
Software@Sandia

U.S. DEPARTMENT OF

E N E RGY • CCR•...••
Center for Computing Research

N 41.4
National Nuclear Security Administration

SAND2020-8806PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Windowed least-squares model
reduction in Pressio

Eric Parish and Francesco Rizzi

Software@Sandia Series August 24, 2020
ish7s2.4

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

I Overview
3

•Outline windowed least-squares projection-based model reduction in Pressio

•Projection-based reduced-order models (ROMs) are data-informed
surrogate models

•Pressio is a computational framework aimed at providing
performant projection-based ROMs to generic
application codes
• Developed and maintained at Sandia

• Roughly two years old

• Has been coupled to several Sandia application codes

Fr'ressio

Pressio

nroLecre:;,-.1s.ase.d..mvodel reduction for large-scale nonlinear dynamical syMemsm

Repositories Packages A People 1

Pinned repOsitories

0 Melo

Projection-based model reduction ftx nonlinear
dynamical systems: core C. IllyarY

•c++ trs VI

larlalielo4py

Python Pinch, pressio

•C++

N Projects

0 pressioebullder Template

Projection-based model reduction I or nonlinear
dynamical systems: auxiliary building scnpts

0 Preereloetuteriels

Projection-based model reduction ler nonlinear
dynamical systems:tutorials

•ssar •Ptr

0. Pl. a repository... Type: All Language: All

https://github.com/Pressio

•Tutorial overview
• Outline projection-based reduced-order models and the windowed least-squares method

• Provide an overview of Pressio

• End-to-end example of building a ROM in Pressio for the shallow water equations

4 1 Projection-based ROMs: Motivation
•High-fidelity full-order model simulations (FOMs) are ubiquitous
in engineering and science

•FOMs incur a prohibitively high computational cost

• Can require millions of hours of CPU time

•Many engineering problems are time-critical or many-query by
nature

• Require many evaluations of the FOM

• Require low wall-clock times

•Computational cost of the FOM is a bottleneck

*Projection-based reduced-order models provide a solution

• Enable accurate approximate solutions at a low computational
cost

o

High fidelity simulation of
homogeneous isotropic turbulence

High-fidelity simulation of cavity flow

5 I What are projection-based ROMs?

•Projection-based ROMs (pROMs) are data-informed
numerical methods

• Similar to spectral methods

•Operate by projecting governing equations onto low-
dimensional data-driven subspaces
• pROMs use basis functions constructed from data

• Involves solving the governing equations

•Other types of ROMs:
• Data-centric surrogate models: create a purely data-driven surrogate model

• Reduced fidelity/physics models: use coarse meshes and/or reduced physics

Analytic basis functions

Spectral method

11,(xl t) k=i C ak t

Projection-based
reduced-order model

u(x,t) Enk=l
utta(x)ak(t)

Data-driven basis functions

6 I Brief description of projection-based ROMs

•We focus on the dynamical system

1 x (t) = f (x , t , tt)

State: x(t) E RN

Parameters: au E D C RNii

Parameter domain: D

•pROMs aim to expedite the solution process

•pROMs involve the following steps:

1. Solve the FOM to obtain "training data"

2. Identify low-dimensional structure (subspace) within
the training data

3. Project the FOM onto the low dimensional subspace

4. Solve the pROM for new predictive cases

•

•

•

•

• •
•

•

•

•

•

æi(t, PO 1 x2(t, 112) 1 . . , xs(t, Ps)

7 I Trial subspaces: some details

•Step 2: Identify low-dimensional structure within the training data

• Typically achieved with principal component analysis

•Results in the approximation: x(t) r,--,-d V(t)

Generalized coordinates: / (t) E

x(t) c--.--2, V

1
K

•

•

•

•

•

•

D

xi (t, Pi), x2 (t• 1-12), . . . • x8(t, tts)

Range(V) = V

1
1

I
1

8 Building the pROM

-We approximate the state as

x(t) rr V(t)

•Insert approximation into the governing equations:

V = f(V, tt)

• N equations for K unknowns (K << N)

•Various techniques exist to reduce the system dimension
• Galerkin method

• Least-squares Petrov—Galerkin method (LSPG)

• Windowed least-squares method (WLS)

Galerkin and LSPG can be unstable

E. Parish and K. Carlberg, "Windowed least-squares model reduction for
dynamical systems", Journal of Computational Physics, 2020 (under
revision).

- FOM LSPG WLS (AT = 0.5) WLS (AT = 2.0)

- Galerkin WLS (AT = 0.2) WLS (AT = 1.0)

o 12 0 401 610 80 100
time, t

9 I Windowed least squares ROM

•Decompose the time domain into windows

t1 t2 t3 el iN.-1
f f f f ' f

t1 tg tl t48 q, t1:- t f hrw

I I i i I / ,dr_i_i

AT1 AT2 AT3 Art ATN-
t = 0 t = T

[trsi,5] C [O,T]

Ar = tn - tnf s

ts = 0, tfNw = T

•Over each window, define an objective functional that measures the residual

Jn (x) =
tn

ift7s1 11±(t) f (x,t,

•WLS: sequentially solve a minimization problem over each window

X\ = arg min er (V
0)E-V<-

WLS formulation yields enhanced stability over Galerkin & LSPG

In practice, WLS is solved via discrete least-squares problem

10 I What is the A ? Hyper-reduction

°For nonlinear problems, pROMs are still expensive

Jn (V ") = 1
2 ftt7/

V±(t) f(V, t, p,)

A= PTP is a "sampling' matrix that addresses this issue

•Corresponds to evaluating velocity at a subset of the mesh

•

•
•

•
•

ithemiiimmocouncoommoiliniiimilliONIIIIM11111111111 guar 1111.11nm 111 Rpm

'111111111110111111111111iiiiiiiiiiiiiiiiiiiiiiiii RIRIE
PqrsillitHMIIIMIEM!!!!!1!! !!!!!!!!PhiiiiiiiiiilioileimilimmEnnolimcip! !INN
111111111111111111111111111iiiiiiiii

11 I Key Challenges

•Projection-based ROMs are intrusive

er _ eitt7,27(x) 11±(t) —f (x,t, ,a)Ili

•Commonly, ROMs are implemented directly in the application code

X Highly intrusive: changes to application code

XNot extensible: individual ROM implementation for each application

X Access requirements: developers need direct access to application

°Motivates Pressio

12 Pressio

•A computational framework aimed at providing performant
pROMs to generic application codes

Open source code developed at Sandia:

• Lead developer: Francesco Rizzi

• Team includes: Patrick Blonigan, Eric Parish, Kenny Chowdhary, John
Tencer, Victor Brunini, Flint Pierce, and more

• Former developers: Kevin Carlberg and Mark Hoemmen

•Main idea:

• Separate the "application" and the ROM

• ROM methods are contained in the Pressio framework

• Pressio "plugs in" to an application code

17Pressio

rom Aim

Ap
pl
ic
at
io
n
Si
de

int main ()

t, Tf,

Adapter
(if needed)

A
x,t,0 f, go

Application Core Code

= f (x,t; p.)

x(13; µ) = xo(p)

Rizzi et al, "Pressio: Enabling projection-based model reduction
for large-scale nonlinear dynamical systems" arXiv:2003.07798

Pressio

17,11 Projection-based model reduction for large-scale nonlinear dynamical systems

rnrizziersannicr,

O Repositories e Packages A People 1 1=1 Projects

Pinned repositories

▪ presslo

Projection-based model reduction for nonlinear
dynamical syAems: core Cr, library,

•a. 4s Yt

▪ Prearlicreity

Python bildings to pressie

•ory

presslo-bullder Template C,3 pressio-tutorials

Projection-based model reduction for nonlinear
dynamical systems:auxiliary building scripts

Projection-based model reduction for nonlinear

dynamical systems: tutorials

• Shell • C-ry

Find a repository... Type: All r• Language: All -

https://github.com/Pressio

13 r High-level features

•Header-only C++11 library

O Benefits portability

O Leverages C++11 and metaprogramming for type detection and compile-time dispatching

Supports HPC performance portability (Kokkos)

°Natively support data structures from Trillinos

O tPetra

tPetraBlock

• ePetra

*Supports a Python API

O Enables Python users to use the C++ Pressio functionalities from Python

Supports Galerkin, LSPG, and WLS ROMs (w/ hyperreduction)

17r)ressio

1
■

14 I How does Pressio talk to an application?

Application Core Code

gx(t) = f (x, t, it)

f (x,t, µ) aafx V

Adapter

 A

f(x,t, µ) V

Pressio

int main()

•Pressio's API requires the application to expose two
main functions:

1. velocity: f(x,t,µ)

2. applyJacobian:

•Pressio uses these functions to construct the ROMs

•For hyperreduction:

1 5 Main.cpp: How do we build and run a ROM?
LISTING 1

Sample C++ main to create and run WLS using Pressio.

1 int main(int argc, char *argv[]){

2 using adapterT = /*adaptei type*/;

3 using scalarT = typename adapterT::scalar_t;

4 using fomStateT = typename adapterT::state_t;

5 using decoderJacT = typename adapterT::dmatrix_t;

6 using romStateT = /*ROM state tyi„

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

using namespace pressio;

// create c,op or ada. .Joject

adapterT fomObj(argc, argv, /*other args needed*/);

const std::size_t romSize = /*set the Rom size */;

const std::size_t numStepsInWindow = /*set the number of stpes in a window

const std::size_t nWindows = /*set the number of windows */;

// create the decoder, e.g. linear decoder

decoderJacT phi = /*load/compute the decoder's Jacobian*/;

using decoderT = rom::LinearDecoder<decoderJacT>;

decoderT decoderObj(phi);

// define ROM state

romStateT romState(romSize);

// create the WLS problem

using stepperTag = ode::implicitmethods::BDF2;

using rom::wls::DefaultProblem;

using wlsT = DefaultProblem<stepperTag, romStateT,

adapterT, decoderT>;

wlsT wlsProb(fomObj, numStepslnWindow, decoderObj, romState);

advanceNWindows(wlsProb, romState, tO, dt nWindows)

17r)ressio

 ► Type detection

 ► Create the FOM object

Load/compute basis vectors

 ► Create the ROM problem

34 auto xFomFinal = wlsProblem.fomReconstructor()(romState);

35

36 return 0;

37 }

 ► Advance in time

1 6 I Example application of Pressio: Overview

•Construct a ROM of the shallow water equations

Oh
± '1(hu) +

0
(hv) = 0

Ot Ox 0y

Ohu
+

1 0
(hu2 + iiih2) +

a
(huv) = 0

2at ax ay

ahv
+
0 0 1
(huv) +

0y
(hv2 + ?ih2) = 0

at ax

•Initial conditions

h(x, y, 0) = 1 + ,u,2e(x-1.5)2+(Y-1.5)2

u(x, y, 0) = v(x, y, 0) = 0

•System parameters:

• Pi : gravity parameter

• ,a2 : controls the magnitude of the pulse

0 1
2

x 3
4

5

2

7-tessio

y

Surface plot of the water height

1.08

1.06

1.04 h
1.02

1.00

0.98

5

https://github.com/eparishl /pressio_wls_tutorial

17 I Example application of Pressio

•Have access to an app that solves the shallow water equations
• 1st order finite volume scheme
• 128 x 128 mesh

• tPetraBlock data structures

• Capable of evaluating residual at a subset of the mesh

• Takes 20 seconds to run one simulation

•Execute FOM for training parameter instances

,u1 = {3, 6, 9}

/12 = {0.05, 0.1, 0.2}

•Post process FOM data for basis vectors and sample mesh

•Execute the ROM for a test parameter instance

bti = 7.5, p,2 = 0.125

/12

>,

• • •

•
•

•

•

•
•

5

4

3

2 -

1 2 3

X

Sample mesh

4 5

D

https://github.com/eparishl /pressio_wls_tutorial

18 I Results

•Results at a novel parameter instance

• 0.3% error

• 3x speed up over FOM

• 6x better than nearest neighbors solution

•Get more speed benefit as the FOM dimension grows

1.08

1.06

1.04 h
1.02

1.00

0.98

5
4

0 3
01

2 Y
x 3

4
1

5 0

FOM solution

2 1
2

x 3
4

1

5 0

ROM solution

2 Y

1.08

1.06

1.04 h
1.02

1.00

0.98

5

• • •

• • •

• • •

1.10 -

1.04 -
rLi
NI

1.02 -
I-I
`.......

1.00 -

0.98 -

D

- WLS ROM

- Truth

--- Nearest neighbour

1 2 3 4 5
t

Temporal evolution of water height

https://github.com/eparishl /pressio_wls_tutorial

1 9 Conclusions 17r)ressio

•Projection-based ROMs enable fast and efficient approximate solutions

•The windowed-least squares formulation enables robust solutions

•Pressio is an open-source framework developed at Sandia aimed at providing performant pRO
• Freely available on github

• Header only C++11 library

• Supports arbitrary datatypes and HPC programming models

• Supports a Python API (WLS is ongoing)

We are growing the Pressio project
• Coupling to new application codes

• Adding new solvers and ROM techniques

• Improving user interfaces and APIs

•We are looking for collaborators!

s

20 I Software Points of Contact
Pressio

Projection-based model reduction for large-scale nonlinear dynamical systems

frrizzigisandiago0

O Repositories 6 rig Packages A People t E Projects

Pinned repositories

▪ pressio

Projection-based model reduction for nonlinear

dynamical systemo core CT+ library

pressio-builder Template

Projection-based model reduction for nonlinear

dynamical systems: auxiliary building scripts

•coc ei• 5 Y • shell

▪ PPPssiodPY

Python bindings to pressio

• COT *1

Find a repository.. Type: All - Language: All -

pressio-tutorials

Projection-based model reduction for nonlinear

dynamical systems: tutorials

• Coy

https://github.com/Pressio

https://github.com/eparishl /pressio_wls_tutorial

17r)ressio

•Contact email for Pressio: fnrizzi@sandia.gov

•Contact email for WLS implementation: e aris sandia. ov

*Pressio paper: Rizzi et al., "Pressio: Enabling projection-based rnodel reduction for large-scale nonlinear dynarnical systems" arXiv:2003.07798

21 I Example application of Pressio

•Construct ROM basis from FO

• External to Pressio

data

*For hyper-reduction

• Identify FOM cells at which to evaluate the residual

•Write main file for ROM application using Pressio

• Read in basis

• Declare problem information

•Execute ROM app and post process data

• Post processing is external to pressio

LISTING1
Sample C++ main to create and run WLS using Pressio.

1 int main(int argc, char *argv[]){

2 using adapterT = /*adapter c155s type*. ;

3 using scalarT = typename adapterT::scalar_t;

4 using fomStateT = typename adapterT::state_t;

5 using decoderJacT = typename adapterT::dmatrix_t;

6 using romStateT = /*ROM state 'ype*/;

7 using namespace pressio;

8

9 // create app or adapter object

10 adapterT fomObj(argc, argv, /*other args needed*/);

11

12 const std::size_t romSize = /*set the Rom size */;

13 const std::size_t numStepsInWindow = /*set the number of stpes in a

14 const std::size_t nWindows = /*set the number of windows */;

15

16 // crea decoder, e.g. linear decoder

17 decoderJacT phi = /*load/compute the decoder's Jacobian*/;
18 using decoderT = rom::LinearDecoder<decoderJacT>;

19 decoderT decoderObj(phi);
20

21 // define ROM state

22 romStateT romState(romSize);

23

24 // create the WLS problem

25 using stepperTag = ode::implicitmethods::BDF2;

26 using rom::wls::DefaultProblem;

27 using wlsT = DefaultProblem<stepperTag, romStateT,

28 adapterT, decoderT>;

29 wlsT wlsProb(fomObj, numStepsInWindow, decoderObj, romState);

30

31 // advance in time

32 advanceNWindows(w1sProb, romState, tO, dt, nWindows);

33 // map t.Le fiLJ1 5=

34 auto xFomFinal = wlsProblem.fomReconstructor()(romState);

35

36 return 0;

37 }

Sample "main" file for WLS in pressio

window */;

22 I How does Pressio talk to an application?

©
•Pressio's API requires the application to expose two 'I' 1

cn !cL)
main functions: , 1

Po 1
1

1. velocity: f(xlt,i-t)

2. applyJacobian: aoxf+

•Pressio uses these functions to construct the ROMs

•For hyper-reduction, we require veloc i ty and
applyJacobi a n to return results at only a subset of
the mesh

[
rom

_i

Ap
pl
ic
at
io
n
Si
de

L

1
int main()

,

 -I

 o

 o

Adapter
(if needed)

Application Core Code

= f (x,t; µ)

x(0, µ) = xo(P)

23 I Trial subspaces: some details

•Step 2: Identify low-dimensional structure within
the training data

• Results in identifying a low-dimensional subspace

Trial space: v C

dim(V) = K, (K < N)

Trial basis: c N ><K
v

Range(V) = V

•Results in the approximation: x(t) V(t)

Generalized coordinates: / (t) e

•
•
•
•

•

•

•

•

•

xi(t, p1), x2(t, tt2), . . . , xs(t, Ps)

V

