Uncertainty Quantification
Development and Application in
the A2e Program

ML I A Y TR MDA
q + Ly * ' N LA \d
' P :
) o Sl Yo
LA
a e st Byty
S
R

M an S a8

Wakebench, IEA Task 31 Interim Meeting
NAWEA/WindTech 2019
University of Massachusetts Amherst

October 14-16, 2019

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.



VV&UQ Multi-year Goals

Enable simulation and design of optimized wind plants

Execute model validation campaigns across A2e to:

L. Improve the research community’s physical understanding of wake dynamics and turbine
interaction
2 Quantify model prediction uncertainty of wake flow dynamics and turbine interaction

Develop and demonstrate uncertainty quantification tools and processes for wind energy
applications

Engage with the public to disseminate results and progress on a regular basis.
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Integrated Experiment and Model Planning and Execution
Put the “Integration” into IEMPE

What roles do the different A2E efforts play
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A2e Validation Coordination Working Group

A2e Area

VIRVEL [T ELie [N e0 eI [ EIL 88 Jonathan Naughton (UWYO)

VVvV&UQ PI David Maniaci (SNL)

Matthew Macduff, Chitra Sivaraman (PNNL)
Offshore Amy Robertson (NREL)
ISDA-Systems Garrett Barter (NREL)
ISDA-MV Jason Jonkman (NREL)

Mike Sprague(NREL), Shreyas Ananthan(NREL), Paul Crozier (SNL)
Wake Dynamics Pat Moriarty (NREL), Brian Naughton (SNL)

Caroline Drax| (NREL)

MMC Larry Berg (PNNL), Matt Churchfield (NREL), Sue Haupt (NCAR)

Jason Fields (NREL)

Controls Paul Fleming, Eric Simley (NREL)

* Bi-annual Meetings with smaller focus groups meeting more regularly
* Summary reports of A2e validation progress and plans

Validation Leads



Ongoing V&V Coordination Work

Coordinating Efforts within A2e
> Have met with nearly all groups with

validation interest over the last 4 months

Documenting and Disseminating
V&V Materials

° IPP Document Published

° Interacting with Wind Community
o IEA Tasks 29, 30, 31
> Wind Energy Science Conference

Finalizing Validation Experiment
Evaluation

° Applying to vatious previous
expenments and ensuring all relevant
issues addressed

Validation Roadmap
° Collecting input to develop roadmap(s)

Developing a short-term
experiment as demonstration for
V&YV process

> Working with several possibilities
suggested by A2e tasks

> OCO6 experiments
> Unsteady aerodynamics experiments
° Aero-elastic experiments

> One or more may be chosen for
demonstration purposes

> Considering what methods to engage
community

> Workshops
Stakeholder Meetings



V&V: Communication and Documentation _

1.IEA Task 31, Wakebench. Working toward a collaborative validation process.
1.WAKEBENCH Best Practice Guidelines for Wind Farm Flow Models First Edition (2015)
2.WAKEBENCH Model Evaluation Protocol for Wind Farm Flow Models First Edition (2015)

2.V&V Framework (September 2015): the development and execution of coordinated
modeling and experiential programs to assess the predictive capability of computational

models of complex systems through focused, well structured, and formal processes.

3.A2e High Fidelity Modeling: Strategic Planning Meetings (November 2015) : A
report on the foundational planning for the A2e High Fidelity Modeling effort for
predictive modeling of whole wind plant physics. I

4.V&YV Integrated Program Planning for Wind Plant Performance (June 2019): This
document outlines the integrated program planning (IPP) process and applies it to wind

plant performance prediction.

5.A2e High Fidelity Modeling Validation Roadmap (October 2019): This document
outlines a comprehensive validation program for high fidelity wind plant models.
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Maniaci, David C, 10/13/2019



|What is Uncertainty Quantification? | I

* Methods to codify the assimilation of observational data
* UQ methods are critical for quantitative model validation focused on enabling
predictive numerical simulations in research and advanced design
* The characterization of errors, uncertainties, and model inadequacies
* Forward predictions with confidence for untested/unstable regimes
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Modified from M. Eldred, 2019



Uncertainty Quantification Workflow

Characterization of input uncertainties through assimilation of data

Propagation of input uncertainties to response Qol
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Workflow Maximize expected utility from new data d®, e.g.
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Uncertainty Quantification Workflow (M. Eldred)

Characterization of input uncertainties through assimilation of data

* Prior distributions based on a priori knowledge
* Observational data (experiments, reference solns.) = infer posterior distributions via Bayes rule
* Use of data can reduce uncertainty in obj./constraints (priors are constrained)

* Design using prior uncertainties can be overly conservative

* Reduced uncertainty of data-informed UQ can produce designs with greater performance

Random inputs <:> <:>

(prior) ‘ ‘

Random inputs
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(prior = posterior)

Quantities of
interest (Qol)

Propagation of input uncertainties to response Qol

* Push forward of posterior distributions

* Compute statistics that reflect goals of OUU process (i.e., moments, failure probabilities)



Optimal Experimental Design (OED) Workflow

Characterization of input uncertainties through assimilation of data

e Prior distributions based on a priori knowledge

* Observational data (experiments, reference solns.) = infer posterior distributions via Bayes rule
* Use of data can reduce uncertainty in obj./constraints (priors are constrained)
* Design using prior uncertainties can be overly conservative
* Reduced uncertainty of data-informed UQ can produce designs with greater performance

Maximize expected utility from new data d®, e.g. D-
optimal: max information gain / relative entropy /

Kullback-Leibler (KL) divergence from m, > m .

(prior)

(p‘vrior -> posterior) do

Random inputs < > < > Random inputs
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‘ Optimization Under Uncertainty (OUU) Workflow

Roll up of capabilities Achieve desired statistical performance
* Inference for parametric + model form *  Common OUU goals:
uncertainties * Robustness = minimize Qol variance
* Scalable forward propagation * Reliability = constrain failure probability

* Leverage surrogates: Active SS, ML-MF, ROM
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Summary of Wind UQ Studies under Ale

Previous: Forward UQ

* Cylinder wake in Nalu (initial demo at right)
* SWIFT Site with Nalu + OpenFAST

Current: Inverse UQ
* Infer upstream conditions from SwiFT data sets

H Multilevel simulations Equivalent Cost
* Open FAST + WIndSE (+ NaIU) Accuracy Coarsest Coarser Coarse  Medium MI?MC MC
6.08e-05 28 20 4 1 18 221
6.08e-06 2796 194 37 3 167 2202
6.08e-07 27952 1935 364 25 1657 22140
F uture: O E D / O U U 6.08¢-08 || 279520 19345 3640 242 16551 || 220130
. “ . . . TABLE: Optimal MLMC samples allocation Vs MC allocation
* Determine best configurations (locations in

Extrapolated Variance of the estimator

random parameter space) to collect more data
* Design of wind plants for an uncertain
operational environment

fo5 [

Variance of the estimator

1e-6

i i
1e+0 Te+t 1e+3 Te+d

1e+2
Equivalent HF simulations



14 I Computational Approach

*Low Fidelity: OpenFAST-AeroDyn-Turbsim (https:/github.com/OpenFAST)
* Turbsim generates turbulent atmospheric boundary layer flow field, semi-empirical
* AereoDyn models the aerodynamic forces on the rotor
* OpenFAST models the structural and controls response of the rotor (same for Nalu)

pr- SAND2014-15367M 3
*High Fidelity: Nalu (https://github.com/NaluCFD) NHEP—

. . . Open Source: BSD license has been grantedsa»
b LES, SOIVeS the NaVIer-StOkeS equat'ons |n the IOW‘MaCh number Weak scaling demonstrated to 524,000 core with 10 billion unstructured hex mesh

. . . . . o Generalized unstructured (CVFEM and EBVC supported)
approximation with the one-equation, constant coefficient, TKE
model for SGS, unstructured massively parallel.

* Actuator Line model of the rotor
* Single, uniform mesh (no nesting)

2D/3D periodic

© ey
Cost estimates for Nalu and OpenFAST simulations. =
Case Mesh size Simulation time | CPUs Cost Cost
(seconds) (CPU-hours) | (relative)
OpenFAST 500 1 0.42 1
Coarse 100x50x50 2000 30 240 576

Medium 200x100x100 2000 160 960 2304
Fine 400x200x200 2000 400 6360 16500

Reference | 800x200x200 2000 400 38400 91400

Domino, S. "Sierra Low Mach Module: Nalu Theory Manual 1.0", SAND2015-3107W, Sandia National Laboratories Unclassified Unlimited
Release (UUR), 2015. https://github.com/NaluCFD/NaluDoc




INalu-Wind Wake Assessment, SWiFT |

—

Comparisons between neutral atmospheric boundary layer inflow experimental data were compared with I
Nalu-Wind simulations, including uding power, loads, and wake data.

"f’fff’,‘,’_'f.“f‘fff"’." , : BE = 7° Simulation Experiment
= . : i OOP Blade Bending (kN m) 37.0+ 6.0 37.1 £ 6.2
- =5 . : 8
75 Rel. Flapwise DEM (sim./exp.) 1.06 1.00
f = Generator Power (kW) 884+ 173 81.2+ 193
65 E
e Upstream turbine (WTGa1) comparison
85 between experimental and simulation results
s of the 10-minute averages of the mean out-of-
, e 4 ol B plane (OOP) blade-root bending moment for
w  w @ o0 = o » P - Rt o e ———— the three blades {kN m), relative flapwise DEM
dh y (m) (simulation/experiment) and generator power
Sample of the wake date from the measured Nalu-Wind Simulated wake data (kW) for yaw = 0° case.
Spinnerlidar at the SWiFT facility. 5D downwind. os
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y (m)
Average over 10 minutes for the simulated
wake data 5D downwind, sampled to
match the experimental lidar data.

Average over 10 minutes of the
wake data from the measured
Spinnerlidar.

Comparison of wake velocity deficit for
the experiment and the Nalu-Wind
simulated lidar data.



Wind Turbine Power Curve Example

, : , . . Power Curve Comparison
Wind enefggr - - - 7ot DT R R BT

Simulation (Forward UQ)
Simulation (Parametric)
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Wind Turbine Sensitivity Analysis (Jonkman et al.)
Project Objective: Identify input

parameters with high uncertainty / . R
variability that are most influential I\ L ‘
to ultimate & fatigue loads during V]

normal operation ,
P * This work:

* Related work: o Overview of sensitivity

o Sensitivity assessment of inflow assessment of inflow & full
turbulence (profile, spectrum turbine properties (aerodynamic,
coherence, correlations) — Paper / struct'ural, contr‘ol) — Publlcat_lon
presentation @ AIAA SciTech 2018; submitted to Wind Energy Science
updated in publication submitted to * Outcome of this research could
Wind Energy Science inform:

o Sensitivity assessment of o Probabilistic design approaches

aerodynamic subset of turbine o Better site-suitability analyses I
roperties — Paper / presentation
E\IAS\ SciTech 20p19 /P @ o Development of surrogate models ‘
o Propagation of uncertainty to
support model validation |
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MDC1 Maybe turn A2e VV&UQ work into a Quad chart slide. would need to add work by Caroline in WFIP2 and Ryan King in

ISDA-SE
Maniaci, David C, 10/11/2019



|EA Wind Task 30 —V+V of Offshore Wind Modeling Tools

(Robertson) B
I?Ifcfl-sﬁi};lolg AC%((/iii g%rans a§180n Collaboration (OC3) — run 0c3, 0c4 4 Verification
\ : \\‘ \ : . ) . : /
Verify and validate the engineering-level tools used | S ?" N | aas ‘( ,/‘K
to design offshore wind systems tO advance the g ; ) b
overall accuracy of offshore wind computer modeling |

tools, to improve their predictive capability for estimating
structural loads.

Group models benchmark problems, and compares
solutions between codes and to measurement data from
scaled testing and full-scale prototypes

Project running since 2010

(OC3/0C4/0C5) — "

ot

_ B} _ 0G3 Tripod =
Coupled tools (aero-hydro-servo P ocalackel | 0c4DeepCind

elastic) used to predict B I T b orible
motions/global loads in a system, ﬂ . ,

ensuring the design meets IEC N - 03-Hywind Spar
standards | ~ OCS - Validation
Example tools: FAST, Bladed, = o | | 4
HAWC2, FLEX i

-

Identify errors, examine differences
in modeling theories/approaches,
improve tools, train analysts,

identity R+D needs

Phase | Phase Il Phase lll



Mesoscale Uncertainty Quantification
(Berg, Kravitz, et al.)

» Bottom line: If you get the inflow wrong, you get everything wrong.
» How “right” do we need to be? What are the key controls on uncertainty

in modeling the mesoscale flow? = =
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When calculating sensitivities, we can’t just
average over the entire domain
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V&V Workflow Validation Experimentation

. Physics Models L
Application i DeAvelg‘I):pt::nt »  Development & Design Experiment
- Coupling
Definition i *
\ 4 Grid II:;)':::t > Grid Development Instrument Selection
PIRT Deve
& v
v Develop & Deploy
Prioritization, Verification, Testing Instrumentation
Use Cases 1% v
v Develop & Verify
) Scaling — > W(I))l:ﬂow S::tjz :nd — Test Equipment
Physics mons v
Selection ————
¥ Calibration
Design v
Validation —— Test Plan Safety
Studies v Process
2 v
o Take Data
v

Process Data, QA/QC

v v
Select Cases for Data Archive
Analysis
* Experimental Data
Interpretation

Setup Models of
Cases

v

Simulate Cases

v

Process & Compare
Results

v * v

Interpretation & Reporting
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‘ Uncertainty Quantification development and
application in the A2e program (David Maniaci, SNL)

- - o B I

Virtuous Cycle
Validation
Model Development
Experimentation
“If a man will begin v Uncertainty Quantification

certainties, he shall e
doubts; but if he will |
content to begin with
he shall end in certai
Bacon - 1605.




