This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed

in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 8715C

Experiences incrementally
porting a large legacy finite
element application to Sierra
using Kokkos

T — 4 (s ,:!.
fif“‘“ af) |
o LN e ||
a5 g!
Victor Brunini

Jon Clausen, Mark Hoemmen, Alec Kucala,
Malachi Phillips

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
S A N D 2 O 2 subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
=Te

2 | A Retrospective on Making a Legacy Code Performance Portable L I

What 1s Aria?
History of Aria Performance Portability Work I
Current performance results

TL.essons Learned

What is Aria?

Unstructured, nonlinear,
multiphysics finite element solver

Implicit, full Jacobian

Key Libraries:
Sierra Toolkit (STK)

Trilinos linear solver stack

THERN\AL FLUIDS

Time = 0.000000

3
von Miass St-ess IMPa

0 2%0 800 TS0 100(

History of Aria Performance
Portability

//]{ D

o AT Bk e _

2001 I
o
November 2001: |

First commits to the Aria codebase
Pentium 4, 1 core @ 2 GHz
My first high school CS class using Visual Basic |

o AT Bk e _

2001 2012 |
‘l EEEERN ‘
October 2012: |

Titan is #1 on the Top500 as a hybrid CPU/GPU machine
Aria has made it 11 years as a CPU MPI-only code

o AT Bk e _

2001 2012 2015 |
‘IIIIII‘IIIIII‘
October 2015: |

First prototyping of threaded matrix assembly using Kokkos +
STK in Nalu

Co-design with Kokkos & Tpetra team members
Drove creation of Kokkos scratch memory API |

9 1 ATrip Back In Time L I

2001 2012 2015 2016 I
‘..-...‘IIIIIIM
October 2016: |

First prototyping in ariamini
Started by pulling actual code from Aria
Limited to just matrix assembly for steady state heat conduction |

Small enough amount of code to rapidly prototype, but always
aware of how that will translate to the full application

10 1 ATrip Back In Time L] |

2001 2012 2015 2016 2017 I
‘IIIIII‘IIIIII*

February 2017: I

0.04

Working performance portable
matrix assembly in ariamini

0.035

0.03

> Use Kokkos::View inside main data
structures

'Focused on OpenMP + SIMD for €
performance on Knight’s Landing 0.015 ——
° Functional on GPU, but no 0.01 —
detailed performance exploration 0.005 — I '
0

Skybrldge (Sandy Morgan (Haswell) Ellis (KNL, HBM)

o)

0.025

Time (s)

Threads ™ Threads + SIMD

11 1 ATrip Back In Time L] |

2001 2012 2015 2016 2017 I
‘IIIIII‘IIIIII*

August 2017: |

First step of Aria conversion based on ariamini

> Refactor whole Expression system to Kokkos-based data structures with
SIMD support |

Interface to thread-parallel solvers based on Tpetra
> CPU threading only

12 1 ATrip Back In Time

2001 JALH| 2015 2016 2017 2018
’IIIIII‘IIIIII%

December 2018:

Initial GPU support in Aria for very basic conduction problems

30 —277
25
21.4
- 15.9
()
g 15 : 14.2
= T 10.7
% 10
5.5 6.2
5 3 2.8
0 []
Execute Assembly Solve
Sandybridge Broadwell

2s X 8c 2s x 18¢ ® 1xP100 1 x V100

131 ATrip Back In Time L | |

2001 JALH| 2015 2016 2017 2018 2019 2020

’IIIIII‘IIIIII%

August 2019:

Comparable performance between dual-socket Broadwell and GPU on
realistic thermal problem

70

60 ‘

Ul
o

N
o

Runtime (s)

Solve Radiosity Solve
m Broadwell np72 mP100 + Broadwell np2 = V100 + Power9 np2

Nonlinear Iteration Assemble

| ATrip Back In Time L

2001 2012 2015 2016 2017 2018 2019 2020
’IIIIII‘IIIIII%

August 2020:

Sierra 3-4x faster than dual-socket Broadwell on realistic thermal problem

3000

2500

2000

1500

1000

500

B

0

Broadwell 2s x 18c Sierra 4xV100
1 node ﬁ))
Assemble ®= Solve m Radiosity Viewfactor Other ‘ |

Current Performance
Portability Results

16 | Current Performance Portability L] I

Total Runtime on Realistic Thermal Problem

3000

2500

2000

1500

1000

500

Haswell 2s x 16¢c Broadwell 2s x 18c Skylake 2s x 18c ARM 2s x 28c Sierra 4xV100 ‘
1 node

Assemble m Solve m Radiosity Other

18

Working With Legacy Code is the Worst! ... Right!?

When does a reimplementation from scratch make sense?
Is only a subset of the existing functionality needed (ever)?
Is there no automated testing of the existing capability?

Are you targeting an entirely new userbase?

I argue that if the answer to any of those 1s no, it 1s better to
work with the existing codebase

You may end up with a completely new implementation by the end

19

Make Legacy Code an Advantage L I

Existing test suite provides immense value
Reproduces years of bugs |

Covers the unusual use cases users have that are easy to
forget about

Extract key systems or kernels into miniapps
Most of the prototyping flexibility you get from a

reimplementation

Easier to keep in mind the integration with the full application

Identify appropriate translation layers between new & old code I
as needed

20 | Kokkos is a Starting Point for Application Performance Portability L I

Basic building blocks for performance portability
Parallel loop patterns (for, reduce, scan) |
Memory layout control (View)
Portable SIMD library (coming soon)

Leverage application specific knowledge for performance &

Build application specific abstractions over Kokkos
maintainability |

21

The GPU Performance Portability Cliff

Performance

Ideal Case:

* Start with reasonable performance

* Platform useful for users from day 1

* Additional porting work monotonically
improves performance

Amount of Porting Work

22

The GPU Performance Portability Cliff

A

Performance

Our Experience with GPUs:

Initial switch from 1 MPI rank per core to 1
rank per GPU kills performance
Long period of time where platform is
unusable for users
MPS is a possible solution, but:

* Previously both performance &

functionality issues
* Currently memory usage issues

Amount of Porting Work

23

The GPU Performance Portability Cliff

A
Our Experience with GPUs:

* Starting to support additional existing
capability drops you off the cliff again

Performance

Amount of Porting Work

24 | Testing Challenges

Testing throughput on the GPU i1s a major issue

Aria has roughly 800 regression tests

Vast majority are 1-4 MPI ranks and run in 1-10s on CPU
platforms

3-5 minute runtime for total test suite with distributed testing
Minimum 15s runtime in GPU builds

Sharing GPU between multiple tests causes random failures
> 1 hour runtime for total test suite in GPU builds

25 | Questions!? L I

