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2 | Limitations of projection-based reduced-order models
(pre-Sandia contributions)

*Linear time-invariant systems: mature
V' Accurate, certified: shatp a priori error bounds

Y Property preservation: guaranteed stability

¥ Inexpensive: pre-assemble operators

*Elliptic/parabolic PDEs: mature

Y Accurate, certified: shatp a priori error bounds
Y Property preservation: preserve operator properties

Y Inexpensive: pre-assemble operators

Existing pROM technologies are not well suited for Sandia’s applications




Our research is focused on developing pROMs for nonlinear @

dynamical systems relevant to Sandia’s applications |
Research investment areas Sandia pROM research highlights (2009-

present)
. * 26 peer reviewed publications
* Stabilized pROMs R
* How can we keep pROMs stable and accurate? 16 different Sandia authors
JCP top cited since 2017 list [Carlberg & Barone]
. Strllctlll‘epl‘eservatjon JCP most downloaded 2020 list [Lee & Carlberg]

* How can we make pROMs satisty important physical properties

* Conservation of mass, momentum, and energy

* Lagrangian structure

Generalization
¢ Can we make pROMs that extrapolate?
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Qualification & Certification of pROMs
* Can we rely on the pROM solution?

2010 2012 2014 2016 2018 2020
Year
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Stabilized pROMs

g QllCStiOl’l: How can we make stable and accurate pROMs?

. Challenge: Standard pROMs be unstable for nonlinear and nonsymmetric systems

When applied to our engineering —
problems:

* Standard pROM is often unstable

* Exhibits exponentially growing error
bounds
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K. Carlberg, M. Barone, and H. Antil, Galerkin v. least-squares Petrov-Galerkin projection in
nonlinear model reduction, Journal of Computational Physics, 330 (2017), pp. 693-734.

Standard pROMs are unsuitable for Sandia’s application use cases

| . B




s | Stabilized pROMs — minimum residual pROMs

¢ Question: How can we make stable and accurate pROMs?
s Challenge: Standard pROMs be unstable for nonlinear and nonsymmetric systems

How are we addressing this?
* Standard Galerkin pROM is constructed via residual orthogonality I

* Tails for nonsymmetric systems

* We compute solutions that minimize the FOM residual

Z(t, p) = arg minl|y — f(y, p,t)|a
yeV

* Yields stable, accurate, and robust approximations

Sandia min-res literature:

o 1 1 i 1ni - 1 c K. Carlberg, arone, an . Anti ,
Sandia has been a pioneer in minimum-residual pROMs L gl e ol il (00T

E. Parish and K. Carlbeu [2020]

Other Sandia literature on stabilized pROMs

. . o Barone, I. Tezaur, et al [09,10
We compute solutions that best satisty the governing Lo el
. . C 1. Tezgur, B. vaﬂn B (;(e)rixlleen Waanders, S.
equations given our data . rungjardan, 3. Barone 14



¢ | Stabilized pROMs — minimum residual pROMs

. Question: How can we make stable and accurate pROMs?
- Challenge: Standard pROMs be unstable for nonlinear and nonsymmetric systems

When applied to our engineering problems:

* Minimum-residual pROM:s yield stable and accurate solutions I
T— 28 . e B
- Nigh-fidelity:
dim 1.2x10%
g ~ Galerkin: dim 204 K. Carlberg, M. Barone, and H.
o —— Antil, Galerkin v. least-squares
5. 24 Galerkin: dim 368 Petrov-Galerkin projection in
T - Galerkin: dim 564 nonlinear model redgction,
@ Journal of Computational
5 — LSPG: dim 204 Physics, 330 (2017), pp. 693—
9 20 734.
@ @ A6l 2RI MY WMWY NVom LSPG: dim 368
h 4 a
’ - = |SPG: dim 564
4 16" .
- —3 a 0 2 4 b - 10 12
time

Sandia’s research on minimum residual projections
enables pROMs for Sandia’s applications




Tezaur, Fike, Catlberg, Barone, Maddox, I
Mussoni, Balajewicz, Advanced Fluid Rednced 5

7 ‘ St r u C t u re P re S e r V at i O n Order Models for Compressible Flow. [17]

* Many systems underlying Sandia’s applications have important structure
* Conservation of mass, momentum, and energy in fluid dynamics

* Solenoidal fields in magnetohydrodynamics ) A A n
AVAvavany

Velocity as a function of x

* Lagrangian structure in solid mechanics v
= 0.6

* Minimum residual formulation naturally allows for constraints I

FOM
LSPG
VD

mlnlmlzeHy — j:(y7 I‘L?t)H_QA 0 02 (j_.s ) 0.6 0.8 .

Total variation diminishing constrained ROM

subject to

Sandia structure preservation literature:
Carlberg, Tuminaro, and Boggs [15]
Pen, Carlberg [15]

Carlberg, Choi, Sargsyan [17]
Lee, Carlberg [20]

Constrained minimum-residual pROMs enable
formulations that preserve structure




s | Generalization

« @ . ® « B
. . ) ‘-0\.' ) . . i .\.
* Question: How can we obtain accurate solutions when " L BT s =@
we apply our pROMs in new regimes? , P R
- . .______0__6.—-
. . ® "
* Challenge: standard approaches fail for certain problems b : :

D Design space
O High-fidelity solution
ROM solution

* Example: building a pROM of the linear convection equation
ou ou __
Ot + Cay, — 0

* Solution is a wave propagating left to right

* Build 2a pROM using data for t € [0, 0.5] =%

* Use the pROM to predict for ¢ € [0, 1:




s | Generalization
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* Question: How can we obtain accurate solutions when " L BT s =@
we apply our pROMs in new regimes? , P R
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* Challenge: standard approaches fail for certain problems b :

D Design space
O High-fidelity solution
ROM solution

* Example: building a pROM of the linear convection equation
ou ou __
Ot + Cay, — 0

* Solution is a wave propagating left to right

* Build 2a pROM using data for t € [0, 0.5]

* Use the pROM to predict for ¢ € [O, 1:

PCA fails to identify low-dimensional structure! | 2




Sandia ML-ROM literature
e Lee & Carlberg [2020]

0 | Generalization: can we leverage advancements in ML? et

* PCA fails to identify low-dimensional structure
* Precludes the use of pROMs for many important problems!

* How are we addressing this?

* PCA identifies linear subspaces
* We use machine learning to identify nonlinear manifolds

* Use neural networks to identify low-dimensional structure

* Minimize the residual on the resulting low-dimensional
nonlinear manifold

Linear: ﬁ:(t, /J') =P (t, ,U')

£r
Nonlinear: Z(t, ) =g ( t(t, )
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’,’ Hidden layer 2 : Hidden layer 1 :
300 neurons 300 neurons
Encoder Decoder
Hidden layer 1 : Hidden layer 2 :
500 neurons 500 neurons

Data collection



11 I Generalization: additional work

* Domain decomposition pROMS [Hoang, Choi, Carlberg 20]

* Decomposes pROM problem into subdomains

/)
TAA

pillar arch

Y
)

(Courtesy from Huynh et al., 2013)

¢ h-adaptivity [Etter, Carlberg 20, 14]

* Adapts pROM basis on the fly for improved generalization

/‘\
/“\

“Pont du Gard” bridge structure

Sandia ML-ROM literature
* Lee & Carlberg [2020]

e Tencer & Potter [2020]

. D Bmmme




12 I Qualification & Certification of pROMs @)

* Question: How can we quantify the accuracy of
pROM solutions?

PROMs incur errors!
* Traditional approaches for error quantification

— high-fidelity:
A dim 1.2x10%
* A posteriori error bounds P — Galerkin: dim 204
e - Galerkin: dim 368
. . Q
* Dual weighted residuals = - - Galerkin: dim 564
@
. = — LSPG: dim 204
* Traditional approaches can lack sharpness/accuracy and 2 |
i ANl OO\l ORI N WM Ve LSPG: dim 368
can be difficult to compute = Eoe——

2 4 6 8 10 12

* Traditional approaches for error quantification are not
practical for pPROMs applied to Sandia’s applications!

—




13 ‘ Qualification & Certification of pROMs Example: Component Structural Model

* Question: How can we quantify the accuracy of
pROM solutions?

* How are we addressing this?
* We take a data-driven approach: machine learning error models

* Main idea: build a feature-error mapping via a regression function

/ \ support vector machine
LL, t — :D([l;,, t) error prediction

ROM error

B. Freno and K. Catlberg, “Machine-learning error models for approximate
Solutions to parameterized systems of nonlinear equations’, CMAME, 19.

Feature Regression Error

engineering function approx.
Sandia error modeling literature:
Drohman & Carlberg [2015]

Trehan, Carlberg, Durlofsky, [2017]

Enables statistically certified ROMs! L b Cartvess 020




14 | Research summary

Standard pROM technologies for nonlinear dynamical systems

X Unstable and inaccurate: ROM solution can “blow up”

dWe are developing stabilized pROM formulations

X Structure not preserved- physical properties ignored

dWe are developing constraint-based pROMs

X Not generalizable: Can perform pootly for extrapolation
JdWe are developing ML-pROMs, DD-pROMs, and h-adaptive pROMs

X Not certified: error bounds can grow exponentially in time

JdWe are developing machine learning error models

We are continuing to
* Advance these technologies and integrate them in Pressio
* Pursue research to address challenges encountered by the application team



15 I Conclusions

* pPROM:s are powerful tools for surrogate modeling
* Sandia’s investments in pROM technology has been growing

* pPROM:s have been integrated into Aria and SPARC
* Yield <1% errors with >100x speed-up in wall-time

* Integration is achieved via Pressio

* Computational framework aimed at enabling pPROMs in
application codes

* Por project management, pPROM work has been subdivided:
* Application Use Case R&D
* Deployment R&D
* Methods R&D

Methods Deployment
R&D R&D

Application Use
Case R&D



16 ‘ Conclusions

* We are looking for your feedback!

1. How could pROM R&D contribute to your (team’s/department’s) activities?

2. What gaps within the current pROM R&D projects need to be addressed to make pROMs
useful?

3. Which staff are interested in engaging pPROM R&D? What areas of R&D are they interested in
(i.e., methods, deployment, and/or application use case)?

Methods Deployment
R&D R&D

4. Which mechanics areas are interested in engaging in pPROM R&D?
> Who are the right SMEs for those areas?

> Would current funding streams support engagement or would joint funding need to be pursued?

5. What are barriers and pathways to deploying pPROM on mission problems?

1. What kind of accuracy/petrformance would an application need to be usable?

2. What metrics are important and how would you measure accuracy?

Application Use
Case R&D

0. What reduced-physics and/or data-driven surrogate modeling efforts at Sandia should the pPROM
team engager

7. What technical, funding, personnel, and teaming constructs are required to support eventual
productization of the pROM capability?

Thank you for your time!



17 | Backup slides




We achieve large improvements in the generalization criteria with

18 , :
manifold model reduction
2D Chemically reactin ow(Xx, t: . . .
ogremicalyreacting - MW EH) _ g (5vw(, £ 1)) — v VW%, £ 1) + a(w(, £ 1); )
high-fidelity LSPG w/ PCA Manifold LSPG w/
model ROM dimension=5 autoencoder
ROM dimension=5
0.9
1500 1500 1500
tem peratu re - 1000 1000 1000
500 500 500
0.0
1.8 1.8
0.9 0.9
0.02 0.02 0.02
H2 fraction
0.01 0.01 0.01
0.00 0.0 0.00 0.00

[Lee & Carlberg, 2020] %0 "

1.8 0.0 1.8



19 I Manifold LSPG projection uses a nonlinear function instead of
a linear basis, resulting in more capacity [Lee & Carlberg, 2019]

range(®) := {®dx|x € RP} S :={g(x)|x € RP}
Example: 3 : X3
P=2
x(t) mx(1) = Oa(1) € range(®)  x(t) & x(t) = g(k(t)) € S

Decoder: | .
One choice of — | —
nonlinear ) - o

function
D e el V- S S —

4 convolutional 2 fully-connected 2 fully-connected 4 convolutional
layers layers layers layers




