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High-precision measurements drive innovation
and improvements in atomic models
• HEDP uses models for experimental design and diagnostics

• We can adjust model detail to match applications:
• Low-resolution models are ok for rad-hydro design
• High-resolution models are needed for spectroscopic diagnostics

• For all applications, we care about accuracy, which requires completeness and 
consistency, and about tractability, which often requires sacrifices in detail

• High-precision measurements from carefully prepared experiments set the standard:
XFEL fluorescence (e.g. Vinko et al)
• Continuum lowering & dense plasma effects

• Opacity (Z, NIF, Omega) (e.g. Bailey et al)
• One- and two-photon cross sections, line shapes

• ICF: fluorescence and absorption (e.g. Hansen et al, Jiang et al)
• Line shifts and dense plasma effects

• Where would we like to see models go?
• Internally consistent, spectroscopically detailed, rigorously complete... and tractable
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A brief tour of the atomic model zoo

Density functional theory
molecular dynamics (DFT-MD)
Accurate for EOS & transport
Quite expensive & undetailed
Natively consistent & complete
Limited to LTE

e.g. TD-DFT
A. Baczewski

Tables

1

e.g. Gorgon
C. Jennings

Density functional theory
Average atom (DFT-AA)
Accurate-ish for EOS & transport
Quite cheap & undetailed
Natively consistent & complete
Limited to LTE

Apl.s1.9

r2s0.6
2p2.8

e.g. Purgatorio
B. Wilson, P. Sterne

or NPA (Starrett, Saumon)
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Configuration-based
collisional-radiative models
Accurate for EOS & spectra
Variable cost & detail
Can be inconsistent, incomplete
Can handle non-LTE

(1)2(2)1(4)1
(1)2(2)1(3)1

(1 )2(2)2

e.g. DCA
H.Scott

photOn energy (eV)

(1)2(2)1(4)1
1s22t13f1

1 s22 p2
1 s22s2

e.g. SCRAM
S. Hansen

1 s22s 2p



Detail and completeness compete with tractability;
consistency is often an afterthought
• Combinatorics of completeness are unforgiving: 1020 -

• lon number and electronic states challenge
DFT-MD at high Z, T

• Electronic configurations & rates challenge
collisional-radiative models at high Z

• Sacrificing completeness degrades accuracy

• Sacrifices can be made in detail/resolution:
• DFT-AA models access all Z, T easily
• Hydrogenic collisional-radiative models are fast

enough to run inline in simulations
• Rough rate approximations can be ok

• Consistency also matters:
• Density effects/structure/rates
• Rates/fields/lineshapes
• EOS/transport/opacity
• Non-LTE & non-local effects
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2016
Ed. Yu. Ralchenko

Modern Methods
in Collisional-
Radiative
Modeling of
Plasmas

High-precision measurements help us know
what's "good enough,"

but tend to require high resolution



Bailey et al's 2015 iron opacity measurements stimulated
extensive investigations

• Good agreement with detailed models at lower T, ne
• OP not sufficiently detailed

• Disagreement in widths, windows & continuum at higher T, ne
• Better cross sections? (Nahar& Pradhan)
• More complete states? (Iglesias, Hansen)
• More complete rates? (More, Pain, Kruse & Iglesias)
• Better line shapes? (Gomez, Nagayama)
• Refined analysis? (Nagayama)
• More experiments? (Bailey, Loisel, Perry, Heeter...)
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High iron continuum was especially worrisome
2015 results

2020 reanalysis

Wavelength (A) Wavelength (A)

"N 
\

2019 new data
Nagayama et al, PRL 122, 135001 (2019)

9 6.5 7 7.5
Wavelength (A)

• Iglesias HEDP 15, 4 (2015): Sum rule violation?
• Measurement range was insufficient for rigorous test
• Absent other processes or redistribution, higher-than-cold 61:1 indicates NL-shell > 8

• No similar discrepancy observed for Cr, Ni, or lower-T,ne Fe — why?
• Reanalysis lowered Fe measurement, but discrepancy remains:

• States: detail/accuracy? Completeness?
• Rates: detail/accuracy? Completeness?
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Rates: Do close-coupling/R-matrix calculations help?
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• Nahar and Pradhan, PRL 116 (2016) proposed
that close-coupling/R-matrix cross sections might
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Iglesias & Hansen (ApJ 835, 2017) showed that
incompleteness in previous CC models accounted for
the reported enhancement
Blancard et al (PRL 117, 2016) showed that DW is
adequate (& much easier to make complete!)



States: Are models including enough excitations?

• Average-atom models
• Native and rigorous completeness
• Native treatment of continuum lowering
• Based on non-integer-occupied orbitals (nOx

• Configuration-based models (nl)N (1)2(2)1(4)1
• Externally imposed continuum lowering 1s22v3r

• SCRAM uses ion-sphere for
consistency with average atom

• Completeness can be rigorously assessed
• SCRAM uses systematic excitation of all

electrons from all shells until dN < E
(cf. James Colgan)

• Completeness is also needed at low density for
dielectronic recombination (cf. Howard Scott)
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Rates: are models missing an important process?
A two-photon interlude

• Two-photon absorption had been discounted as negligible for K-shell (More & Rose, 1991)
• Increases in strength with n8 and with state complexity so maybe not negligible here
• Has its own internal sum rule
• Multi-photon absorption/ionization/decay is well known for optical processes (NLO)
• X-ray two-photon ionization has been measured in XFEL experiments

The 2015 iron results stimulated significant work:

• More et al HEDP 24, 44 (2017): initial calculations
• Pain HEDP 26, 23 (2018): hydrogenic, one-color
• Kruse & Iglesias HEDP 31, 28 (2019): total two-photon from 2s
• Colgan & Pindzola (private communication): TDSE cross sections
• More et al, HEDP 34, 100717 (2020): f-f matrix elements
• Baggot, Rose,& Mangles (2020): y + 7 & e + y; line shapes
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Accuracy, detail, and completeness all matter, and
including all together is challenging
• More, Kruse & Iglesias, and Pain all compute accurate QM two-photon cross sections
• I tried something reckless: the terrible-for-opacity-but-natively-complete average atom plus some

stuff from nonlinear optics (Lambropolous, Adv. At. Mol. Phys. 12, 87 (1976))

aTPA fir Asir (kw \v \ Li wif I Cln i :74

4f

3f

2p
2s

virtual p state j
with lifetime Ti

Real states i, f

• 6 are one-photon cross sections (-10-20 cm2)
• T are lifetimes of virtual states (h/6E + Tc 0-14 s)

GTPA ,1 0-54 cm4s

• Must sum over all virtual and final states
• Backlighter photons can be either hvl or hv2,

so we must integrate twice over local rad field
FdE (—eV/ eV-s-cm2)

This approach tracks a complete set of states and
i — j — f channels, but with much less detail than
multiconfiguration one-photon models

Sparse states that maximize 6E will minimize
two-photon contributions
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Test approximation for hvl. 1.3 keV backlighter photon
from 2s against accurate 252 2p6 2s 2p6 nd calculations
This is the case considered by Kruse & Iglesias
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similar in character to Kruse & Iglesias'
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First integral is similar to Kruse & Iglesias
Second integral (backlighter photon hv2) is —2x first
Add together



Approximate two-photon absorption from undetailed average
atom is small, but detailed structure matters

2s (cm2/g) 2p (cm2/g)
—one-photon —two-photonone-photon two-photon
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18

• 2p, 2s , & total two-photon cross sections from the average
atom are all 1000x smaller than one-photon

• Like Kruse & Iglesias, AA results are dependent on line widths
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detailed??

AA two photon

• •

While au and ajf both obey sum rules
and preserve strength under splitting
into detailed structure, the two-photon
au (h/6E) ajf cross section can get
much larger with more detailed
structure

1
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Line shapes matter for two-photon absorption, and
completeness, detail, and consistency matter for line shapes

• Completeness & detail
• Instrumental & thermal broadening (0.4, 0.1 eV)
• Stark broadening from external fields (1-3 eV)
• Natural broadening (0.7 eV)
• Collisional broadening from collisional ex/dex

(0.7 - 1 eV; must include An=O)
• Additional collisional broadening from ion/rec?

(-0.05 eV for AZ = 1)
Gomez et al PRL 214, 055043 (2020)

• Complete set of spectator satellites
Satellites seem best captured by SCO-RCG:
SCRAM's hybrid-structure satellites are weak/broad
and too close to resonant 2p-4d line, while ATOMIC's
nlj satellites appear too far from line

• Are collisions, fields, and structure consistent?
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Consistency: what makes a consistent model,
and why should we care?

• Consistency has multiple aspects 
• Density effects on electronic structures/wavefunctions & rates
4 average atom/DFT/self-consistent-field models

• Electronic screening effects on ion structure
4 Neutral pseudo atom (e.g. Starrett & Saumon)

• Lines shapes consistent with electronic & ionic structure
4 rates from electronic structure, Stark fields from ionic structure

• Simulations often draw from separate models for EOS, transport, opacity
4 can we build a single model that generates everything?

Rigorously enforcing consistency within models can
help us constrain models even in regimes without

high-precision measurements
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Our approach: enforce consistency wherever possible

• In wavefunctions, atomic structure/EOS, and rates
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Rates and transition energies
respond to changes in the

wavefunctions

Hansen et al HEDP 2017
Jiang et al PRE 2020

Liberman, Phys Rev. 8 20, 4981 (1981); Wilson, Sonnad, Sterne & Isaacs JQSRT 99, 658 (2006)



Our approach: enforce consistency wherever possible

• Between electronic structure and ionic structure

The screening electron density
determines the ion-ion interaction
potential:

47022
k2

k) = l-licrik}C[e(k)

This potential constrains the ion
distribution through the quantum
Ornstein-Zernicke equations — or
through classical MD simulations

Solid-density iron, 10 eV
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Our approach: enforce consistency wherever possible

• Between electronic & ionic structure and transport quantities
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Response functions based on
matrix elements of average-atom
wavefunctions and ion g(r)
constrain:
• Electrical and thermal

conductivities (cf. M. Desjarlais)
• X-ray Thomson scattering

signatures (A. Baczewski)
• Stopping powers (T. Hentschel)
• Collision frequencies



Our approach: enforce consistency wherever possible

• Between electronic & ionic structure and line shapes
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Why we care: the effects of inconsistency on simulations
is not well understood

• Simulations draw different quantities (EOS/transport/opacity) from different tables and models
• Parameterized quantities (or inline non-LTE) can increase consistency, at the expense of

discontinuities and/or reduced resolution/detail

a) Be Hugoniot in LTE
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a) Be Hugoniot
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11000
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100

Q.

10

5

Our goal: a spectroscopically detailed, rigorously complete,
and internally consistent model

• Use AA wavefunctions to build multiconfiguration models
• Extensible to non-LTE + additional processes/quantities as needed (e.g. two-photon)
• Validated against DFT-MD, TD-DFT, and detailed CR models, where available
• Verified against high-precision measurements, where available
• Tractable enough for tabulation (cf. H. Scott)
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Questions?



Consistency: it is hard to use one model for everything

Detailed models enable precision
diagnostics for plasmas at

modest densities

Low-density Ne

252p
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photon energy (eV)

1007

S. Hansen et al,
Review of the 10th NLTE code

comparison workshop, HEDP (2019)

At high densities, ad-hoc
corrections lead to incoherence
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r Models that natively include
density effects tend to lack detail

Near-solid Fe
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1— cf. P. Sterne et al, HEDP 19, 1 (2007)



Extending existing DFT-AA model to non-LTE will offer

unprecedented consistency in material data
a) Be Hugoniot b) Hyd rogo Loud uLtivity (10 g/cm-)
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detailed CR
multi-con fig1),FLAAA

• Rigorous internal consistency/ DFT foundations eliminate "seams" & ill-quantified uncertainties (1)
• Detail could revolutionize design cycles, enabling routine generation quality synthetic diagnostics (3)
• UQ could be undertaken on whole tables rather than piecemeal quantities (outyears)
To be done:
Add rates to multi-configuration model CR + new self-consistent electron & ion
Add configuration-interaction + implement line shapes in select levels for diagnostics
Find and enforce mutual constraints among properties (e.g. line shapes, 3E/ax, G)
Compare to existing tables / DFT-MD/ TD-DFT/ detailed CR models to benchmark



High-T and high-Z plasmas (RES, ICF mix/diagnostic)
are particularly sensitive to non-LTE effects

Exemplar: Kr-doped MagLIF
LTE (Tr =Te) v. non-LTE (Tr = 0)

a) radiative cooling rates L.r., = 1021e/cm3)

detailed LTE (0.001s lookup)

60
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Compared to the DFT models
used for LTE tables, inline CR
models are slow and bad
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... and inform stopping powers (essential for self-heating)
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TD-DFT stopping:
A. Cangi &
A. Baczewski

Wang et al., Phys Plas 5, 2977 (1998); Magyar et al., C. Plas Phys. 56 459 (2016)



... and X-ray scattering (used to diagnose laboratory plasmas
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Johnson et al, PRE 86, 036410 (2012); BaczewsralIRRL 116, 115004 (2016)


