SAND2020- 8806PI§1 I

Software@Sandia

U.S. DEPARTMENT OF

ENERGY

\ / vy
g

S e YA S : A 8. <)

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned

subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

National Nuclear Security Administration

Windowed least-squares model
reduction in Pressio

Eric Parish and Francesco Rizzi

Software@Sandia Series August 24, 2020

@kiERsy NS4

National Naclear Securty Administraton

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Overview I?'Jressio

*Outline windowed least-squares projection-based model reduction in Pressio

*Projection-based reduced-order models (ROMs) are data-informed
surrogate models

e e Projection-based model reduction for noniinear
dynamical systems: auliary building scripts dynamical systems: tutorials

*Pressio is a computational framework aimed at providing =
performant projection-based ROMs to generic)
application codes

* Developed and maintained at Sandia https://github.com/Pressio

* Roughly two years old

* Has been coupled to several Sandia application codes

B e

*Tutorial overview

|

* Outline projection-based reduced-order models and the windowed least-squares method

* Provide an overview of Pressio

* End-to-end example of building a ROM in Pressio for the shallow water equations

) ‘ Projection-based ROMs: Motivation

*High-fidelity full-order model simulations (FOMs) are ubiquitous

in engineering and science

*FOMs incur a prohibitively high computational cost

* Can require millions of hours of CPU time

*Many engineering problems are time-critical or many-query by
nature

* Require many evaluations of the FOM

* Require low wall-clock times

*Computational cost of the FOM is a bottleneck

*Projection-based reduced-order models provide a solution

* Enable accurate approximate solutions at a low computational
cost

High fidelity simulation of
homogeneous isotropic turbulence

High-fidelity simulation of cavity flow

s I What are projection-based ROMs!

Analytic basis functions

*Projection-based ROMs (pROMs) are data-informed
numerical methods

* Similar to spectral methods

*Operate by projecting governing equations onto low-

dimensional data-driven subspaces
* pROMs use basis functions constructed from data
* Involves solving the governing equations
*Other types of ROMs:

. . Data-driven basis functions
* Data-centric surrogate models: create a purely data-driven surrogate model

* Reduced fidelity/physics models: use coarse meshes and/or reduced physics

¢ | Brief description of projection-based ROMs

*We focus on the dynamical system

d

7x(t) = f(x,t, 1)
State: x(t) € RY
Parameters: p € D C RV«

Parameter domain: D

*pROMs aim to expedite the solution process

*pROMs involve the following steps:

iR
2,

Solve the FOM to obtain “training data”

Identify low-dimensional structure (subspace) within
the training data

Project the FOM onto the low dimensional subspace

Solve the pROM for new predictive cases

P ®
¢ @
-
o ®
o ® @
331(757#1) 7w2<t7 “’2) Y. 7w8(t7 I-”s)

7 | Trial subspaces: some details

*Step 2: Identify low-dimensional structure within the training data .

. D

* Typically achieved with principal component analysis

wl(ta l'l'l)a w2(t7 /"'2)7 SR Cﬂs(t, l“l’s)
*Results in the approximation: x(t) =~ V&(t)

Generalized coordinates: &(t) € RE

Range(V)

|
<

8

Building the pROM
*We approximate the state as
x(t) ~ Va(t)
*Insert approximation into the governing equations:
da "
Vi = F(Va,t,p)

* N equations for K unknowns (KK << N)

*Various techniques exist to reduce the system dimension
* Galerkin method

* Least-squares Petrov—~Galerkin method (LSPG)
* Windowed least-squares method (WLS)

*Galerkin and LSPG can be unstable

pressure, p

E. Parish and K. Carlberg, “Windowed least-squares model reduction for
lynamical systems”, Journal of Computational Physics, 2020 (under
revision).

— FOM — LSPG WLS (AT = 0.5) === WLS (AT = 2.0)
= Galerkin === WLS (AT = 0.2) WLS (AT = 1.0)

—_
—_
1

oy
o
1

&
Nej
1

i J

time, £

Windowed least squares ROM

*Decompose the time domain into windows

1 2 3 4 ;
ty ty ty ty ty (7,1 C [0,T]
3 4 5 N !
| L |t'w |fs Ls ; 2 |{” Tl AT" = t}l - t;l

1
I I 1 1 1 7 7 1 1

AT! AT? AT3 AT* ATNe il =0, ’fl =T

*Over each window, define an objective functional that measures the residual

J"(@) = [(@) — £t)l

*WLS: sequentially solve a minimization problem over each window

x" = arg min J"(Vy)
Y(t)eERE

*WLS formulation yields enhanced stability over Galerkin & LSPG

°In practice, WLS is solved via discrete least-squares problem

BN DN $30

10 ‘ What is the A ? Hyper-reduction

*For nonlinear problems, pROMs are still expensive

n N 1 [t} A A 2
J (Vx = 2 Jyn ‘th — Vmatau“A
W
m
c A = PTP is a “sampling” matrix that addresses this issue — |m .
m
n

AT PR I | T
II’Il:lI\IIiIIiH\lI:“\“lHII ff |||l|""=:=m=‘=m=“l 'lill}“tllwllﬂl}lhlllI’I

il

i

I&IHI

T

uine

HH

i

baies

IHl%]

i

*Corresponds to evaluating velocity at a subset of the mesh

Key Challenges

*Projection-based ROMs are intrusive

J) ftf ||w f(a:,t, N)H?&

*Commonly, ROMs are implemented directly in the application code
X Highly intrusive: changes to application code
X Not extensible: individual ROM implementation for each application

X Access requirements: developers need direct access to application

*Motivates Pressio

12 ‘ Pressio

*A computational framework aimed at providing performant
pROM:s to generic application codes

*Open source code developed at Sandia:
* Lead developer: Francesco Rizzi

* Team includes: Patrick Blonigan, Eric Parish, Kenny Chowdhary, John
Tencer, Victor Brunini, Flint Pierce, and more

* Former developers: Kevin Carlberg and Mark Hoemmen

*Main idea:
* Separate the “application” and the ROM

e ROM methods are contained in the Pressio framework

* Pressio “plugs in” to an application code

@ressio

Adapter
(if needed)

: A
E int main() x,t, ¢ f, g—iqﬁ
: Y
Application Core Code
z = f(z,t;p)
z(0; p) = o(p)

...

Application Side

Rizzi et al, “Pressio: Enabling projection-based model reduction
for large-scale nonlinear dynamical systems" arXiv:2003.07798

» Pressio
I f . Projection. -based model reduction for large- -scale nonlinear dynamical sy ystems
sandia.gov

Python bindings to pressio

Find a repository... Type:All~ Language: All

https://github.com/Pressio

[= - |
13 | High-level features [TJI‘ESSIO @

*Header-only C++11 library
° Benefits portability

° Leverages C++11 and metaprogramming for type detection and compile-time dispatching

*Supports HPC performance portability (Kokkos)

*Natively support data structures from Trillinos

o tPetra
o tPetraBlock

o ePetra

*Supports a Python API

> Enables Python users to use the C++ Pressio functionalities from Python

*Supports Galerkin, LSPG, and WLS ROMs (w/ hyperreduction)

14 I How does Pressio talk to an application?

[
Application Core Code

ax(t) = f(z,t, 1)

\

o
z,t, ‘ lﬂw,t, w o 2v
A I
Adapter
\ 4
T, t, lﬂ%amggv
/
Pressio
- 4

int main()

*Pressio’s API requires the application to expose two
main functions:

1. velocity: f(=x,t,p)

:n. OF
g applyJacob1an.-55‘/

*Pressio uses these functions to construct the ROMs

*For hyperreduction:

15 I Main.cpp: How do we build and run a ROM?

18
19
20

W Www WWWW WO RNNNN
SO WNRE OO0 WN =

LisTING 1
Sample C++ main to create and run WLS using Pressio.

int main(int argc, char *argv[]){

using adapterT = I 1 €/ ;
using scalarT = typename adapterT::scalar_t;

using fomStateT = typename adapterT::state_t;
using decoderJacT = typename adapterT::dmatrix_t;

using romStateT = /4 ex/;

using namespace pressio;

adapterT fomObj(argc, argv, /= 1er ax /) ;

v

y

const std::size_t romSize = * h I Z x/ 3
const std::size_t numStepsInWindow =
const std::size_t nWindows = * he n Y f in /3

decoderJacT phi = /*1 h Y ian*/;
using decoderT = rom::LinearDecoder <decoderJacT >;
decoderT decoderObj (phi);

romStateT romState (romSize);

using stepperTag = ode:: implicitmethods::BDF2;
using rom::wls::DefaultProblem;
using wlsT = DefaultProblem<stepperTag, romStateT,
adapterT, decoderT>;
wlsT wlsProb(fomObj, numStepsInWindow, decoderObj, romState);

A 4

advanceNWindows (wlsProb, romState, t0, dt, nWindows);

v

auto xFomFinal = wlsProblem.fomReconstructor () (romState);

return O;

A 4

|?.Jressio

Type detection

Create the FOM object

Load/compute basis vectors

Create the ROM problem

Advance in time

16 | Example application of Pressio: Overview

*Construct a ROM of the shallow water equations

Oh 0 0

En + %(hu) + 8—y(hv) =0

ohu O, o 1 0 B
ot + (9513(hu —|—§,u1h)-I—a—y(huv)—()
ohv 0 9, 5 1 5
5t e 856(}”“]) =+ 8—y(h?} =+ i,ulh) =0

°Initial conditions
h(z,9,0) = 1+ ol 19"+ -157
u(x,y,0) =v(x,y,0) =0

*System parameters:

° M1 : gravity parameter

* 12: controls the magnitude of the pulse

https://github.com/eparish1/pressio wls tutorial

ressio |

1.08
1.06
1.04 h
1.02

1.00

0.98

Surface plot of the water height

17 I Example application of Pressio . . .
Y D
2
*Have access to an app that solves the shallow water equations ° ° ° D
* 1% order finite volume scheme - ¢ ®

128 x 128 mesh

tPetraBlock data structures

Capable of evaluating residual at a subset of the mesh

Takes 20 seconds to run one simulation

*Execute FOM for training parameter instances

H1 = {3, 6, 9} >\3-.
ue = {0.05,0.1,0.2} .

*Post process FOM data for basis vectors and sample mesh

*Execute the ROM for a test parameter instance Sample mesh

H1 = 75, Ho = 0.125
https://github.com/eparish1/pressio_wls_tutorial

18 I Results

*Results at a novel parameter instance
* 0.3% error
* 3x speed up over FOM

* 6x better than nearest neighbors solution

*Get more speed benefit as the FOM dimension grows

1.08 1.08

1.06

1.04 h

1.02

1.06

1.04 h

1.02

1.00 1.00

0.98 0.98

FOM solution ROM solution

https://github.com/eparish1/pressio wls tutorial

|

| 1]
1R ‘
B)

o ® @
® @ & D
[[@}
—— WLS ROM
1.10 4 —— Truth
—== Nearest neighbour
T l.o08
m 1.06
—
~ 104
LN
(\-I 1.02 +
—
S
< 100

Temporal evolution of water height

0 —
19 I Conclusions Gressuo @

*Projection-based ROMs enable fast and efficient approximate solutions
*The windowed-least squares formulation enables robust solutions

*Pressio is an open-source framework developed at Sandia aimed at providing performant pROM:s
* Freely available on github
* Header only C++11 library
* Supports arbitrary datatypes and HPC programming models
* Supports a Python API (WLS 1s ongoing) [

*We are growing the Pressio project

* Coupling to new application codes
* Adding new solvers and ROM techniques

* Improving user interfaces and APIs

*We are looking for collaborators!

r; .
20 ‘ Software Points of Contact DFGSSIO @)

nn

nnnnnnnnnnnnnnnnnnnnnnn

https://github.com/Pressio

https://github.com/eparish1/pressio wls tutorial

*Contact email for Pressio: fntrizzi@sandia.gov

*Contact email for WLS implementation: ejparis@sandia.cov
p [g

*Pressio papet: Rizzi et al., “Pressio: Enabling projection-based model reduction for large-scale nonlinear dynamical systems" arXiv:2003.07798

21 ‘ Example application of Pressio

(ol |
Sample C++ main to create and run WLS using Pressio.
1 int main(int argc, char *argv[]){
2 using adapterT = /*adapter class typex*/;
3 using scalarT = typename adapterT::scalar_t;
. 4 using fomStateT = typename adapterT::state_t;
.Construct RO \/I baSIS frO[“ FO \/I data 5 using decoderJacT = typename adapterT::dmatrix_t;
6 using romStateT = /*ROM state typex/;
g 7 using namespace pressio;
* External to Pressio : 8 WESE B
9 // create app or adapter object
10 adapterT fomObj(argc, argv, /*other args needed*/);
11
12 const std::size_t romSize = /*set the Rom size */;
13 const std::size_t numStepsInWindow = /*set the number in a window */;
.For hyper_reductlon i: const std::size_t nWindows = /*set the number of windo
. . . 16 // create the decoder, e.g. linear decoder
* Ideﬂtlfy FOM CCHS at Wthh tO Cvahlate the fCSldual 17 decoderJacT phi = /*load/compute the decoder’s Jacobian*/;
18 using decoderT = rom::LinearDecoder <decoderJacT>;
19 decoderT decoderObj (phi);
20
21 // define ROM state
22 romStateT romState (romSize);
. 23
*\Yrite main file for ROM apphcatlon using Pressio 24 // create the WLS problem
25 using stepperTag = ode::implicitmethods::BDF2;
g : 26 using rom::wls::DefaultProblem;
. »
Read mn ba81s 27 using wlsT = DefaultProblem<stepperTag, romStateT,
28 adapterT, decoderT>;
] Declare problem lnformatlon 2}8 wlsT wlsProb(fomObj, numStepsInWindow, decoderObj, romState);
31 // advance in time
32 advanceNWindows (wlsProb, romState, t0O, dt, nWindows);
33 // map the final ROM state to the corresponding fom
34 auto xFomFinal = wlsProblem.fomReconstructor () (romState);
35
36 return 0;
37)

*Execute ROM app and post process data

* Post processing 1s external to pressio Sample “main” file for WLS in pressio

2 | How does Pressio talk to an application!?

main functions:

1. velocity: flm.tpw) e g e
FELGEITE SIS I lm,t,qﬁ T;‘%qﬁ

i i

. . o o |

*Pressio’s API requires the application to expose two " ! [rom] i
) (@)

S~ 1

o |

I 1

. _ . of
2. applyJacobian: 7, ® eleroese
(if needed)
3
5 |
*Pressio uses these functions to construct the ROMs g of
£ 1| int main() x,t,¢ i a—m(b
L
cy
< Application Core Code
*For hyper-reduction, we require velocity and : 9 T
applyJacobian to return results at only a subset of z(0; p) = xo(p) .
the mesh e

B 00 O

23 | Trial subspaces: some details

*Step 2: Identify low-dimensional structure within . " ¢
the training data . . &
* Results in identifying a low-dimensional subspace @ ¢ D
® & ®
Trial space: Y C RN
dlm(V) — K7 (K < N) ml(tv /-1’1)7 wZ(ta /*"2)7 - w0 7m8(ta /J’s)
Trial basis: 'V &€ RNXK, vViv =1
Range(V) =V

*Results in the approximation: @ (t) &~ V&(t)

Generalized coordinates: ﬁ)(t) c RE

ES VvV Z(t)

x(t

