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2 I Limitations of projection-based reduced-order models
(pre-Sandia contributions)

•Linear time-invariant systems: mature

NI Accurate, certified: sharp a priori error bounds

NI Property preservation: guaranteed stability

NI Inexpensive pre-assemble operators

•Elliptic/parabolic PDEs: mature
NI Accurate, certified sharp a priori error bounds

NI Property preservation: preserve operator properties

NI Inexpensive pre-as semble operators

Nonlinear dynamical systems: ineffective

X Unstable and inaccurate: pROM solution can "blow up"

X Structure not preserved: physical properties ignored

X Not generalizable Can perform poorly for extrapolation

X Not certified error bounds can grow exponentially in
time

X Expensive projection insufficient for speedup

Many of Sandia's applications are defined
by nonlinear dynamical systems

Hypersonic reentry

Magnetohydrodynamics

Geophysical fluid dynamics

. Electromagnetics

Existing pROM technologies are not well suited for Sandia's applications



Our research is focused on developing pROMs for nonlinear
3 L

dynamical systems relevant to Sandia's applications

Research investment areas

Stabilized pROMs

• How can we keep pROMs stable and accurate?

Structure preserva tion

• How can we make pROMs satisfy important physical properties

• Conservation of mass, momentum, and energy

• Lagrangian structure

Generalization

Can we make pROMs that extrapolate?

Qualification & Certification of pROMs
Can we rely on the pROM solution?

Sandia pROM research highlights (2009-
present)
• 26 peer reviewed publications

• 705 citations

• 16 different Sandia authors

• JCP top cited since 2017 list [Carlberg & Barone]

• JCP most downloaded 2020 list [Lee & Carlberg]
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4  Stabilized pROMs

Question: How can we make stable and accurate pROMs?

Challenge: Standard pROMs be unstable for nonlinear and nonsymmetric systems

When applied to our engineering

problems:

• Standard pROM is often unstable

• Exhibits exponentially growing error

bounds
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K. Carlberg, M. Barone, and H. Antil, Galerkin v. least-squares Petrov-Galerkin projection in
nonlinear rnodel reduction, Journal of Computational Physics, 330 (2017), pp. 693-734.

Standard pROMs are unsuitable for Sandia's application use cases 1



5 Stabilized pROMs — minimum residual pROMs

Question: How can we make stable and accurate pROMs?

- Challenge: Standard pROMs be unstable for nonlinear and nonsymmetric systems

How are we addressing this?

• Standard Galerkin pRO is constructed via residual orthogonality

• Fails for nonsymmetric systems

• We compute solutions that minimize the FOM residual

arg min4 — f (y, tu,, OVA
y E V

• Yields stable, accurate, and robust approximations

• Sandia has been a pioneer in minimum-residual pROMs

We compute solutions that best satisfy the governing
equations given our data

Sandia min-res literature:
• K. Carlberg, M. Barone, and H. Antil [2017]
• Y. Choi and K. Carlberg [2019]
• E. Parish and K. Carlberg [2020]

Other Sandia literature on stabilized pROMs
• Barone, I. Tezaur, et al [09,10]
• I. Tezaur. et al [16]
• I. Tezaur, B. van Bloemen Waanders, S.

Arunajatesan, M. Barone [14]
• Parish et al. [20]
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6  Stabilized pROMs — minimum residual pROMs

Question: How can we make stable and accurate pROMs?

Challenge: Standard pROMs be unstable for nonlinear and nonsymmetric systems

When applied to our engineering problems:

• Minimum-residual pROMs yield stable and accurate solutions

2
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time
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high-fidelity:
dim 1.2x106

Galerkin: dim 204

Galerkin: dim 368

Galerkin: dim 564

— LSPG: dim 204

LSPG: dim 368

- - LSPG: dim 564

Sandia's research on minimum residual projections
enables pROMs for Sandia's applications

K. Carlberg, M. Barone, and H.

Antil, Galerldn v. least-squares

Petrov-Galerkin projection in

nonlinear modcl reduction,
journal of Computational

Physics, 330 (2017), pp. 693-

734.
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7 Structu re preservation
Tezaur, Fike, Carlberg, Barone, Maddox,
Mussoni, Balajewicz, Advanced Fluid Reduced
Order Models for Compressible F low. [17]

• Many systems underlying Sandia's applications have important structure
1.2

• Conservation of mass, momentum, and energy in fluid dynamics
• Solenoidal fields in magnetohydrodynamics

• Lagrangian structure in solid mechanics
0.8
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Minirnum residual formulation naturally allows for constraints
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minimize - f tt,t)

subject to ...
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Velocity as a function of x
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x
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O

Total variation diminishing constrained ROM

Sandia structure preservation literature:
• Carlberg, Tuminaro, and Boggs [15]
• Pen, Carlberg [15]
• Carlberg, Choi, Sargsyan [17]
• Lee, Carlberg [20]

Constrained minimum-residual pROMs enable
formulations that preserve structure
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8 I Generalization

Question: How can we obtain accurate solutions when
we apply our pROMs in new regimes?

• Challenge: standard approaches fail for certain problems

Example: building a pROM of the linear convection equation

au ± c au n
at az

Solution is a wave propagating left to right

Build a pROM using data for t E [0, 0.5]

Use the pROM to predict for t C [0 , 1]
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9 I Generalization

Question: How can we obtain accurate solutions when
we apply our pROMs in new regimes?

• Challenge: standard approaches fail for certain problems

Example: building a pROM of the linear convection equation
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• ROM solution

au ± au n 11 111 - - - FOMc
at az

1 2 -
— pROM

Solution is a wave propagating left to right

Build a pROM using data for t E [0, 0.5]

Use the pROM to predict for t E [O, 1]

PCA fails to identify low-dimensional structure!
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10 Generalization: can we leverage advancements in ML?

PCA fails to identify low-dimensional structure

Precludes the use of pROMs for many important problems!

How are we addressing this?

PCA identifies linear subspaces

• We use machine learning to identify nonlinear manifolds

• Use neural networks to identify low-dimensional structure

• Minimize the residual on the resulting low-dimensional
nonlinear manifold

Linear: p,) = 40x(t, tt)

Nonlinear: p,) = g (th(t, p))

ML-pROMs improve generalization!

1
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Latent .
2 dimension

Encoder Decoder
Hidden layer 2 : Hidden layer 1
300 neurons 300 neurons

Encoder
Hidden layer 1 :
500 neurons

Sandia ML-ROM literature
• Lee & Carlberg [2020]
• Tencer & Potter [2020]

Decoder
Hidden layer 2
500 neurons

- - - FOM

- pROM

- ML-ROM
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11 Generalization: additional work

Domain decomposition pROMs [Hoang, Choi, Carlberg 20]

- Decomposes pROM problem into subdomains

pillar

rrj
r-Lr-L(rj

arch "Pont du Gard" bridge structure

(Courtesy from Huynh et al., 2013)

h-adaptivity [Etter, Carlberg 20, 1 4]

Adapts pROM basis on the fly for improved generalization

Sandia ML-ROM literature
• Lee & Carlberg [2020]
• Tencer & Potter [2020]
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12 Qualification & Certification of pROMs

Question: How can we quantify the accuracy of
pROM solutions?

Traditional approaches for error quantification

• A posteriori error bounds

• Dual weighted residuals

Traditional approaches can lack sharpness/accuracy and
can be difficult to compute

• Traditional approaches for error quantification are not
practical for pROMs applied to Sandia's applications!

28
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pROMs incur errors!
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— Galerkin: dim 204

Galerkin: dim 368

Galerkin: dim 564

— LSPG: dim 204
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13 I Qualification & Certification of pROMs

Question: How can we quantify the accuracy of
pROM solutions?

How are we addressing this?

• We take a data-driven approach: machine learning error models

• Main idea: build a feature-error mapping via a regression function

e FAn Illeen

Enables statistically certified ROMs!

Example: Component Structural Model

R
O
M
 e
rr

or
 = 0.990

.4 -2 0

support vector machine
error prediction

B. Freno and K. Carlberg, "Machine-learning error models for approximate
solutions to parameter4d gstems of nonlinear equations", CMAME, 19.

Sandia error modeling literature:
• Drohrnan & Carlberg [2015]
• Trehan, Carlberg, Durlofsky, [2017]
• Freno & Carlberg [2019]
• Parish & Carlberg [2020]
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14 I Research summary

Standard pROM technologies for nonlinear dynamical systems

X Unstable and inaccurate: ROM solution can "blow up"

pWe are developing stabilized pROM formulations

X Structure not preserved physical properties ignored

DWe are developing constraint-based pROMs

X Not generalizable: Can perform poorly for extrapolation

DWe are developing ML-pROMs, DD-pROMs, and h-adaptive pROMs

X Not certified error bounds can grow exponentially in time

pWe are developing machine learning error models

We are continuing to

• Advance these technologies and integrate them in Pressio

• Pursue research to address challenges encountered by the application team



1 5 Conclusions

• pROMs are powerful tools for surrogate modeling

Sandia's investments in pROM technology has been growing

pROMs have been integrated into Aria and SPARC

Yield <1% errors with >100x speed-up in wall-time

• Integration is achieved via Pressio

• Computational framework aimed at enabling pROMs in
application codes

For project management, pROM work has been subdivided:

Application Use Case R&D

• Deployment R&D

- Methods R&D

Methods
R&D

Deployment
REtD

Application Use
Case R&D



1 6 Conclusions

• We are looking for your feedback!

1. How could pROM R&D contribute to your (team's/department's) activities?

2. What gaps within the current pROM R&D projects need to be addressed to make pROMs
useful?

3. Which staff are interested in engaging pROM R&D? What areas of R&D are they interested in
(i.e., methods, deployment, and/or application use case)?

4. Which mechanics areas are interested in engaging in pROM R&D?

Who are the right SMEs for those areas?

Would current funding streams support engagement or would joint funding need to be pursued?

5. What are barriers and pathways to deploying pROM on mission problems?

1. What kind of accuracy/performance would an application need to be usable?

2. What metrics are important and how would you measure accuracy?

6. What reduced-physics and/or data-driven surrogate modeling efforts at Sandia should the pROM
team engage?

7. What technical, funding, personnel, and teaming constructs are required to support eventual
productization of the pROM capability?

Thank you for your time!

Methods
R&D

Deployment
REtD

Application Use
Case R&D
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18
We achieve large improvements in the generalization criteria with
manifold model reduction

2D Chemically reacting
flow
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1 9 Manifold LSPG projection uses a nonlinear function instead of
a linear basis, resulting in more capacity [Lee & Carlberg, 2019]  

range(D) : {Cil x E _Vas

Example:
N=3
P=2

x

x(t) t-r:-2, ii(t)

Decoder:
One choice of

nonlinear
function
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}

0 z(t) E range(0)

S : {g(i) 1 X c -/P}

x

X2 X1

X(r) rr R(t) — g(X(t)) e S
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4 convolutional 2 fully-connected 2 fully-connected 4 convolutional
layers layers layers layers


