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What 1s Aria?
History of Aria Performance Portability Work I
Current performance results

TL.essons Learned







What is Aria?

Unstructured, nonlinear,
multiphysics finite element solver

Implicit, full Jacobian

Key Libraries:
Sierra Toolkit (STK)

Trilinos linear solver stack
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History of Aria Performance
Portability
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2001 I
o
November 2001: |

First commits to the Aria codebase
Pentium 4, 1 core @ 2 GHz
My first high school CS class using Visual Basic |




o AT Bk e _

2001 2012 |
‘l EEEERN ‘
October 2012: |

Titan is #1 on the Top500 as a hybrid CPU/GPU machine
Aria has made it 11 years as a CPU MPI-only code
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October 2015: |

First prototyping of threaded matrix assembly using Kokkos +
STK in Nalu

Co-design with Kokkos & Tpetra team members
Drove creation of Kokkos scratch memory API |
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2001 2012 2015 2016 I
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October 2016: |

First prototyping in ariamini
Started by pulling actual code from Aria
Limited to just matrix assembly for steady state heat conduction |

Small enough amount of code to rapidly prototype, but always
aware of how that will translate to the full application
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February 2017: I
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matrix assembly in ariamini
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August 2017: |

First step of Aria conversion based on ariamini

> Refactor whole Expression system to Kokkos-based data structures with
SIMD support |

Interface to thread-parallel solvers based on Tpetra
> CPU threading only
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December 2018:

Initial GPU support in Aria for very basic conduction problems
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August 2019:

Comparable performance between dual-socket Broadwell and GPU on
realistic thermal problem
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August 2020:

Sierra 3-4x faster than dual-socket Broadwell on realistic thermal problem
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Current Performance
Portability Results
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Total Runtime on Realistic Thermal Problem
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Working With Legacy Code is the Worst! ... Right!?

When does a reimplementation from scratch make sense?
Is only a subset of the existing functionality needed (ever)?
Is there no automated testing of the existing capability?

Are you targeting an entirely new userbase?

I argue that if the answer to any of those 1s no, it 1s better to
work with the existing codebase

You may end up with a completely new implementation by the end
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Make Legacy Code an Advantage L I

Existing test suite provides immense value
Reproduces years of bugs |

Covers the unusual use cases users have that are easy to
forget about

Extract key systems or kernels into miniapps
Most of the prototyping flexibility you get from a

reimplementation

Easier to keep in mind the integration with the full application

Identify appropriate translation layers between new & old code I
as needed
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Basic building blocks for performance portability
Parallel loop patterns (for, reduce, scan) |
Memory layout control (View)
Portable SIMD library (coming soon)

Leverage application specific knowledge for performance &

Build application specific abstractions over Kokkos
maintainability |
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The GPU Performance Portability Cliff

Performance

Ideal Case:

* Start with reasonable performance

* Platform useful for users from day 1

* Additional porting work monotonically
improves performance

Amount of Porting Work
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The GPU Performance Portability Cliff

A

Performance

Our Experience with GPUs:

Initial switch from 1 MPI rank per core to 1
rank per GPU kills performance
Long period of time where platform is
unusable for users
MPS is a possible solution, but:

* Previously both performance &

functionality issues
* Currently memory usage issues

Amount of Porting Work
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The GPU Performance Portability Cliff

A
Our Experience with GPUs:

* Starting to support additional existing
capability drops you off the cliff again

Performance

Amount of Porting Work
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Testing throughput on the GPU i1s a major issue

Aria has roughly 800 regression tests

Vast majority are 1-4 MPI ranks and run in 1-10s on CPU
platforms

3-5 minute runtime for total test suite with distributed testing
Minimum 15s runtime in GPU builds

Sharing GPU between multiple tests causes random failures
> 1 hour runtime for total test suite in GPU builds
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