 OpenMP
threads.
HOMMEXX-NH was run on CPU and GPU for the 3 km

and 1 km benchmarks The original Fortran code was run on
CPU and only for the 3 km benchmark. We did not run the
1 km benchmark on CPU since its performance in the SYPD
metric would be too poor for practical applications. Note that
the 1 km benchmark would not fit in fewer than 2048 Summit
nodes, and it requires enabling the WSM for the 2048- and
3072-nodes runs.
The results show a perfect scaling on CPU of the portable

C++ code, with a performance comparable or slightly bet-
ter than the original Fortran implementation. On KNL, the
improved performance of the C++ implementation over the
Fortran one is more noticeable, because of the very efficient
vectorization (a fact which is even more visible when focusing

1

0.001

512

-X-3 km GPU, C++ *1 km, GPU, C++
-A- 3 km P9, Fortran 4-3 km, P9, C++
0.3km, KNL, Fortran 03 km, KNL, C++
—reference

1024 2048 4096 8192

Number of Summit/Cori-KNL nodes

Fig. 6. Achieved SYPD for different implementations and resolutions.
HOMMEXX-NH obtains a substantial acceleration when running on the GPU,
while maintaining excellent performance when compared with the original
Fortran implementation on the IBM P9 CPU and the Intel KNL CPU.

on DIRK performance; see below). The two implementations
have similar performance when scaling up to the full Cori
KNL partition (9216), likely because of the decreased work-
load per rank, but still maintain an excellent scaling. On GPU,
our implementation scales perfectly at 1 km resolution. At 3
km resolution, at higher node counts scalability is reduced. The
reason for this loss of performance is linked to the reduction
of workload on each GPU. In a 512-nodes run, each GPU is
assigned 2048 3D elements (i.e., a 2D element extruded verti-
cally with 128 levels, see Fig. 1), while in a full system 4600-
nodes run, each GPU is assigned at most 228 3D elements (the
load balancing is not perfect with 4600 nodes), a reduction of
about 88%. If we consider team (block, in CUDA language)
sizes of 512 threads (as it is common in our implementation),
this means each SM is processing at most three 3D elements.
At this workload, the GPU run time becomes dominated by
MPI communication costs. Nevertheless, even with a small
workload per node, our implementation achieves 0.97 SYPD,
which is roughly 67% of the value we could expect if the
performance at 512 nodes was scaled linearly to 4600 nodes.

Figure 7 focuses on the performance results of the DIRK
solver routines, for both the original (F90) and performance-
portable (C++) implementations. First, on Cori KNL the C++
solver is at least 2.85 times faster than the F90 solver. This
speedup is consistent with the tridiagonal solver's perfect
vectorization; see Fig. 7 of [20] for more on the performance

M
e
a
n
 s
ec

on
ds

 p
er
 D
I
R
K
 s
ol

ve

1

0 . 1

0.01

0.001

DIRK solver performance

3 km, P9, Fortran

10— 3 km, P9, C++

— reference

—8— 3 km, KNL, Fortran
-e- 3 km, KNL, C++
—X— 3 km, GPU, C++

c35,6, S
•1
N3

• lo • <5. , 30 , . ib 5 s -
Nit P̀6' vcP "Z-1 °O

9
'3/6,

Number of Summit/Cori-KNL nodes

Fig. 7. Performance of the DIRK solver on Cori KNL, Summit Power9, and
Summit V100 GPU, for the 3 km benchmark. The x-axis is the number of
nodes used; in the case of GPUs, 6 GPUs are used per node. Performance,
y-axis, is measured as mean time in seconds per DIRK solver call.

effect of perfect vectorization on KNL. Second, on Power9, the
C++ solver is 1.15-1.2 times faster than the F90 solver. It is
faster by only a little for two reasons: first, the C++ solver must
perform data transposes that the F90 solver does not; second,
Power9 has 128-bit rather than 512-bit vector instructions,
reducing the maximum speedup of vectorized code. Third,
comparing the two Power9 CPUs per Summit node against
one (not six) V100 GPU, the C++ DIRK solver is 3.2-3.85
times faster on GPU than on CPU and 3.9-4.6 times faster
than the F90 solver. Finally, on one V100 GPU, the solver
is approximately 1.75 times faster than the C++ solver on a
KNL node. In this final comparison, the GPU speedup is less
than what we often expect with GPU because of the extremely
effective vectorization on KNL.

C. Individual kernel performance evaluation

For the defined benchmark problem, four Kokkos kernels
occupy at least 5% of the application runtime and account
for roughly 60% of the application runtime, so we will
focus our analysis on these top kernels. Figure 8 shows the
roofline analysis for the top three application kernels on the
GPU, excluding recv_and_unpack because it has no arithmetic
operations. We see that each of these kernels trends toward
the memory bandwidth lines, indicating that their performance
is limited more by available bandwidth than floating point
performance.
We see in Table III that the TagPreExchange kernel, which

is a portion of the explicit RK stages for dynamics, is roughly
20% of GPU runtime and has an arithmetic intensity of
0.69, indicating that it performs more memory operations than

104

o

103

102

xe.

FMA (FP64): 7,1 TFLO

No-FMA (FP . 3.5 TFLOPS

AAL racerPhace

era
Mr newwil

0FreExchange

PS

10° 101
Arithmetic Intensity FLOP/Byte]

Fig. 8. Roofline Analysis for top kernels on a single V100 GPU.

mathematical operations. It achieves greater than 60% of peak
memory bandwidth using no device-specific optimizations that
would reduce portability to a CPU. The next most critical
kernel is the run_newton kernel, the main DIRK solver kernel,
which has an arithmetic intensity of 1.11, indicating more
arithmetic operations than memory operation, but comes in
slightly below the bandwidth roofline, indicating that it is
likely bounded by memory latency. The occupancy of this
kernel is just 25% due to the large amount of state carried
throughout the lifetime of the kernel. Lower occupancy re-
duces the ability to hide memory latencies effectively, but
breaking the function in hopes of increasing occupancy runs
a risk of reduced cache efficiency on CPU architectures and
may actually increase traffic to memory. The AALTracers
kernel, a portion of the tracers advection timestep, is the next
performance critical kernel, which has an arithmetic intensity
of 2.24 FLOPs/byte and utilizes nearly 70% of the available
GPU memory bandwidth. Next is the receive_and_unpack
kernel, which handles unpacking MPI buffers during the
boundary exchange. This operation inherently requires sub-
optimal memory access patterns, which would require very
device-specific optimizations to improve. Since no floating
point operations are performed during this step, the arithmetic
intensity is zero, but the kernel is able to utilize greater than
70% of available memory bandwidth despite its inherently
poor memory access pattern along two sides of each element
boundary. Overall, the majority of the significant application
kernels are able to achieve a high degree of GPU memory
utilization without giving up portability to device-specific
optimizations in CUDA. Further performance improvements
may be possible at a cost of the portability provided by the
Kokkos framework.

VIII. IMPLICATIONS

We presented a performance portable implementation of the
nonhydrostatic atmosphere dynamical core of E3SM, and we
evaluated the performance when running at cloud-resolving
resolutions of 1 km and 3 km. Our implementation, which
leverages Kokkos for on-node parallelism, is able to achieve
0.97 Simulated Years Per Day (SYPD), when running on

Kokkos Parallel Kernels by Importance
Funct on CPU % GPU % GPU AI GPU BW %
TagPreExchange 21.9% 23.6% 0.69 63.5%
run_newton 21.3% 20.0% 1.11 40.96%
AALTracerPhase 11.2% 12.8% 2.24 68.02%
recv_and_unpack 4.7% 7.0% 0.0 71.98%
Total Percentage 59.1% 63.4%

TABLE III
PERFORMANCE OF TOP KOKKOS KERNELS.

GPU on the full Summit supercomputer. To the best of
our knowledge, this is close to 3 times faster than what
has been achieved by any other GCRM at such resolutions.
Furthermore, by relying on Kokkos, our implementation is
portable to different architectures, and will be able to rapidly
capitalize on upcoming exascale machines while remaining
competitive on traditional CPU platforms. The impact of this
work could go beyond climate simulations. By demonstrating
a portable application at a full system scale and at Gordon
Bell level performance, this work lays the path forward for
computational science applications to exploit several acceler-
ator hardware types without rewriting the entire application
for each one of them. Additionally, on a more practical level,
during this work we developed two important features, the
library for diagonally dominant tridiagonal linear systems and
the workspace manager, which are sufficiently general to be
used (directly or as a template) by other applications.

The success of this work is the foundation on which other
parts of the E3SM next generation atmosphere model will
build. In particular, we expect physics parameterizations to
be implemented in this framework within a year. This will
make it possible to run some of the first decade long cloud-
resolving climate simulations. Such simulations are essential
for scientists to fully address the problems arising from
approximations in cloud systems used universally in traditional
climate models. In the exascale era, these types of simulations
could replace traditional climate models and remove one of
the major sources of climate prediction uncertainty.

Acknowledgements. This research used resources of the
Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No.
DE-AC05-000R22725.

This research used resources of the National Energy Re-
search Scientific Computing Center (NERSC), a U.S. Depart-
ment of Energy Office of Science User Facility operated under
Contract No. DE-ACO2-05CH11231.

Sandia National Laboratories is a multi-mission labora-
tory managed and operated by the National Technology and
Engineering Solutions of Sandia, L.L.C., a wholly owned
subsidiary of Honeywell International, Inc., for the DOE' s
National Nuclear Security Administration under contract DE-
NA-0003525. SAND2020-0000.

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of two U.S.
Department of Energy organizations (Office of Science and
the National Nuclear Security Administration) responsible for

the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system
engineering, and early testbed platforms, in support of the
nation's exascale computing imperative.

This research was supported as part of the Energy Exascale
Earth System Model (E3SM) project, funded by the U.S.
Department of Energy, Office of Science, Office of Biological
and Environmental Research

This paper describes objective technical results and analysis.
Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

REFERENCES

R. K. Pachauri, L. Meyer, G.-K. Plattner, and T. Stocker, "Synthesis
report. Contribution of working groups I, II and III to the fifth assessment
report of the Intergovernmental Panel on Climate Change," Intergovern-
mental Panel on Climate Change: Geneva, Switzerland, 2014.
T. Palmer, "Climate forecasting: Build high-resolution global climate
models," Nature News, vol. 515, no. 7527, p. 338, 2014.
T. Palmer and B. Stevens, "The scientific challenge of understanding
and estimating climate change," Proceedings of the National Academy
of Sciences, vol. 116, no. 49, pp. 24 390-24 395, 2019.
B. Stevens and S. Bony, "What are climate models missingr Science,
vol. 340, no. 6136, pp. 1053-1054, 2013.
S. C. Sherwood, S. Bony, and J.-L. Dufresne, "Spread in model climate
sensitivity traced to atmospheric convective mixing," Nature, vol. 505,
no. 7481, pp. 37-42, 2014.
A. A. Wing, K. A. Reed, M. Satoh, B. Stevens, S. Bony, and T. Ohno,
"Radiative-convective equilibrium model intercomparison project," Geo-
scientific Model Development, pp. 793-813, 2018.
M. Satoh, B. Stevens, F. Judt, M. Khairoutdinov, S.-J. Lin, W. M. Put-
man, and P. Diffien, "Global cloud-resolving models," Current Climate
Change Reports, vol. 5, no. 3, pp. 172-184, May 2019.
H. Tomita, H. Miura, S. Iga, T. Nasuno, and M. Satoh, "A global
cloud-resolving simulation: Preliminary results from an aqua planet
experiment," Geophysical Research Letters, vol. 32, no. 8, 2005.
B. Stevens et al., "DYAMOND: the DYnamics of the Atmospheric
general circulation Modeled On Non-hydrostatic Domains," Progress
in Earth and Planetary Science, vol. 6, no. 1, Sep. 2019.
J.-C. Golaz et al., "The DOE E3SM coupled model version 1: Overview
and evaluation at standard resolution," J. Adv. Model Earth Sy., vol. 11,
no. 7, pp. 2089-2129, Mar. 2019.
Energy Exascale Earth System Model. [Online]. Available: https:
//e3sm.org/
J. Dennis, A. Fournier, W. F. Spotz, A. St.-Cyr, M. A. Taylor, S. J.
Thomas, and H. Tufo, "High resolution mesh convergence properties and
parallel efficiency of a spectral element atmospheric dynamical core,"
Int. J. High Petf. Comput. Appl., vol. 19, pp. 225-235, 2005.
J. Dennis, J. Edwards, K. Evans, O. Guba, P. Lauritzen, A. Mirin, A. St-
Cyr, M. A. Taylor, and P. H. Worley, "CAM-SE: A scalable spectral
element dynamical core for the community atmosphere model," Int. J.
High Pelf. Comput. Appl., vol. 26, pp. 74-89, 2012.
K. Evans, P. Lauritzen, S. Mishra, R. Neale, M. Taylor, and J. Tribbia,
"AMIP simulation with the CAM4 spectral element dynamical core," J.
Climate, vol. 26, no. 3, pp. 689-709, 2013.
P. J. Rasch et al., "An overview of the atmospheric component of the
Energy Exascale Earth System Model," J. Adv. Model Earth Sy., vol. 11,
no. 8, pp. 2377-2411, 2019.
P. M. Caldwell et al., "The DOE E3SM coupled model version 1:
Description and results at high resolution," J. Adv. Model Earth Sy.,
vol. 11, no. 12, pp. 4095-4146, Dec. 2019.
R. J. Small et al., "A new synoptic scale resolving global climate
simulation using the Community Earth System Model," Journal of
Advances in Modeling Earth Systems, vol. 6, no. 4, pp. 1065-1094,
Dec. 2014.

[18] S. Zhang et al., "Optimizing high-resolution Community Earth System
Model on a Heterogeneous Many-Core Supercomputing Platform
(CESM-HR_SW1.0)," Geoscientific Model Development Discussions,
vol. 2020, pp. 1-38, 2020. [Online]. Available: https://www.geosci-
model-dev-discuss.net/gmd-2020- 18/

[19] H. Carter Edwards, C. R. Trott, and D. Sunderland, "Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns," Z Parallel Distr. Com., vol. 74, no. 12, pp. 3202-3216, 2014.

[20] L. Bertagna, M. Deakin, O. Guba, D. Sunderland, A. M. Bradley,
I. K. Tezaur, M. A. Taylor, and A. G. Salinger, "HOMMEXX 1.0:
a performance-portable atmospheric dynamical core for the Energy
Exascale Earth System Model," Geosci. Model Dev., vol. 12, no. 4,
pp. 1423-1441, 2019.

[21] M. A. Taylor, O. Guba, A. Steyer, P. A. Ullrich, D. M. Hall, and
C. Eldrid, "An energy consistent discretization of the nonhydrostatic
equations in primitive variables," J. Adv. Model Earth Sy., vol. 12, no. 1,
2020.

[22] A. Kasahara, "Various vertical coordinate systems used for numerical
weather prediction," Mon. Weather Rev., vol. 102, pp. 509-522, 1974.

[23] R. Laprise, "The Euler equations of motion with hydrostatic pressure
as an independent variable," Mon. Weather Rev., vol. 120, no. 1, pp.
197-207, 1992.

[24] O. Guba, M. Taylor, P. Ullrich, J. Overfelt, and M. Levy, "The spectral
element method on variable resolution grids: Evaluating grid sensitivity
and resolution-aware numerical viscosity," Geosci. Model Dev., vol. 7,
pp. 4081-4117, 2014.

[25] M. A. Taylor and A. Fournier, "A compatible and conservative spectral
element method on unstructured grids," J. Comput. Phys., vol. 229, pp.
5879— 5895, 2010.

[26] O. Guba, M. Taylor, and A. St.-Cyr, "Optimization based limiters for
the spectral element method," J. Comput. Phys., vol. 267, pp. 176-195,
2014.

[27] A. J. Simmons and D. M. Bunidge, "An energy and angular momentum
conserving vertical finite-difference scheme and hybrid vertical coordi-
nates," Mon. Weather Rev., vol. 109, pp. 758-766, 1981.

[28] S.-J. Lin, "A vertically Lagrangian finite-volume dynamical core for
global models," Mon. Weather Rev., vol. 132, pp. 2293-2397, 2004.

[29] M. Satoh, "Conservative scheme for the compressible nonhydrostatic
models with the horizontally explicit and vertically implicit time inte-
gration scheme," Mon. Weather Rev., vol. 130, pp. 1227-1245, 2002.

[30] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, "Implicit-explicit Runge-
Kutta methods for time-dependent partial differential equations," Appl.
Numer. Math., vol. 25, no. 2-3, pp. 151-167, Nov. 1997.

[31] A. Steyer, C. J. Vogl, M. Taylor, and O. Guba, "Efficient IMEX
Runge-Kutta methods for nonhydrostatic dynamics," arXiv e-prints, p.
arXiv:1906.07219, Jun 2019.

[32] Top500 supercomputer sites. [Online]. Available: https://top500.org
[33] H. Yashiro, M. Terai, R. Yoshida, S. Iga, K. Minami, and H. Tomita,

"Performance analysis and optimization of Nonhydrostatic ICosahedral
Atmospheric Model (NICAM) on the K computer and TSUBAIVIE2.5,"
in Proceedings of the Plalform for Advanced Scientific Computing
Conference PASC '16. ACM Press, 2016. [Online]. Available:
https://doi.org/10.1145/2929908.2929911

[34] C. Yang et al., "10M-Core scalable fully-implicit solver for nonhy-
drostatic atmospheric dynamics," in SC '16: Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, Nov 2016, pp. 57-68.

[35] H. Fu et al., "Redesigning CAM-SE for peta-scale climate model-
ing performance and ultra-high resolution on Sunway TaihuLight," in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC '17. New York,
NY, USA: ACM, 2017, pp. 1:1-1:12.

[36] J. Whitaker. (2016) HIWPP non-hydrostatic dynamical core
tests: Results from idealized test cases. [Online]. Avail-
able: https://www.weather.gov/media/stiltiggps/HIWPP _idealized _
tests- v8 \ %2Orevised \ %2005212015.pdf

[37] J. Michalakes et al. (2016) AVEC report: NGGPS level-1 benchmarks
and software evaluation. [Online]. Available: https://repository.library.
noaa.gov/view/noaa/18654

[38] M. Ranéié, R. J. Purser, D. Jovié, R. Vasic, and T. Black, "A nonhydro-
static multiscale model on the uniform jacobian cubed sphere," Monthly
Weather Review, vol. 145, no. 3, pp. 1083-1105, Mar. 2017.

[39] O. Fuhrer et al., "Near-global climate simulation at 1 km resolution:
establishing a performance baseline on 4888 GPUs with COSMO 5.0,"
Geosci. Model Dev., vol. 11, no. 4, pp. 1665-1681, 2018.

[40] P. H. Lauritzen, C. Jablonowski, M. A. Taylor, and R. D. Nair., Eds.,
Numerical Techniques for Global Atmospheric Models, ser. Lecture
Notes in Computational Science and Engineeering. Berlin, Heidelberg,
New York: Springer, 2011, vol. 80.

[41] R. D. Hornung and J. A. Keasler, "The RAJA portability layer: Overview
and status," Lawrence Livermore National Laboratory (LLNL), Liver-
more, CA, Tech. Rep., 2014.

[42] L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth, and G. Zheng,
"Programming petascale applications with Charm++ and AMPI," in
Petascale Computing: Algorithms and Applications, 2008.

[43] D. Medina, A. St-Cyr, and T. Warburton, "OCCA: A unified approach
to multi-threading languages," SIAM J. Sci. Comput., 03 2014.

[44] M. Harris. (2015) Developing portable CUDA C/C++ code with
Hemi. [Online]. Available: http://devblogs.nvidia.com/parallelforall/
developing-portable-cuda-cc-code-hemi/

[45] H. Kaiser, M. Brodowicz, and T. Sterling, "ParalleX: An advanced par-
allel execution model for scaling-impaired applications," in Proceedings
of the 2009 International Conference on Parallel Processing Workshops,
2009.

[46] (2019) The OpenACC application programming interface version 3.0.
[Online]. Available: https://www.openacc.org/sites/default/filesfinline-
images/Specification/OpenACC.3.0.pdf

[47] (2018) OpenMP application programming interface version 5.0. [On-
line]. Available: https://www.openmp.org/wp-content/uploads/OpenMP-
API- Specification- 5.0.pdf

[48] V. Clement, S. Ferrachat, O. Fuhrer, X. Lapillonne, C. E. Osuna,
R. Pincus, J. Rood, and W. Sawyer, "The CLAW DSL: Abstractions for
performance portable weather and climate models," in Proceedings of
the Plaq'orm for Advanced Scientific Computing Conference, PASC '18.
ACM, 2018. [Online]. Available: http://doi.acm.org/10.1145/3218176.
3218226

[49] E. Anderson et al., LAPACK Users' Guide, 3rd ed. Philadelphia, PA:
Society for Industrial and Applied Mathematics, 1999.

[50] Y. Zhang, J. Cohen, and J. D. Owens, "Fast tridiagonal solvers on the
GPU," ACM Sigplan Notices, vol. 45, no. 5, pp. 127-136, 2010.

[51] J. Rosinksi. (2017) GPTL — general purpose timing library. [Online].
Available: https://jmrosinski.github.io/GPTL

[52] Kokkos profiling tools. [Online]. Available: https://github.com/kokkos/
kokkos-tools

[53] S. Williams, A. Waterman, and D. Patterson, "Roofline: An Insightful
Visual Performance Model for Multicore Architectures," Commun. ACM,
vol. 52, no. 4, 2009.

[54] C. Yang, T. Kurth, and S. Williams, "Hierarchical Roofline analysis
for GPUs: Accelerating performance optimization for the NERSC-9
Perlmutter system." Concurr. Comp. Pract. E., 2019.

[55] S. S. Vazhkudai et al., "The design, deployment, and evaluation of
the CORAL pre-exascale systems," in Proceedings of the International
Conference for High Performance Computing, Networking, Storage,
and Analysis, ser. SC '18. IEEE Press, 2018. [Online]. Available:
https://doi.org/10.1109/SC.2018.00055

[56] SUMMIT Oak Ridge National Laboratory's 200 petaflop supercomputer.
[Online]. Available: https://www.olcf.ornl.gov/olcf-resources/compute-
systems/summit/

[57] C. Jablonowski and D. L. Williamson, "A baroclinic instability test
case for atmospheric model dynamical cores," Quarterly Journal of
the Royal Meteorological Society, vol. 132, no. 621C, pp. 2943-2975,
2006. [Online]. Available: https://rmets.onlinelibrary.wiley.com/doilabs/
10.1256/qj.06.12

[58] Dynamical core model intercomparison project. [Online]. Available:
https://www.earthsystemcog.org/projects/dcmip- 2012/

[59] C. Jablonowski and D L Williamson, "A baroclinic instability test case
for atmospheric model dynamical cores," Q. J. R. Meteorol. Soc., vol.
132, pp. 2943-2975, 2006.

