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4 Shale Reservoirs ■

■ Shale source rock became an economically viable and producible
hydrocarbon reservoir by 1997

■ With respect to the development of shale gas and shale oil assets,
horizontal wells that include complex hydraulic fractures have
become the norm

■ Shale reservoirs are commonly comprised of low permeability rocks
that are characterized by a number of unique attributes

■ Advances in horizontal drilling and complex hydraulic fracturing has
led to a focus on reservoirs, such as Marcellus shale reservoir, that
were previously thought un-economical

Fig. I Block model depicting the science and gas
production wells at the Marcellus Shale Energy &

Environment Laboratory ( ) [9]



5 Horizontal Wells and Hydraulic Fracturing

Horizontal wells are a type of directional drilling technique, dug at
angle of at least eighty degrees to a vertical well bore

• Hydraulic fracturing is a widely-used technique for stimulation of
oil and gas production from wells drilled in hydrocarbon-bearing
formations

• Modeling difficulties arise due to the representation of these
processes in the form of fractured, porous media

Traditional
Vertical MCI Vertical

well bore

Nixttortel

Throe Forks Shale

Fig. 2 Comparison of Traditional vertical wells versus
Horizontal wells [10]
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Fig. 3 Diagram of the hydraulic fracturing process [I l]



6 Conventional Modeling Techniques

■ Understanding and modeling the complex flow mechanisms, impact of geo-mechanical properties,
and design of hydraulic fractures is an open research area

■ Literature has focused on operational and technological challenges of shale oil/gas production

■ Conventional reservoir simulation and modeling is a bottom-up approach where a dynamic
reservoir model is constructed by augmenting geological model of the reservoir with engineering
fluid flow principles [6]

■ Model calibration is performed using the production history in order to obtain the history-matched model

■ Reservoir simulation has been a key component towards production optimization. However, there
are inherent challenges that must be solved:

■ Developing an understanding of the physics of fluid flow in shale rocks

■ The resource intensive and time-consuming processes associated with reservoir simulation

■ The application of conventional reservoir simulation to shale assets



7 Previous Machine Learning-based Approaches

• Due to the popularity of shale gas/oil fracturing, an
increasing amount of digital field data is being generated
and collected [5]

• Approaches focus on 'hard data' instead of rigid
representations of flow and transport mechanisms in shale
reservoirs

• Development of an AI-based framework that utilizes both
field measurements and measured fracturing variables [4]
• Utilizes a data-driven technique know as Top-Down modeling

to take into account all aspects of shale production

• Development of a global framework for constructing ML
algorithms on digital field data for the purposes of
hydraulic fracture design optimization [5]

•
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Fig. 4 Flowchart depicting the development of the proposed model [4]



8 Proposal

■ Development of a predictive data-driven platform (PDDP) for subsurface energy systems

■ Use machine learning to model relationships among the physical properties of shale and fractures in order
predict (1) cumulative production across time and (2) pressure distribution across space and time

■ Current architectures being investigated:

■ Physics-Informed Neural Networks (PINN)

■ Artificial Neural Network

■ Convolutional Long-Short Term Memory

■ My contribution:

■ Augment PDDP by researching effectiveness of hybrid Convolutional Neural Network (CNN) — Long-
Short Term Memory (I,STM) Architecture
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io Dataset •

• Data used to model subsurface energy production was obtained
using the MRST-Shale simulator

• The dataset contains five features:
• Permeabili0 — a measure of interconnectivity

• PorosiO — a measure of the void spaces

• Hydraulic conductivi0 — ease with which media can move through
fractures

• Bottom hole pressure — pressure acting on the walls of the well

• Fracture aperture — perpendicular width of the open fracture

• The dataset contains samples at 70 different time points across
32 total cases
• Training and validation set — 29 cases

• Test set — 3 cases

Hydraulic fracture
(very simplified)

Horizontal well

Fig. S Diagram of a horizontal
well with a simplified

hydraulic fracture
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Fig. 6 Diagram pressure distribution data



ii Data Input Methods

• Different multichannel input methods for the case (feature)
parameters were investigated
• Data was scaled to values in the range [0, 1]

• Arbitrary input format

• Al1 case parameters are input to the model in a single 60x60 array,
where parameters are stored in ̀ star'-shaped pattern

• Geometrically Intuitive input format

• Each case parameter given its own channel

• Layout of the parameter based on its physical characteristics

•

Fig. 7 Depiction of the how the case (feature) parameters are inserted into a
channel when using the arbitrary input format

1
(a)

1
(b)

Fig. 8 Masks used to facilitate the Geometrically Intuitive input method.
Permeability and Porosity used mask (a); Hydraulic Conductivity, Bottom
Hole Pressure, and Fracture Aperture used mask (b). White pixels denote

value of l ; black pixels denote value of O.



I 2 Modeling Spatio-Temporal Data

Models must accurately represent the temporal evolution of
spatial objects over time (e.g. tracking moving objects across
video, etc.)

• Convolutional Neural Networks (CNN)
• Algorithm is designed to take 2-Dimensional spatial inputs (i.e.

images) and encode certain features/properties into the
architecture

• Long-Short Term Memory (LSTM) Networks
• A variant of recurrent neural networks, explicitly designed to

learn long-term dependencies and to make predictions on
temporal data

•
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Fig. 9 Depiction of a basic CNN architecture [8]
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Fig. 10 Depiction of LSTM cell [12]



I 3 CNN-LSTM Architecture
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Fig. I I CNN-LSTM-Dense architecture based on [I]

• Developed for visual time series prediction problems

• Previous work has applied architecture towards open research problems in
• Speech recognition

• Video recognition

• Air pollution forecasting



14 CNN-LSTM Architecture (cont'd)

• Various Implementations and Model Considerations

• Network specific parameters

• Number of CNN Layers (e.g. ResNet-type architecture) and LSTM Layers

• Dimension reduction (via additional Linear Layer) on extracted features

• Multi-scale additions for short- and long-term contexts

• Decoder for mapping to output

Convolutional Encoder-Decoder
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Fig. 12 Diagram of a standard convolutional encoder-decoder architecture [7]
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16 Cumulative Energy Production — Best Model
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Fig. 13 Plot of prediction results from best model (blue) against observed production data (red) for test cases

CNN LSTM
Dim.

Model Parameters # of
Layers
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Hidden
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Kernel
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Layers

# of
Hidden
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Stateful
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Output
Mapping

Layer

Cum. Energy Production
5 128, 64 3x3, lx1 2 128, 64 No No Dense

Model

•

Data
,
Optimizer Input
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Adam Arbitrary

Table I Specific model parameters used in best cumulative energy production model



17 Pressure Distribution Best Model

Observed Case 8, Time 0.0003 Observed Case 14, Time 0.3316 Observed Case 23, Time 20.014
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Model Parameters
Pressure Distribution

Model

CNN

LSTM

# of layers

# of hidden units

Kernel Size

# of layers

# of hidden units

Stateful

Dim. Reduction Layer

3

16, 32, 32

3x3

Output Mapping

Optimizer

Data Input Method

1

64

Yes

No

Decoder

NAdam

Arbitrary

Table 2 Specific model parameters used in best pressure distribution model

•

Fig. I 4 Plot of observed pressure distribution data (first row) versus prediction
results from best model (second row). Residual error are displayed (third row)



I 8 Optimizer Analysis •
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Fig. 15 Plot of training runtime, based on optimizer, from cumulative production
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Fig. 16 Plot of Mean Squared Error (MSE) results, based on optimizer, from
cumulative production prediction on individual test cases
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Fig. 17 Plot of training runtime, based on optimizer, from pressure distribution Fig. 18 Plot of Mean Squared Error (MSE) results, based on optimizer, from
prediction pressure distribution prediction on individual test cases



19 Data Input Method Analysis •

Cumulative Energy Production — Data Input Method Runtirne Analysis
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Fig. I 9 Plot of training runtime, based on data input method, from cumulative
production prediction on test cases
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Fig. 20 Plot of Mean Squared Error (MSE) results, based on data input method,
from cumulative production prediction on individual test cases
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Fig. 22 Plot of Mean Squared Error (MSE) results, based on data input method,
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2 I Discussion and Limitations •

• Despite a relatively lightweight implementation, model obtained accurate performance when
predicting cumulative energy production

• With respect to pressure distribution prediction, model has shown promising results with numerous
avenues that can be investigated in order to increase model performance
• Prediction may be limited due to the high variability in the central regions of the pressure distribution

images

• Overfitting may have occurred due to the complexity of the model

• These issues could be resolved with a larger dataset

Gained intuition regarding the use of different types of optimizers and with respect to data input
format



22 Future Work

■ Perform a complete ablation study on model parameters and data inputs and investigate various
model considerations, including

■ Multi-scale additions for short- and long-term contexts [1]

■ Effect of stateful LSTMs

■ Deeper architecture with smaller layers vs less deep architecture with larger layers

■ Perform an exhaustive parameter search in order to develop an optimized model

■ Investigate similar hybrid model architectures, e.g. CNN-Bidirectional LSTM, CNN-HMM, Deep
graphical models, etc.
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