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Abstract—We employ a fully charge self-consistent quantum
transport formalism, together with a heuristic elastic scattering
model, to study the local density of state (LDOS) and the
conductive properties of Si:P 6-layer wires at the cryogenic
temperature of 4 K. The simulations allow us to explain the
origin of shallow conducting sub-bands, recently observed in
high resolution angle-resolved photoemission spectroscopy exper-
iments. Our LDOS analysis shows the free electrons are spatially
separated in layers with different average kinetic energies, which,
along with elastic scattering, must be accounted for to reproduce
the sheet resistance values obtained over a wide range of the
6-layer donor densities.

Index Terms—quantum transport, Si:P 6-layer systems, contact
block reduction, NEGF, elastic scattering

I. INTRODUCTION

The electronic structure and conductive properties of Si:P
6-layer systems have been a subject of experimental [1]—[5]
and computational [6], [7] works due to the high potential
for beyond-Moore computational applications. However, many
discrepancies persist among these studies, and many questions
still remain open, such as how many conductive modes exist,
or the influence of the 6-layer thickness and doping density
on these conductive modes. Previous studies were based on
traditional closed-system quantum approaches, either tight-
binding [6] or DFT [7]. However, these approaches rely on
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two essential approximations: 1) the closed-system approxi-
mation that attempts to represent the density of states of a
highly conductive system as DOS(E) = Ea (5(E — EŒ)
and thus neglecting the quantum wire (continuum) states;
2) the (semi)classical approximations for the extraction of
systems' conductive properties assuming that the current is
proportional to the electron density j n instead of the
quantum-mechanical flux j TV‘Ii* — (that is zero
for any closed system wave-function qi). In this work, we have
employed a fully charge self-consistent open-system quantum
transport (QT) formalism [8]—[10], which is free of the above
mentioned approximations, together with an elastic scattering
model, to study the conduction sub-band structure and the
corresponding conductive properties of Si:P 6-layer systems.

II. METHODOLOGY AND MODEL

A. Quantum transport method

To conduct this study, we have employed a quantum-
mechanical transport framework for open systems [8]410] that
relies on a fully charge self-consistent solution of the Poisson-
open system Schrödinger equation in the single-band (F-
valley) effective mass approximation. Fig. 1 shows a detailed
flow chart of the method implemented in the QT simula-
tor. For a numerically efficient implementation of the Non-
Equilibrium Green's Function (NEGF) formalism we utilized
the Contact Block Reduction (CBR) method [8], [9]; for
the charge self-consistent solution of the non-linear Poisson
equation we employed a combination of the open-system
predictor-corrector approach and Anderson mixing scheme
[10], [1 1]. The standard values of electron effective masses

771.1 = 0.98 x me, mt = 0.19 x me and the dielectric constant
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Fig. 1. Flow chart of the self-consistent QT method. e is the Poisson residuum
tolerance.

Est = 11.7 of Silicon were employed in our calculations, as
well as the cryogenic temperature of 4 K.

B. Elastic scattering model

We can distinguish two types of elastic scattering that can
occur in a device: 1) geometry scattering, due to the ohmic
contacts, doping profile, device geometry, etc.; and 2) defect
scattering, due to defects, vacancies, impurities, etc. [12],
[13]. The former one is already taken into account by the
charge self-consistent QT framework. However, the second
one needs explicitly to be included in this framework. Thus, we
introduce a heuristic elastic defect scattering model for meso-
and macroscopic scale, which treats the defects as abstract
scatterers. We consider that scatterers are spatially equally
distributed along the conductor channel and can be defined by
a linear defect density v. Fig. 2 shows the schematic elastic
scattering model, formed by M modes with N, scatterers,
where m = 1, ..., M. In general, each transmission mode
can possess a different linear defect density vm = N,IL,
where L is the length of the channel device. If the electronic
transmission for mode m across the conductor without scat-
terers is giving by T„(E) at energy E, then the effective
electronic transmission for mode m including N„ scatterers
can be computed as [14]

1 — 7Vm(E) 1 — T„,„(E) — ta(E) 
 (1)

Tem(E) Trim (E) L-ai=1 ta(E)

/(z)
where tmm (E) is the defect transmission probability due to
scatterer i in mode m. The first term in (1) accounts for
geometry scattering, whereas the second term encompasses
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Fig. 2. Schematic elastic scattering model.

for defect scattering. In absence of defects, i.e. a (E) = 1
with i = 1, N, the effective transmission function Trenfj(E)
reduces to T„(E), as expected. If we assume that the defect
transmission probability is the same for all scatterers, i.e.
i(i)
tmm (E) = ernm(E), the effective transmission probability can
be rewritten as

Trnffm(E) =   (2)
± (E) (E) •

Tm.„,(E) m emn,(E)

The term un.,(1 — emm)/ernm is of the order of 1/Lm [14],
where Lm is the mean free path. Therefore, it can be ap-
proximated as a/Lm, where a is an adjustable parameter
that is proportional to the linear defect density in the system.
More complex elastic scattering models can be employed in
this framework, e.g., models in which the defect transmission
probability is energy-dependent.
The total current density J from source to drain can be then

calculated from the Landauer formula as

J = _2e f E
Tgli(E)(f s(E) — fD(E))dE, (3)

h j
m=1

where e is the electron charge and h is the Planck's constant.
The equilibrium distribution functions for source and drain
leads are f s(E) and f D(E), respectively.

C. Computational model

The geometry of the Si: P 6-layer wire is shown in Fig. 3,
which is composed of a Si body, a very high P-doped layer, and
a Si cap. The conductor channel is in contact with two semi-
infinite leads, the source and drain, respectively. For simplicity,
we only focus on symmetric configurations, where the widths,
W, and acceptor doping concentrations, NA, of the body and
cap are chosen to be the same. Asymmetric doping would
result in an asymmetric electron distribution around the 6-layer
plane. Similarly, we chose the body and cap widths as large
as possible to avoid additional border effects on the electron
confinement around the 6-layer (W = 10 nm). The wire length
is set to L = 50 nm. An acceptor doping density in the Si
body/cap of 1.0 x 1017 cm-3 was used throughout this work.
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Fig. 3. Schematic model for Si: P 6-layer wires.

III. RESULTS AND DISCUSSION

A. Electronic structure

The DOS of the system at equilibrium conditions is included
in the left panel of Fig. 4. The DOS results reveal the presence
of conducting sub-bands (below the Fermi level) correspond-
ing to 1r and 2F valleys, respectively, recently observed
in high-resolution angle-resolved photoemission spectroscopy
experiments (ARPES) [4], [5]. To get a better insight of the
electronic structure in Si: P 6-layer systems, we take a look at
the LDOS(E,z) in the YZ plane, included in the right panel of
Fig. 4 for a 20 nm-width wire. The LDOS presents a peculiar
quantization of the modes in space and energy, which we
have referred to as "Quantum Menorah". The occupied modes
below the Fermi level are independent of the encapsulation
depth of 6-layer from the surfaces of the Si cap/body, as
shown in the left panel of Fig. 4 for W = 20 and 40 nm. The
LDOS also reveals that the free electrons are strongly confined
spatially around the 6-layer, however, they are distributed in
layers with different kinetic energies.
Our simulations also indicate that the number of sub-bands

and the corresponding structure is strongly influenced by
the thickness and doping density of the 6-layer, as shown
in Fig. 5 (upper and middle panel). The effect of the Si
body/cap doping on the conduction sub-bands turns out to be
secondary, as shown in the lower panel of Fig. 5. For a fixed
6-layer thickness, the increment of the sheet doping increases
the number of conducting modes, as well as the splitting
energy between them. In contrast, for a fixed sheet doping,
the increment of the 6-layer thickness increases the number of
modes, but decreases the energy splitting between them, which
is in agreement with the ARPES observation in [5]. This is
the result of the electronic confinement around the 6-layer:
smaller layer thickness and higher doping create a stronger
potential well (see right panel of Fig. 4) that leads to higher
electronic confinement around the 6-layer and, therefore, an
increased energy difference between sub-bands.

B. Conductive properties

With our QT framework and the elastic scattering model
for meso- and macroscopic scale, we can compute the sheet
conductance of the system. The results are included in Fig. 6
for a wide range of donor doping concentration, from 4.0 x

0.2

0.15

0.1

5- 0.05

▪ 001

r2
Lu -0.05

-0.1

2

-0.15
L"

0.2

Fermi level

-W=10nm
-W=20nm

6x103 1.2;(104
DOS (cm-leV-1)

6-la er
LDOS (cm-2eV-1)

1.7x10-5

8x10-6

5x10-6

3.9x10-6

2x10-6

1.3x10-6

8.5x10-7

5.3x10'7

0

4 6 8 10

AAAAAAAA.

A.

V' ••••••-

Fermi levei

-10 -8 -6 -4 -2 0 2

z (nm)

Fig. 4. Left panel: DOS for Si:P 6-layer wires with different widths, W =
20 nm and 40 nm. Right panel: LDOS(z,E) for a 20 nm-width Si:P 6-layer
wire. For both panels, t = 0.2 mn, ND = 1.0 x 1014 cm-2 and NA =
1.0 X 1017 CI11-3.
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Fig. 5. Upper panel: influence of 6-layer thickness t on the free electron
distribution for a fixed sheet doping density of ND = 1.2 x 1014 cm-2
(NA = 1.0 x 1017 cm-3). Middle panel: influence of sheet doping density
ND on the free electron distribution for a fixed 0.2 nm 6-layer thickness
(NA = 1.0 x 1017 cm-3). Lower panel: influence of the Si cap/body doping
NA on the free electron distribution for a fixed 0.2 nm 6-layer thickness and
a donor doping of ND = 1.2 x 1014 cm-2.

1011 cm-2 to 5.0 x 1014 cm-2, and 6-layer thicknesses, from
2 nm to 5 nm. To account for the linear increase of the
mean free path Lin with the sheet doping density reported
in [15], we approximated the term um (1 - (em,,n) in
(2) as al Lm(ND), where the values of Lm(ND) were taken
from [15] and a was set to 1.0. Moreover, our simulations
reproduce the experimental sheet resistance data (see Fig. 7)
obtained by several groups [15]418]. From our conductive
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results, we can distinguish two regimes, corresponding to high
P doping densities (above 5.0 x 1013 cm-2) and low doping
density (below 1.0 x 1013 cm-2), which present dissimilar
behavior. The conductance of the system raises with the (S-
layer thickness for a fixed sheet doping density. However,
our simulations indicate that the slope of the conductance
vs thickness becomes steeper as we move to higher doping
densities. In the limits, the conductance is strongly dependent
on the 6-layer thickness for high doping densities, whereas it
remains approximately invariant for low doping densities.

IV. CONCLUSION

Our simulations allow us to explain the origin of shallow
conducting sub-bands, recently observed in ARPES experi-
ments. The LDOS analysis reveals a peculiar structure that
we have termed as "quantum menorah", as well as the free
electrons are spatially separated by layers with different aver-
age kinetic energies. The number of conductive sub-bands is

mainly determined by the thickness and sheet doping density
of the 6-layer. The effect of the acceptor doping density in
the Si body/cap is secondary and negligible. Furthermore, by
applying an elastic scattering model in our QT framework,
we reproduce the sheet resistance values measured by various
experimental groups. Finally, we report that the conductance
of the system increases with the increment of the 8-layer
thickness for high sheet doping densities.
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