

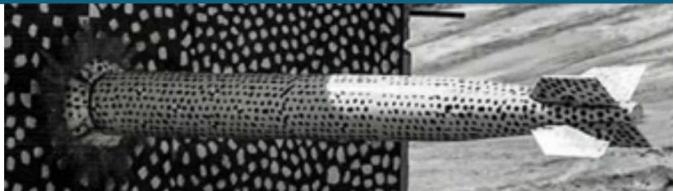
Software@Sandia

U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sandia
National
Laboratories

Windowed least-squares model reduction in Pressio



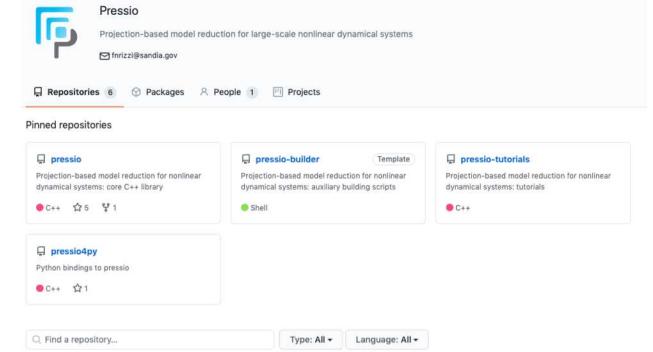
Eric Parish and Francesco Rizzi

Software@Sandia Series August 24, 2020

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Overview

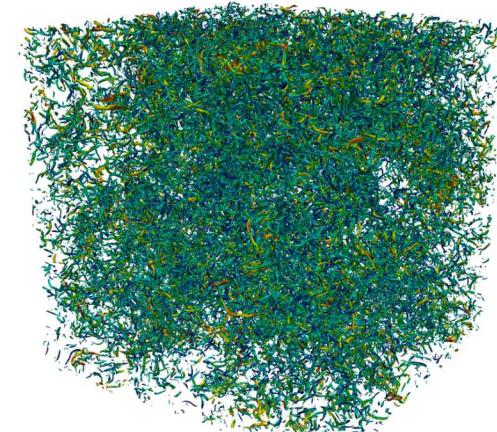
- Outline windowed least-squares projection-based model reduction in Pressio
- Projection-based reduced-order models (ROMs) are data-informed surrogate models
- Pressio is a computational framework aimed at providing performant projection-based ROMs to **generic** application codes
 - Developed and maintained at Sandia
 - Roughly two years old
 - Has been coupled to several Sandia application codes
- Tutorial overview
 - Outline projection-based reduced-order models and the windowed least-squares method
 - Provide an overview of Pressio
 - End-to-end example of building a ROM in Pressio for the shallow water equations



<https://github.com/Pressio>

Projection-based ROMs: Motivation

- High-fidelity full-order model simulations (FOMs) are ubiquitous in engineering and science

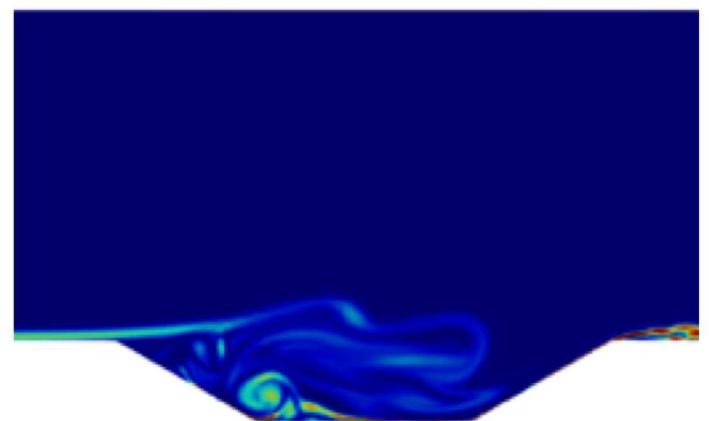


- FOMs incur a **prohibitively high computational cost**
 - Can require millions of hours of CPU time

- Many engineering problems are **time-critical** or **many-query** by nature
 - Require many evaluations of the FOM
 - Require low wall-clock times

High fidelity simulation of homogeneous isotropic turbulence

- **Computational cost of the FOM is a bottleneck**

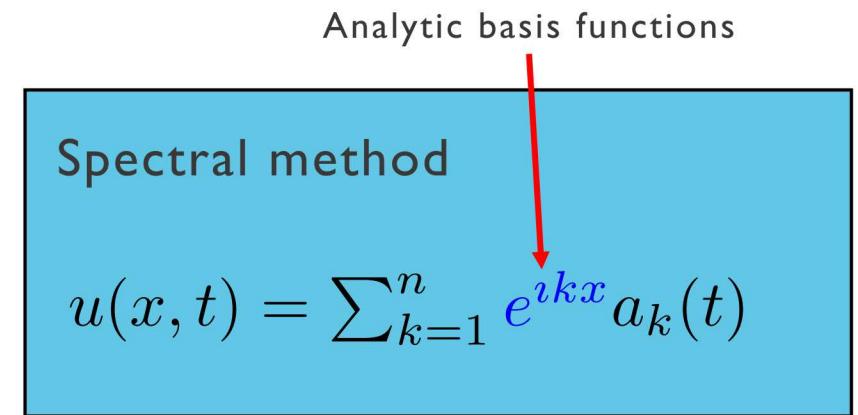
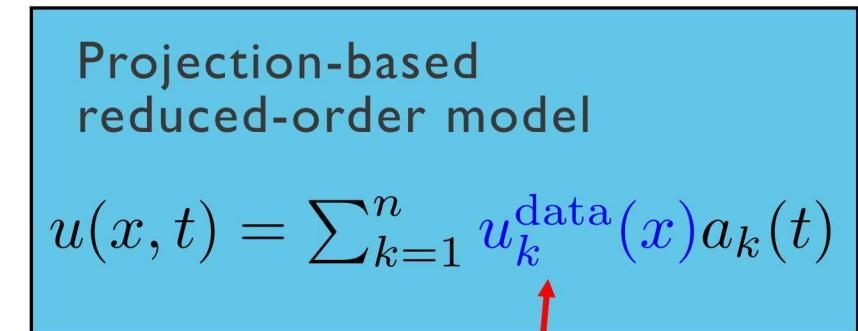


- **Projection-based reduced-order models** provide a solution
 - Enable **accurate** approximate solutions at a **low** computational cost

High-fidelity simulation of cavity flow

What are projection-based ROMs?

- Projection-based ROMs (pROMs) are data-informed numerical methods
 - Similar to spectral methods
- Operate by projecting governing equations onto low-dimensional data-driven subspaces
 - pROMs use basis functions constructed from data
 - Involves solving the governing equations
- Other types of ROMs:
 - Data-centric surrogate models: create a purely data-driven surrogate model
 - Reduced fidelity/physics models: use coarse meshes and/or reduced physics



Data-driven basis functions

Brief description of projection-based ROMs

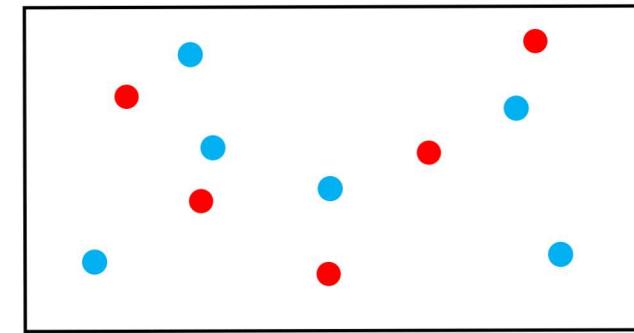
- We focus on the dynamical system

$$\frac{d}{dt} \mathbf{x}(t) = \mathbf{f}(\mathbf{x}, t, \boldsymbol{\mu})$$

State: $\mathbf{x}(t) \in \mathbb{R}^N$

Parameters: $\boldsymbol{\mu} \in \mathcal{D} \subset \mathbb{R}^{N_\mu}$

Parameter domain: \mathcal{D}

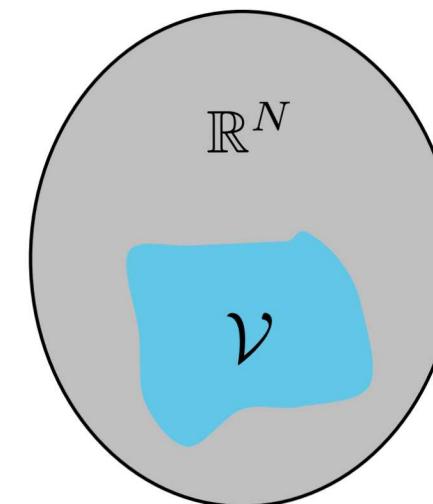


$$\mathbf{x}_1(t, \boldsymbol{\mu}_1), \mathbf{x}_2(t, \boldsymbol{\mu}_2), \dots, \mathbf{x}_s(t, \boldsymbol{\mu}_s)$$

- pROMs aim to expedite the solution process

- pROMs involve the following steps:

1. Solve the FOM to obtain “training data”
2. Identify low-dimensional structure (subspace) within the training data
3. Project the FOM onto the low dimensional subspace
4. Solve the pROM for new predictive cases



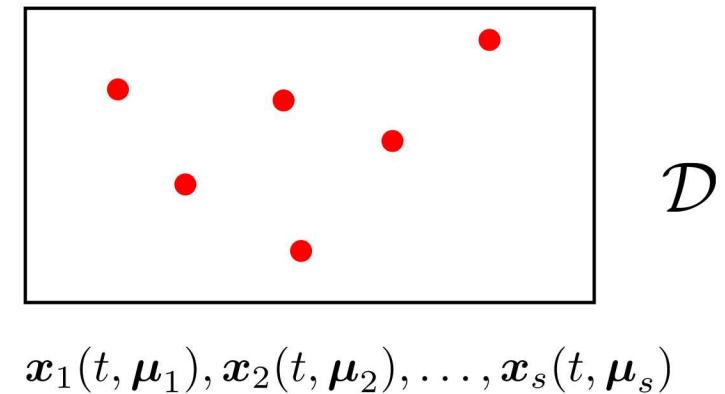
Trial subspaces: some details

- Step 2: Identify low-dimensional structure within the training data
 - Typically achieved with principal component analysis
- Results in the approximation: $\mathbf{x}(t) \approx \mathbf{V}\hat{\mathbf{x}}(t)$

Generalized coordinates: $\hat{\mathbf{x}}(t) \in \mathbb{R}^K$

$$\mathbf{x}(t) \approx \mathbf{V} \hat{\mathbf{x}}(t)$$

Diagram illustrating the approximation: A red vertical bar represents the full state $\mathbf{x}(t)$, a grey rectangle represents the matrix \mathbf{V} , and a blue vertical bar represents the generalized coordinates $\hat{\mathbf{x}}(t)$.



$$\mathbf{x}_1(t, \mu_1), \mathbf{x}_2(t, \mu_2), \dots, \mathbf{x}_s(t, \mu_s)$$

\mathbb{R}^N

\mathcal{V}

Range(\mathbf{V}) = \mathcal{V}

E. Parish and K. Carlberg, “*Windowed least-squares model reduction for dynamical systems*”, Journal of Computational Physics, 2020 (under revision).

- We approximate the state as

$$x(t) \approx \mathbf{V}\hat{x}(t)$$

- Insert approximation into the governing equations:

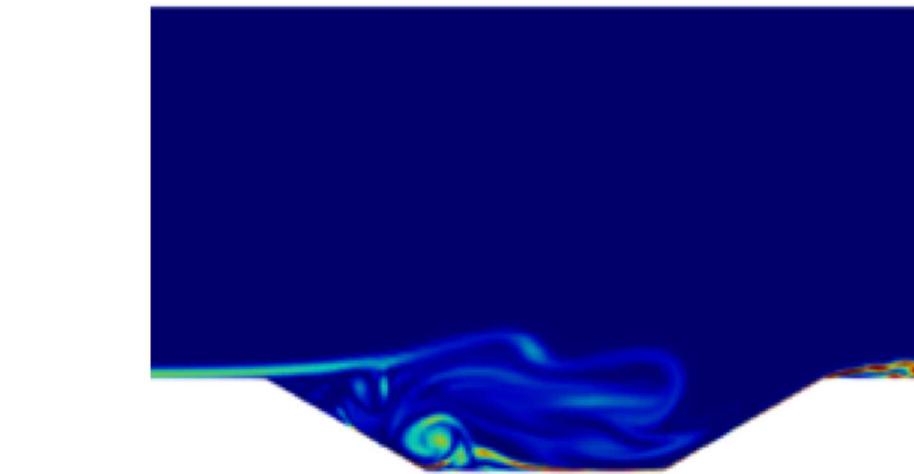
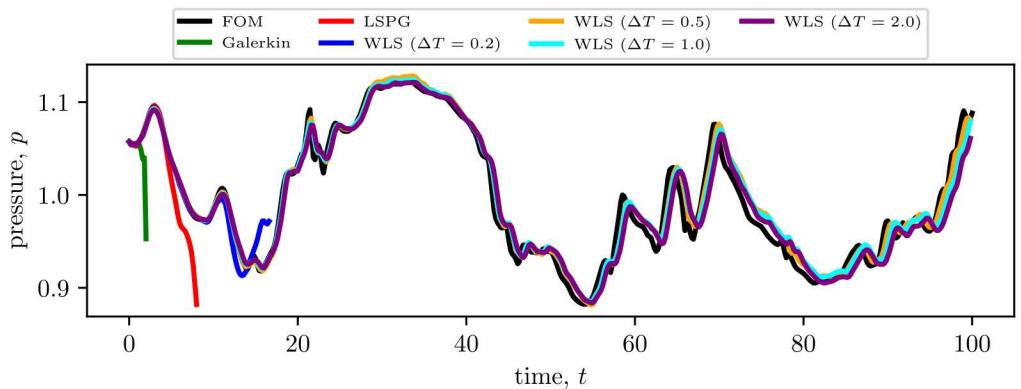
$$\mathbf{V} \frac{d\hat{x}}{dt} = f(\mathbf{V}\hat{x}, t, \mu)$$

- N equations for K unknowns ($K \ll N$)

- Various techniques exist to reduce the system dimension

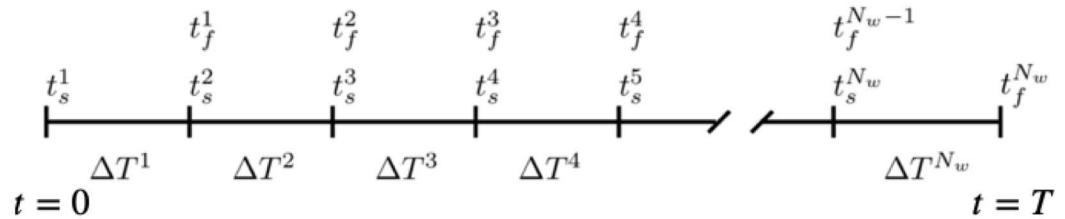
- Galerkin method
 - Least-squares Petrov—Galerkin method (LSPG)
 - **Windowed least-squares method (WLS)**

- Galerkin and LSPG can be unstable



Windowed least squares ROM

- Decompose the time domain into windows



$$\begin{aligned}
 [t_s^n, t_f^n] &\subseteq [0, T] \\
 \Delta T^n &= t_f^n - t_s^n \\
 t_s^1 &= 0, t_f^{N_w} = T
 \end{aligned}$$

- Over each window, define an objective functional that measures the **residual**

$$\mathbf{J}^n(\mathbf{x}) = \frac{1}{2} \int_{t_s^n}^{t_f^n} \|\dot{\mathbf{x}}(t) - \mathbf{f}(\mathbf{x}, t, \boldsymbol{\mu})\|_{\mathbf{A}}^2 dt$$

- **WLS:** sequentially solve a minimization problem over each window

$$\hat{\mathbf{x}}^n = \arg \min_{\hat{\mathbf{y}}(t) \in \mathbb{R}^K} \mathbf{J}^n(\mathbf{V} \hat{\mathbf{y}})$$

- WLS formulation yields enhanced stability over Galerkin & LSPG
- In practice, WLS is solved via discrete least-squares problem

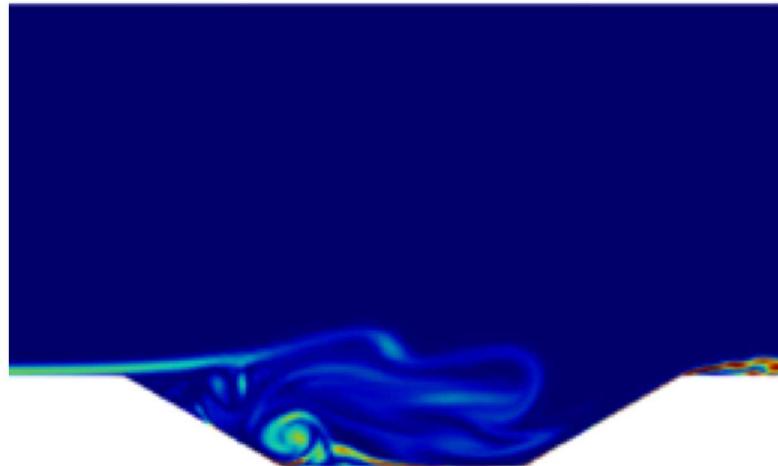
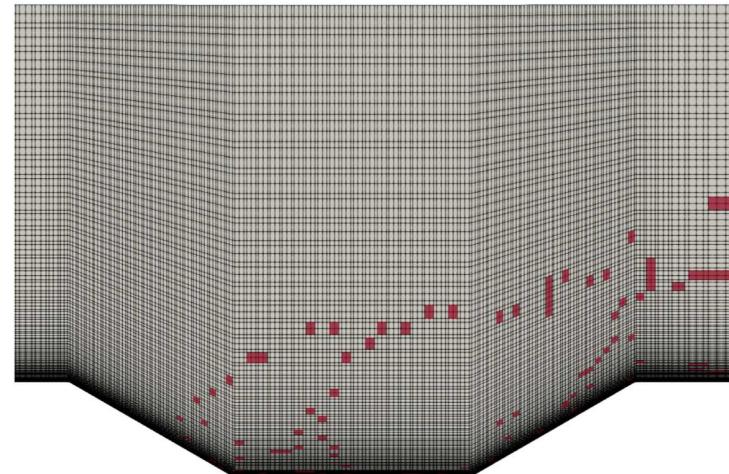
What is the \mathbf{A} ? Hyper-reduction

- For nonlinear problems, pROMs are still expensive

$$J^n(\mathbf{V}\hat{\mathbf{x}}) = \frac{1}{2} \int_{t_s^n}^{t_f^n} \|\mathbf{V}\dot{\hat{\mathbf{x}}}(t) - \mathbf{f}(\mathbf{V}\hat{\mathbf{x}}, t, \boldsymbol{\mu})\|_{\mathbf{A}}^2 dt$$

- $\mathbf{A} = \mathbf{P}^T \mathbf{P}$ is a “sampling” matrix that addresses this issue

$$\mathbf{P} = \begin{bmatrix} \text{---} & \text{---} & \text{---} \\ \text{---} & \text{---} & \text{---} \\ \text{---} & \text{---} & \text{---} \end{bmatrix}$$



- Corresponds to evaluating velocity at a subset of the mesh

- Projection-based ROMs are intrusive

$$\mathbf{J}^n(\mathbf{x}) = \frac{1}{2} \int_{t_s^n}^{t_f^n} \|\dot{\mathbf{x}}(t) - \boxed{\mathbf{f}(\mathbf{x}, t, \boldsymbol{\mu})}\|_{\mathbf{A}}^2$$

- Commonly, ROMs are implemented directly in the application code
 - ✗ **Highly intrusive**: changes to application code
 - ✗ **Not extensible**: individual ROM implementation for each application
 - ✗ **Access requirements**: developers need direct access to application
- Motivates **Pressio**

Pressio

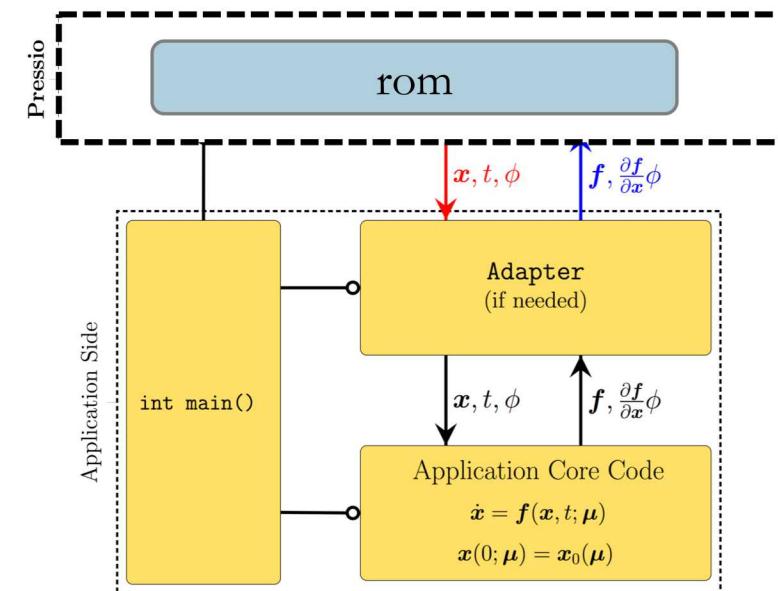
- A computational framework aimed at providing performant pROMs to **generic** application codes

- **Open source code developed at Sandia:**

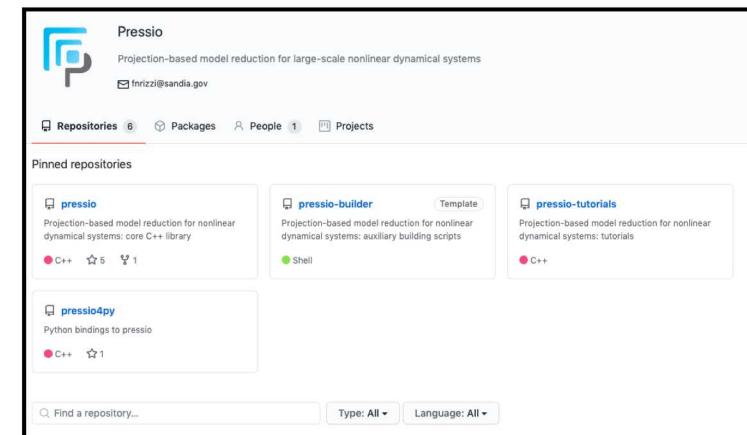
- Lead developer: Francesco Rizzi
- Team includes: Patrick Blonigan, Eric Parish, Kenny Chowdhary, John Tencer, Victor Brunini, Flint Pierce, and more
- Former developers: Kevin Carlberg and Mark Hoemmen

- **Main idea:**

- Separate the “application” and the ROM
- ROM methods are contained in the Pressio framework
- Pressio “plugs in” to an application code



Rizzi et al, “*Pressio: Enabling projection-based model reduction for large-scale nonlinear dynamical systems*” [arXiv:2003.07798](https://arxiv.org/abs/2003.07798)

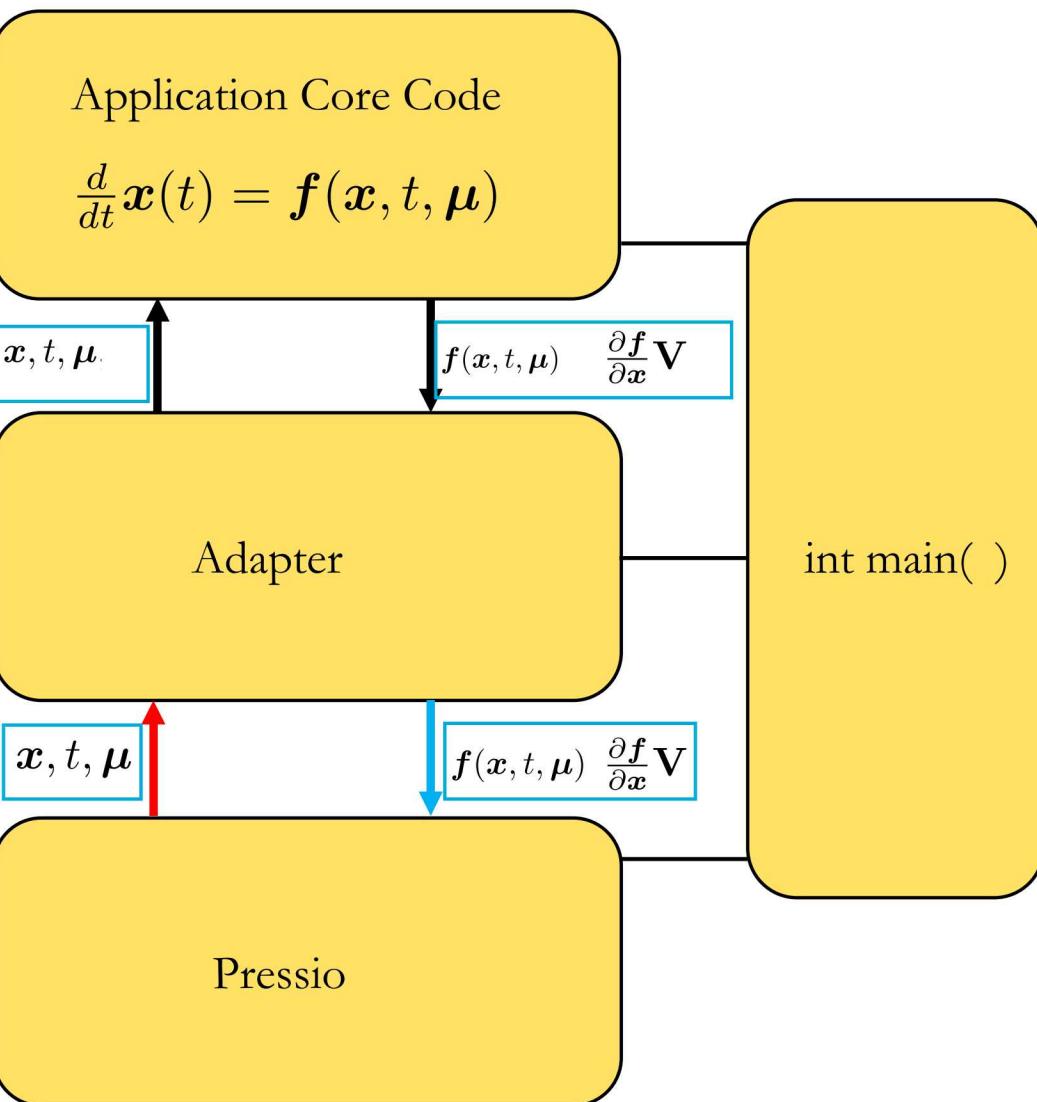


<https://github.com/Pressio>

High-level features

- Header-only C++11 library
 - Benefits portability
 - Leverages C++11 and metaprogramming for type detection and compile-time dispatching
- Supports HPC performance portability (Kokkos)
- Natively support data structures from Trillinos
 - tPeta
 - tPetaBlock
 - ePeta
- Supports a Python API
 - Enables Python users to use the C++ Pressio functionalities from Python
- Supports Galerkin, LSPG, and WLS ROMs (w/ hyperreduction)

How does Pressio talk to an application?

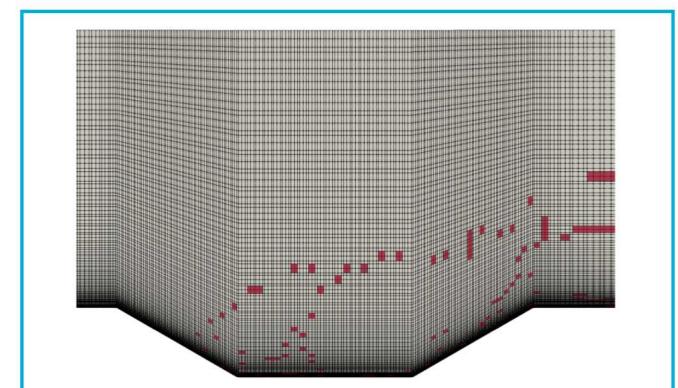


- Pressio's API requires the application to expose two main functions:

1. **velocity:** $\mathbf{f}(\mathbf{x}, t, \boldsymbol{\mu})$
2. **applyJacobian:** $\frac{\partial \mathbf{f}}{\partial \mathbf{x}} \mathbf{V}$

- Pressio uses these functions to construct the ROMs

- For hyperreduction:

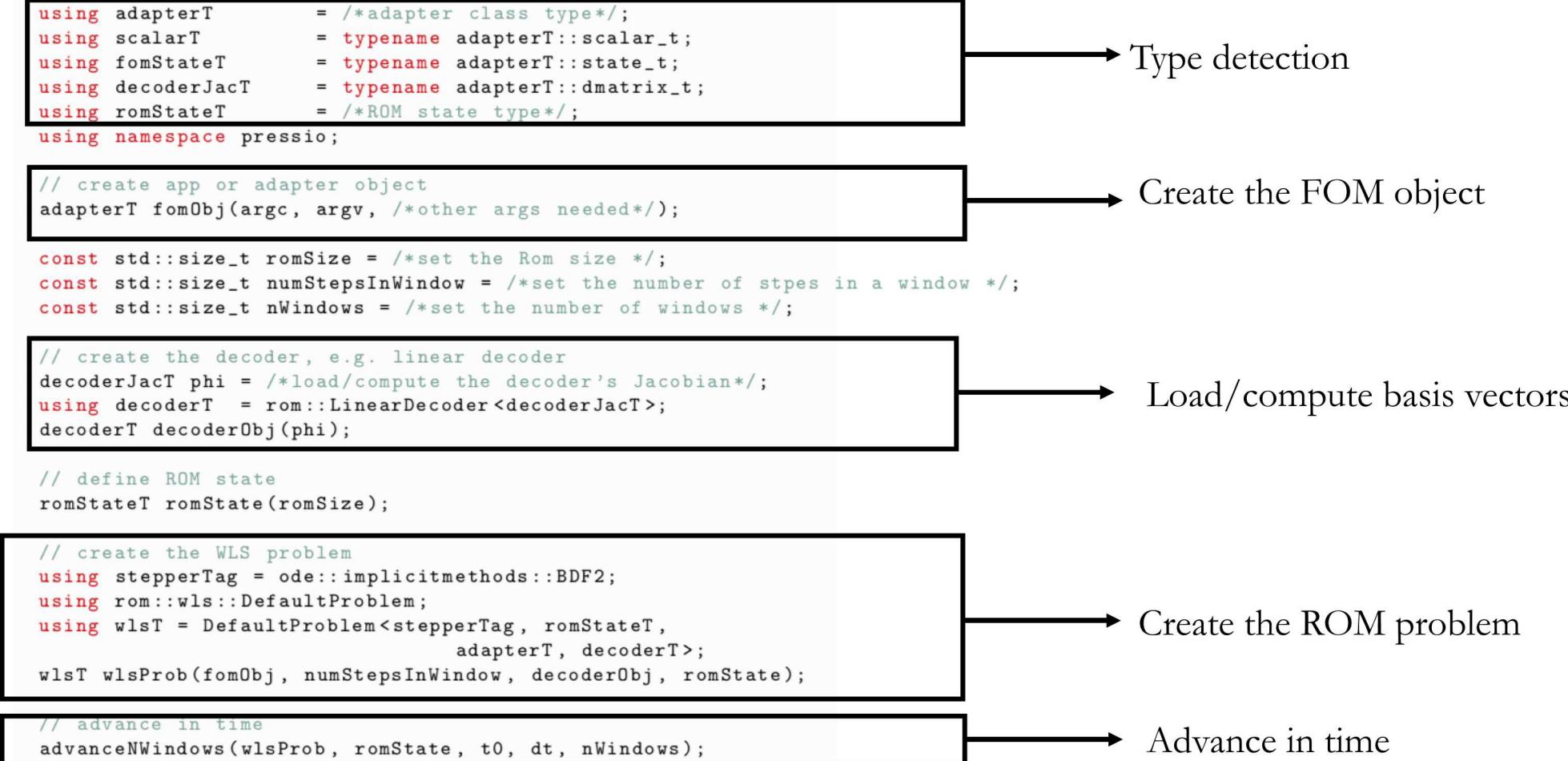


Main.cpp: How do we build and run a ROM?

LISTING 1
Sample C++ main to create and run WLS using Pressio.

```

1 int main(int argc, char *argv[]){
2     using adapterT      = /*adapter class type*/;
3     using scalarT       = typename adapterT::scalar_t;
4     using fomStateT     = typename adapterT::state_t;
5     using decoderJacT  = typename adapterT::dmatrix_t;
6     using romStateT    = /*ROM state type*/;
7     using namespace pressio;
8
9     // create app or adapter object
10    adapterT fomObj(argc, argv, /*other args needed*/);
11
12    const std::size_t romSize = /*set the Rom size */;
13    const std::size_t numStepsInWindow = /*set the number of stpes in a window */;
14    const std::size_t nWindows = /*set the number of windows */;
15
16    // create the decoder, e.g. linear decoder
17    decoderJacT phi = /*load/compute the decoder's Jacobian*/;
18    using decoderT = rom::LinearDecoder<decoderJacT>;
19    decoderT decoderObj(phi);
20
21    // define ROM state
22    romStateT romState(romSize);
23
24    // create the WLS problem
25    using stepperTag = ode::implicitmethods::BDF2;
26    using rom::wls::DefaultProblem;
27    using wlsT = DefaultProblem<stepperTag, romStateT,
28                           adapterT, decoderT>;
29    wlsT wlsProb(fomObj, numStepsInWindow, decoderObj, romState);
30
31    // advance in time
32    advanceNWindows(wlsProb, romState, t0, dt, nWindows);
33    // map the final ROM state to the corresponding fom
34    auto xFomFinal = wlsProb.fomReconstructor()(romState);
35
36    return 0;
37 }
```



Type detection

Create the FOM object

Load/compute basis vectors

Create the ROM problem

Advance in time

Example application of Pressio: Overview

- Construct a ROM of the shallow water equations

$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x}(hu) + \frac{\partial}{\partial y}(hv) = 0$$

$$\frac{\partial hu}{\partial t} + \frac{\partial}{\partial x}(hu^2 + \frac{1}{2}\mu_1 h^2) + \frac{\partial}{\partial y}(huv) = 0$$

$$\frac{\partial hv}{\partial t} + \frac{\partial}{\partial x}(huv) + \frac{\partial}{\partial y}(hv^2 + \frac{1}{2}\mu_1 h^2) = 0$$

- Initial conditions

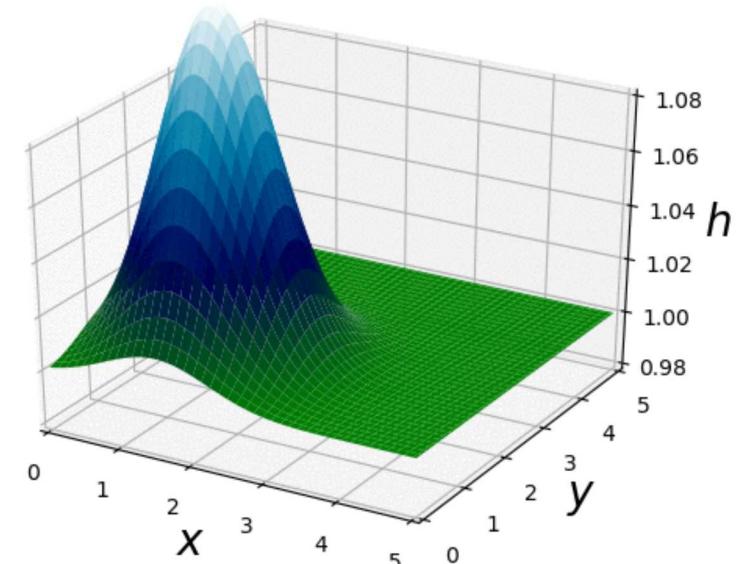
$$h(x, y, 0) = 1 + \mu_2 e^{(x-1.5)^2 + (y-1.5)^2}$$

$$u(x, y, 0) = v(x, y, 0) = 0$$

- System parameters:

- μ_1 : gravity parameter

- μ_2 : controls the magnitude of the pulse



Surface plot of the water height

Example application of Pressio

- Have access to an app that solves the shallow water equations
 - 1st order finite volume scheme
 - 128 x 128 mesh
 - tPetaBlock data structures
 - Capable of evaluating residual at a subset of the mesh
 - Takes 20 seconds to run one simulation

- Execute FOM for training parameter instances

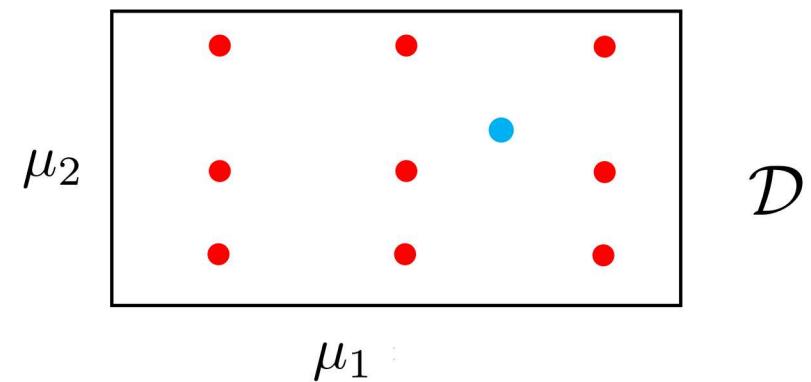
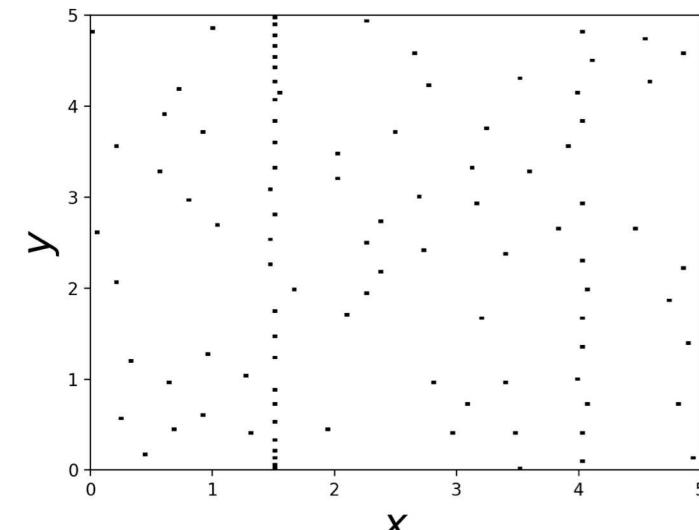
$$\mu_1 = \{3, 6, 9\}$$

$$\mu_2 = \{0.05, 0.1, 0.2\}$$

- Post process FOM data for basis vectors and sample mesh

- Execute the ROM for a test parameter instance

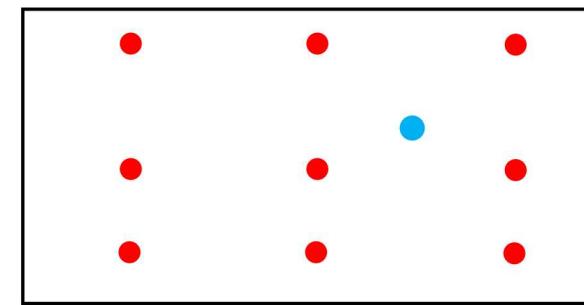
$$\mu_1 = 7.5, \mu_2 = 0.125$$



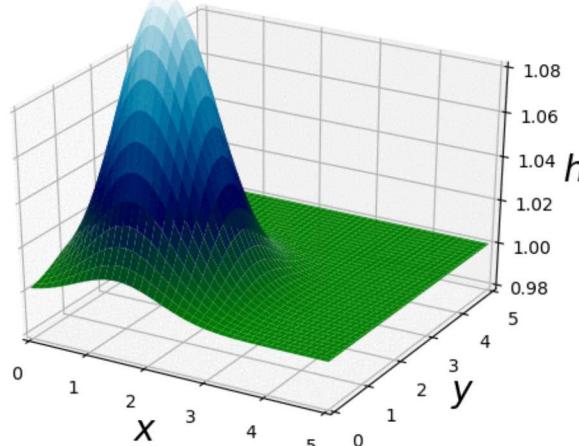
Sample mesh

Results

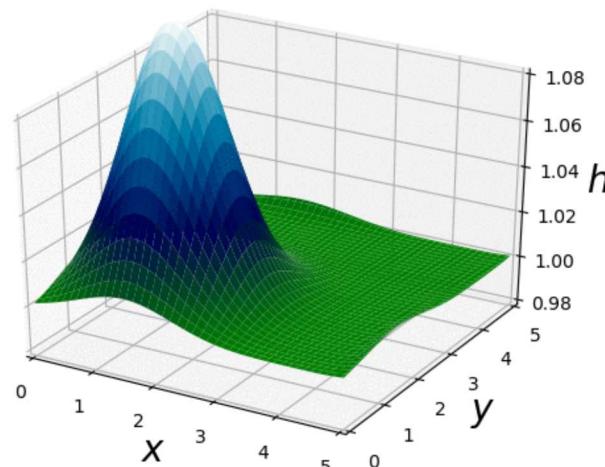
- Results at a novel parameter instance
 - 0.3% error
 - 3x speed up over FOM
 - 6x better than nearest neighbors solution


 \mathcal{D}

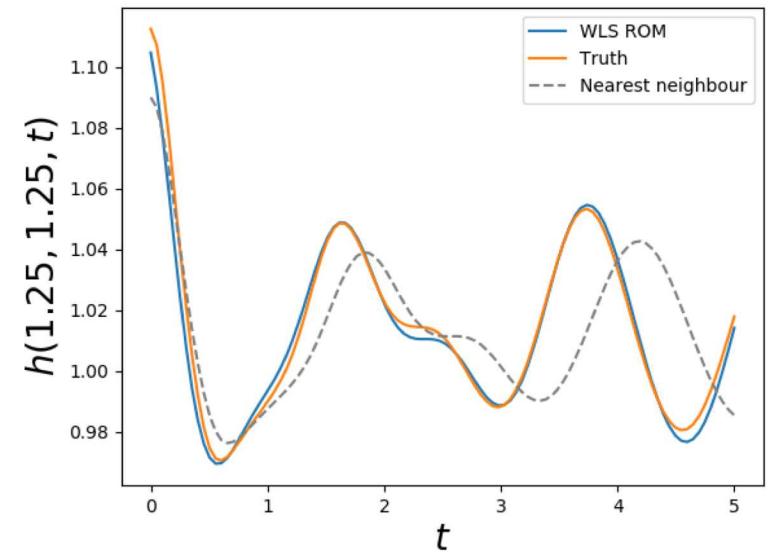
- Get more speed benefit as the FOM dimension grows



FOM solution



ROM solution

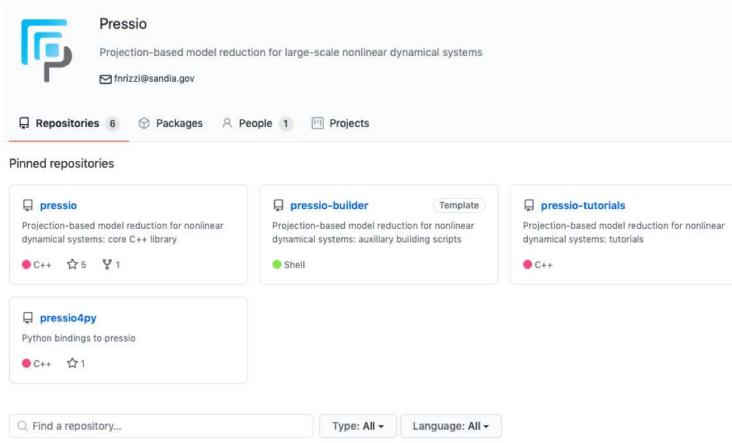


Temporal evolution of water height

Conclusions

- Projection-based ROMs enable fast and efficient approximate solutions
- The windowed-least squares formulation enables robust solutions
- Pressio is an open-source framework developed at Sandia aimed at providing performant pROMs
 - Freely available on github
 - Header only C++11 library
 - Supports arbitrary datatypes and HPC programming models
 - Supports a Python API (WLS is ongoing)
- We are growing the Pressio project
 - Coupling to new application codes
 - Adding new solvers and ROM techniques
 - Improving user interfaces and APIs
- **We are looking for collaborators!**

Software Points of Contact



<https://github.com/Pressio>

https://github.com/eparish1/pressio_wls_tutorial

- Contact email for Pressio: fnrizzi@sandia.gov
- Contact email for WLS implementation: ejparis@sandia.gov
- Pressio paper: Rizzi et al., "Pressio: Enabling projection-based model reduction for large-scale nonlinear dynamical systems" [arXiv:2003.07798](https://arxiv.org/abs/2003.07798)

Example application of Pressio

- Construct ROM basis from FOM data
 - External to Pressio
- For hyper-reduction
 - Identify FOM cells at which to evaluate the residual
- Write main file for ROM application using Pressio
 - Read in basis
 - Declare problem information
- Execute ROM app and post process data
 - Post processing is external to pressio

LISTING 1
Sample C++ main to create and run WLS using Pressio.

```

1 int main(int argc, char *argv[]){
2     using adapterT      = /*adapter class type*/;
3     using scalarT       = typename adapterT::scalar_t;
4     using fomStateT     = typename adapterT::state_t;
5     using decoderJacT   = typename adapterT::dmatrix_t;
6     using romStateT     = /*ROM state type*/;
7     using namespace pressio;
8
9     // create app or adapter object
10    adapterT fomObj(argc, argv, /*other args needed*/);
11
12    const std::size_t romSize = /*set the Rom size */;
13    const std::size_t numStepsInWindow = /*set the number of stpes in a window */;
14    const std::size_t nWindows = /*set the number of windows */;
15
16    // create the decoder, e.g. linear decoder
17    decoderJacT phi = /*load/compute the decoder's Jacobian*/;
18    using decoderT = rom::LinearDecoder<decoderJacT>;
19    decoderT decoderObj(phi);
20
21    // define ROM state
22    romStateT romState(romSize);
23
24    // create the WLS problem
25    using stepperTag = ode::implicitmethods::BDF2;
26    using rom::wls::DefaultProblem;
27    using wlsT = DefaultProblem<stepperTag, romStateT,
28                                adapterT, decoderT>;
29    wlsT wlsProb(fomObj, numStepsInWindow, decoderObj, romState);
30
31    // advance in time
32    advanceNWindows(wlsProb, romState, t0, dt, nWindows);
33    // map the final ROM state to the corresponding fom
34    auto xFomFinal = wlsProblem.fomReconstructor()(romState);
35
36    return 0;
37 }
```

Sample “main” file for WLS in pressio

How does Pressio talk to an application?

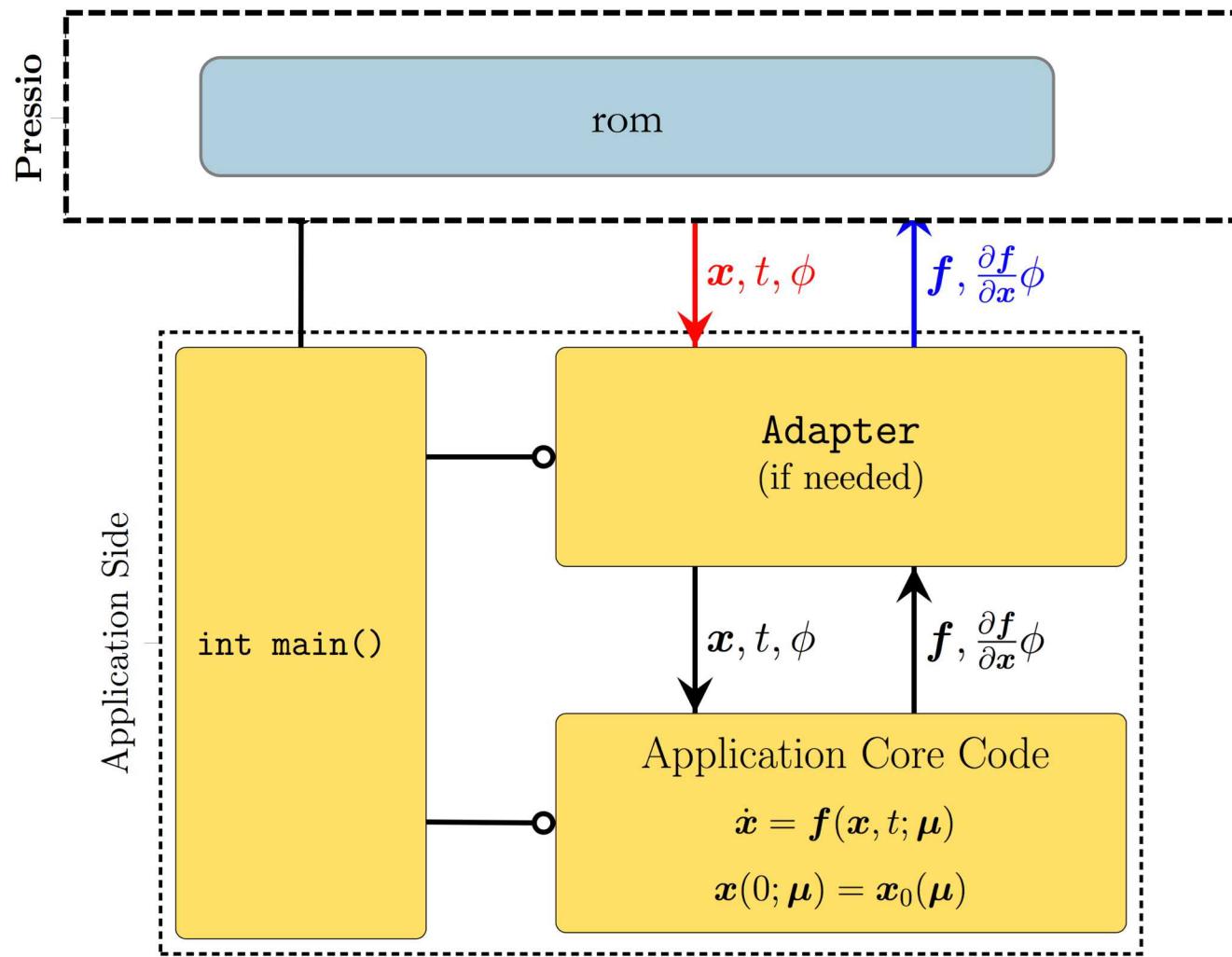
- Pressio's API requires the application to expose two main functions:

1. velocity: $f(x, t, \mu)$

2. applyJacobian: $\frac{\partial f}{\partial x} \Phi$

- Pressio uses these functions to construct the ROMs

- For hyper-reduction, we require velocity and applyJacobian to return results at only a subset of the mesh



Trial subspaces: some details

- Step 2: Identify low-dimensional structure within the training data
 - Results in identifying a low-dimensional subspace

Trial space: $\mathcal{V} \subset \mathbb{R}^N$

$$\dim(\mathcal{V}) = K, (K \ll N)$$

Trial basis: $\mathbf{V} \in \mathbb{R}^{N \times K}, \mathbf{V}^T \mathbf{V} = \mathbf{I}$

$$\text{Range}(\mathbf{V}) = \mathcal{V}$$

- Results in the approximation: $\mathbf{x}(t) \approx \mathbf{V} \hat{\mathbf{x}}(t)$

Generalized coordinates: $\hat{\mathbf{x}}(t) \in \mathbb{R}^K$

