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Shale Reservoirs

Shale source rock became an economically viable and producible

hydrocarbon reservoir by 1997

With respect to the development of shale gas and shale oil assets,
horizontal wells that include complex hydraulic fractures have
become the norm

Shale reservoirs are commonly comprised of low permeability rocks
that are characterized by a number of unique attributes

Advances in horizontal drilling and complex hydraulic fracturing has
led to a focus on reservoirs, such as Marcellus shale reservoir, that
were previously thought un-economical

Emptire State

Building

Fig. I Block model depicting the science and gas
production wells at the Marcellus Shale Energy &
Environment Laboratory ( ) [9]



s | Horizontal Wells and Hydraulic Fracturing

Vertical
well bore

* Horizontal wells are a type of directional drilling technique, dug at
angle of at least eighty degrees to a vertical well bore

* Hydraulic fracturing is a widely-used technique for stimulation of =

oil and gas production from wells drilled in hydrocarbon-bearing
. Three Forks Shale
formations

Fig. 2 Comparison of Traditional vertical wells versus
Horizontal wells [10]

* Modeling difficulties arise due to the representation of these A HYDRAULIC FRACTURING
processes in the form of fractured, porous media . . Sl e

Fig. 3 Diagram of the hydraulic fracturing process [ 1] I



Conventional Modeling Techniques

Understanding and modeling the complex flow mechanisms, impact of geo-mechanical properties,
and design of hydraulic fractures is an open research area

Literature has focused on operational and technological challenges of shale oil/gas production

Conventional reservoir simulation and modeling is a bottom-up approach where a dynamic
reservoir model 1s constructed by augmenting geological model of the reservoir with engineering
fluid flow principles [6]

Model calibration is performed using the production history in order to obtain the history-matched model

Reservoir simulation has been a key component towards production optimization. However, there
are inherent challenges that must be solved:

Developing an understanding of the physics of fluid flow in shale rocks
The resource intensive and time-consuming processes associated with reservoir simulation

The application of conventional reservoir simulation to shale assets



Previous Machine Learning-based Approaches

Due to the popularity of shale gas/oil fracturing, an .
Spatio-Temporal Data-base Development

increaSing amount O f digital ﬁeld data is being generated (Well location & trajectory, Static datas, l:umpdellnn,
Hydraulic fracturing deta, Production and Operational
aﬂd COHCCth [5] constraing)

Approaches focus on ‘hard data’ instead of rigid
representations of flow and transport mechanisms in shale
reservoirs

Development of an Al-based framework that utilizes both
field measurements and measured fracturing variables [4]

Utilizes a data-driven technique know as Top-Down modeling Effect of Effect of

Effect of Different Well Different Flow Effect of

to take into account all aspects of shale production Offset Wells | Tobies Reafirics Distances

Development of a global framework for constructing ML
algorithms on digital field data for the purposes of
hYdfﬂUhC fracture dCSigﬂ Optimization [5] Fig. 4 Flowchart depicting the development of the proposed model [4]
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Proposal

Development of a predictive data-driven platform (PDDP) for subsurface energy systems

Use machine learning to model relationships among the physical properties of shale and fractures in order
predict (1) cumulative production across time and (2) pressure distribution across space and time

Current architectures being investigated:
Physics-Informed Neural Networks (PINN)
Artificial Neural Network

Convolutional Long-Short Term Memory

My contribution:

Augment PDDP by researching effectiveness of hybrid Convolutional Neural Network (CNN) — Long-
Short Term Memory (LSTM) Architecture



,J‘_

1. Dataset
2. Data Input Methods
5. Modeling Spatio-Temporal Data

Architecture




10

Dataset

Data used to model subsurface energy production was obtained
using the MRST-Shale simulator

The dataset contains five features:

Permeability — a measure of interconnectivity
Porosity — a measure of the void spaces

Hydraunlic conductivity — ease with which media can move through
fractures

Bottom hole pressure — pressure acting on the walls of the well

Fracture aperture — perpendicular width of the open fracture

The dataset contains samples at 70 different time points across
32 total cases

Training and validation set — 29 cases

Test set — 3 cases

Hydraulic fracture

(very simplified) /

=

Honzontal well

Origin of image coordinate

Point2 (15, 10)

Fig. 5 Diagram of a horizontal
well with a simplified
hydraulic fracture

Point1 (29, 29)
Normalized Pressure dist.

Fig. 6 Diagram pressure distribution data



1 | Data Input Methods

Different multichannel input methods for the case (feature)
parameters were investigated

Data was scaled to values in the range [0, 1]

Arbitrary input format

All case parameters are input to the model in a single 60x60 array,
where parameters are stored in ‘star’-shaped pattern

Geometrically Intuitive input format
Each case parameter given its own channel

Layout of the parameter based on its physical characteristics

Fig. 7 Depiction of the how the case (feature) parameters are inserted into a
channel when using the arbitrary input format

(9) (b)

Fig. 8 Masks used to facilitate the Geometrically Intuitive input method.
Permeability and Porosity used mask (a); Hydraulic Conductivity, Bottom
Hole Pressure, and Fracture Aperture used mask (b). White pixels denote
value of |; black pixels denote value of 0.



Modeling Spatio-Temporal Data

Models must accurately represent the temporal evolution of
spatial objects over time (e.g tracking moving objects across
video, etc.)

Convolutional Neural Networks (CNN)

Algorithm is designed to take 2-Dimensional spatial inputs (i.e.
images) and encode certain features/properties into the
architecture

Long-Short Term Memory (LSTM) Networks

A variant of recurrent neural networks, explicitly designed to
learn long-term dependencies and to make predictions on
temporal data

Input

Convolution

Fully
Connected

Pooling_“_.-'-"""r

Fig. 10 Depiction of LSTM cell [12]
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CNN-LSTM Architecture

Convolutional ~ Dim. Rejductlon LSTM Layers Fully Connected I
Layers (Optional) Layers
- L L L D D l
& |- r|1 S S e e i
Xt—j o Xt—1 » N .- N > e - oo » N "N —mmmmXx
v t
\ N N a o 5\ s |
| | . o |
L o N ‘
Production 2D pressure Production at time ¢t
Fig. I | CNN-LSTM-Dense architecture based on [I]
Developed for visual time series prediction problems I

Previous work has applied architecture towards open research problems in

Speech recognition
Video recognition

Atr pollution forecasting



4+ 1 CNN-LSTM Architecture (cont’d)

Various Implementations and Model Considerations
Network specific parameters
Number of CNN Layers (e.g. ResNet-type architecture) and LSTM Layers
Dimension reduction (via additional Linear LLayer) on extracted features
Multi-scale additions for short- and long-term contexts

Decoder for mapping to output

Convolutional Encoder-Decoder

Pooling indices

:‘ - Corw + Batch Nomalisation + ReLlLE
| I Fooling [N Upsampling Softmax |

Fig. 12 Diagram of a standard convolutional encoder-decoder architecture [7]
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Cumulative Energy Production — Best Model
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Fig. 13 Plot of prediction results from best model (blue) against observed production data (red) for test cases
CNN LSTM
Diep Output
Model Parameters e # of Karnel # of # of Reduction M P.
Hidden : Hidden Stateful Layer apping
Layers . Size Layers :
Units Units
Cum. Energy Production
£y 5 128,64  3x3, IxI 2 128, 64 No No Dense

Model

Table | Specific model parameters used in best cumulative energy production model

Optimizer

Data

Input
Method

Arbitrary




Pressure Distribution — Best Model

nObserved Case 8, Time 0.0003 gbserved Case 14, Time 0.3316 gbserved Case 23, Time 20.014

l:redicted Case 14, Time 0.3316

10

Fig. 14 Plot of observed pressure distribution data (first row) versus prediction
results from best model (second row). Residual error are displayed (third row)

Model Parameters

# of layers
CNN # of hidden units

Kernel Size

# of layers
LSTM # of hidden units

Stateful
Dim. Reduction Layer
Output Mapping
Optimizer

Data Input Method

Pressure Distribution
Model

16,32,32

3x3

64

Yes

No
Decoder I
NAdam

Arbitrary

Table 2 Specific model parameters used in best pressure distribution model
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Optimizer Analysis

Cumulative Energy Production — Optimizer Runtime Analysis

Cumulative Energy Production — Optimizer M.S.E. Analysis
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Fig. 15 Plot of training runtime, based on optimizer, from cumulative production Fig. 16 Plot of Mean Squared Error (MSE) results, based on optimizer, from
prediction

cumulative production prediction on individual test cases

P Distribution — Optimizer Runtime Analysi
ressure Jistribution prmzar Sunime Snaly=ss Pressure Distribution — Optimizer M.S.E. Analysis

Runtime (seconds)
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Fig. 17 Plot of training runtime, based on optimizer, from pressure distribution Fig. 18 Plot of Mean Squared Error (MSE) results, based on optimizer, from
prediction pressure distribution prediction on individual test cases




s | Data Input Method Analysis

Cumulative Energy Production — Data Input Method Runtime Analysis Cumuilative: Erargy Produttian — Dats input Method MB.E. Anslysis
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Fig. 19 Plot of training runtime, based on data input method, from cumulative Fig. 20 Plot of Mean Squared Error (MSE) results, based on data input method,
production prediction on test cases from cumulative production prediction on individual test cases

Pressure Distribution — Data Input Method Runtime Analysis o
Pressure Distribution — Data Input Method M.S.E.

Runtime (seconds)
-

(5]

Mean Squared Error (MSE)

- - o Geometrically Intuitive
Arbitrary Geometrically Intuitive

Fig. 21 Plot of training runtime, based on data input method, from pressure Fig. 22 Plot of Mean Squared Error (MSE) results, based on data input method,
distribution prediction on test cases from pressure distribution prediction on individual test cases
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21 | Discussion and Limitations

Despite a relatively lightweight implementation, model obtained accurate performance when
predicting cumulative energy production

With respect to pressure distribution prediction, model has shown promising results with numerous
avenues that can be investigated in order to increase model performance

Prediction may be limited due to the high variability in the central regions of the pressure distribution
images

Opverfitting may have occurred due to the complexity of the model

These issues could be resolved with a larger dataset

Gained intuition regarding the use of different types of optimizers and with respect to data input
format
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Future Work

Perform a complete ablation study on model parameters and data inputs and investigate various
model considerations, including

Multi-scale additions for short- and long-term contexts [1]
Effect of stateful LSTMs

Deeper architecture with smaller layers vs less deep architecture with larger layers

Perform an exhaustive parameter search in order to develop an optimized model

Investigate similar hybrid model architectures, e.g. CNN-Bidirectional LSTM, CNN-HMM, Deep
graphical models, etc.
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