
SANDIA REPORT
SAND2021-10207
Printed August 2021

PCalc User’s Manual
Andrea Conley1, Nathan J. Downey1, Sanford Ballard1, James R. Hipp1, Patrick 
Hammond1, Kathy Davenport1, and Michael E. Begnaud2

1Sandia National Laboratories
2Los Alamos National Laboratory

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 
87185 and Livermore, 
California 94550

SAND2021-10207



2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National 
Technology & Engineering Solutions of Sandia, LLC.

NOTICE:  This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of 
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal 
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency 
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily 
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods/

mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
https://classic.ntis.gov/help/order-methods/


3

ABSTRACT
PCalc is a software tool that computes travel-time predictions, ray path geometry and model 
queries. This software has a rich set of features, including the ability to use custom 3D velocity 
models to compute predictions using a variety of geometries. The PCalc software is especially 
useful for research related to seismic monitoring applications. 

The PCalc software, User’s Manual, and Examples are available on the web at:

https://github.com/sandialabs/PCalc

For additional information on GeoTess, SALSA3D, and other related software, please see:

https://github.com/sandialabs/GeoTessJava
www.sandia.gov/geotess
www.sandia.gov/salsa3d

https://github.com/sandialabs/PCalc
https://github.com/sandialabs/GeoTessJava
http://www.sandia.gov/geotess
http://www.sandia.gov/salsa3d


4

This page left blank.



5

CONTENTS
1. Introduction ..................................................................................................................................................9
2. Pseudobending in PCalc ...........................................................................................................................11
3. PCalc Installation .......................................................................................................................................13
4. PCALc tutorial and examples...................................................................................................................15

4.1. PCalc Model Query Examples.......................................................................................................17
4.1.1. PCalc Model Query Using MJAR.coords.xyz File ........................................................17
4.1.2. PCalc Model Query Using A Great Circle .....................................................................21
4.1.3. PCalc Model Query Using a Grid....................................................................................25

4.2. PCalc Travel Time Prediction Examples .....................................................................................28
4.2.1. PCalc Travel Time Prediction Using MJAR.coords.xyz File ......................................28
4.2.2. PCalc Travel Time Prediction Using Great Circles ......................................................33
4.2.3. PCalc Travel Time Prediction Using a Grid ..................................................................36
4.2.4. PCalc Travel Time Prediction Using a Database ..........................................................39

4.3. PCalc Raypath Generation Using Great Circles .........................................................................40
4.4. PCalc LibCorr3D Surface Generation..........................................................................................43

4.4.1. seismicBaseData .................................................................................................................48
5. Summary......................................................................................................................................................49
Appendix A. PCalc Parameters................................................................................................................51

A.1. Setting Parameters ...........................................................................................................................51
A.2. Property Descriptions .....................................................................................................................51

A.2.1. General.................................................................................................................................51
A.2.2. Input.....................................................................................................................................52
A.2.3. Input from File ...................................................................................................................53
A.2.4. Input from Great Circle ....................................................................................................54
A.2.5. Input from Grid .................................................................................................................56
A.2.6. Input/Output from/to Database ....................................................................................58
A.2.7. Input Depth Specification ................................................................................................60
A.2.8. Output Parameters.............................................................................................................62
A.2.9. outputHeader......................................................................................................................64
A.2.10. Predictors.............................................................................................................................64
A.2.11. LibCorr3D...........................................................................................................................68
A.2.12. Model Queries ....................................................................................................................69
A.2.13. Ray Path Geometry............................................................................................................69

LIST OF FIGURES
Figure 1. PCalc Model Query Properties File pcalc_query_file.properties..............................................18
Figure 2. PCalc Model Query Properties File pcalc_query_greatcircle.properties .................................22
Figure 3. PCalc Model Query Properties File pcalc_query_grid.properties ............................................26
Figure 4. PCalc Prediction Properties File pcalc_predictions_file.properties. ........................................29
Figure 5. PCalc Prediction Properties File pcalc_predictions_greatcircle.properties. ...........................34
Figure 6. PCalc Prediction Properties File pcalc_predictions_grid.properties........................................37
Figure 7. PCalc Prediction Properties File pcalc_raypaths_greatcircle.properties. ................................41
Figure 8. PCalc Prediction Properties File pcalc_libcorr3d_geotess.properties. ....................................44



6

This page left blank



7

ACRONYMS AND DEFINITIONS
Abbreviation Definition

PCalc Prediction Calculator

CSS Center for Seismic Studies

SALSA3D Sandia-Los Alamos 3D velocity model

GeoTess Geographical Tessellation Software

LocOO3D Object-Oriented 3D Location Software

DBIO Database input/output

3D Three dimensional

RSTT Regional seismic travel time (RSTT and SLBM are synonymous)

SLBM Seismic location base model (RSTT and SLBM are synonymous)



8

This page left blank



9

1. INTRODUCTION
PCalc (prediction Calculator) is a software package used for ray-tracing and travel-time computation 
in 3D Earth velocity models. The software uses the pseudobending algorithm of Um and Thurber 
(1987). It is fully compatible with velocity models stored in GeoTess format (Ballard, et al., 2016a) such 
as the SALSA3D model (Ballard et al., 2016b) available on the webpage www.sandia.gov/salsa3d.
PCalc is distributed through GitHub at:

https://github.com/sandialabs/PCalc

It is packaged with the latest version of this user’s manual, a set of run examples (the use of which is 
outlined in the “Tutorial and Examples” section below) and a jar file of the PCalc software. PCalc is 
formatted as a Java jar file compiled with JDK10 and requires a java runtime environment to be 
installed in a user’s machine. If the user wishes to use PCalc with a database the Oracle ojdbc*.jar file 
(version  7) is required.

PCalc has three primary run modes:

1. Compute predictions of travel time, azimuth, slowness and other predicted values at user 
specified source-receiver positions

2. Extract model values from SALSA3D or other GeoTess models at user specified positions.

3. Compute ray path geometries through GeoTess models.

PCalc has many useful features, especially for monitoring applications, including:

 The ability to trace phases P, PP, pP, PKPdf, PBPbc, and Pn through 3D models of Earth’s 
compressional-wave velocity structure, and the ability to trace phases qS, SS, sS, and SKS 
through 3D models of Earth’s shear-wave velocity structure.

 Computation of travel-time and travel-time uncertainty for the above phases.

 Seismic phase travel-times can be computed using any model stored in GeoTess format. In 
addition, travel-times can be computed using the AK135 model, which is stored within the 
Pcalc Software.

 The ability to directly interact with CSS3.0 format data tables stored in an Oracle database for 
both input and output, including the insertion of newly computed origins into existing tables.

 Geographic positions at which models can be queried or travel-times computed can be 
specified in a variety of formats, including a grid contained in an ascii text file, a 2D grid of 
points distributed in depth along a great circle path or a 3D grid specified by regular vertices 
on the earth and in depth.

http://www.sandia.gov/salsa3d
https://github.com/sandialabs/PCalc


10

A typical run of PCalc requires the following:

1. Specification of a velocity model, either the AK135 tables included within PCalc, or a user-
specified model in GeoTess format.

2. Specification of a mode of operation, which can be to compute model queries, compute ray-
path geometry, or to compute travel time predictions from points on/in the Earth to a 
specified station location

3. Definition of a geometry at which the model will be queried or to which travel-time 
computation is to be completed.

See the “Tutorial and Examples” section below for more details on how these are specified and input 
into the PCalc software.



11

2. PSEUDOBENDING IN PCALC

The ray tracing algorithm in PCalc, aka “bender”, is an implementation of the pseudobending 
algorithm of Um and Thurber (1987). The algorithm has been adapted to work with GeoTess models, 
which can contain interfaces separating regions of smoothly varying velocity, by ensuring that Snell’s 
law is satisfied at these interfaces. This algorithm is described in detail in Ballard, et al. (2009). Bender 
is the same ray tracer/travel time predictor used in the construction of the SALSA3D velocity models.

Some advantages of the pseudobending approach used in bender include:

 The algorithm finds a ray path between specified source and receiver locations by finding paths 
that locally minimize the travel time between these locations. This ability to specify the starting 
and ending points of each ray is convenient for tomography studies.

 This algorithm is computationally efficient, requiring only modest computational resources to 
quickly calculate travel times for rays through 3D models of the Earth’s seismic velocity 
structure.

 Pseudobending is a mature approach to ray path computation. The bender algorithm has been 
validated against several other approaches to ray path computation. See Ballard, et al., (2009) 
for more details.

The compatibility of PCalc with GeoTess models (see https://github.com/sandialabs/GeoTessJava 
and www.sandia.gov/geotess) means that a user can compute travel times and ray paths through any 
Earth velocity model that can be represented using the GeoTess format. For example, a user can use 
the ray paths computed for a starting model in tomographic models of Earth’s velocity structure. The 
companion software package LocOO3D (see https://github.com/sandialabs/LocOO3D) can also 
use bender to compute seismic event locations using ray paths computed for arbitrary Earth models 
in GeoTess format.

https://github.com/sandialabs/GeoTessJava
http://www.sandia.gov/geotess
https://github.com/sandialabs/LocOO3D


12

This page left blank



13

3. PCALC INSTALLATION

To run PCalc and execute the examples provided, the user should set up their target directory based 
on the following file structure. To explore the structure of GeoTess models like SALSA3D and RSTT, 
the user may wish to also install the geotess software. See 
https://github.com/sandialabs/GeoTessJava for details. 

1. Create a target directory on your system (e.g. pcalc_software).

2. Into the working directory, download the latest version of the PCalc software, documentation, 
and example files from GitHub at https://github.com/sandialabs/PCalc.  

The download will include a pcalc jar file so users do not need to recompile the code.  The 
code can be recompiled by cd’ing into the PCalc directory and executing ‘mvn clean package’ 
at the command line.

3. Download the SALSA3D model from www.sandia.gov/salsa3d/velocity-models.html: 

 SALSA3D_v2_PS.geotess or SALSA3D_Model.tgz

4. Download the RSTT model from www.sandia.gov/rstt/software/downloads/models.html:

 pdu202009Du.zip

If needed, follow the installation instructions at www.sandia.gov/rstt to install dependencies 
and configure RSTT. 

5. Edit the pcalc run script pcalc.sh downloaded from GitHub.  There are three variables in the 
file that specify the locations of certain required resources on the user’s system:

pcalc_jar must be set to the full path name of the pcalc jar file located in the 
working directory (e.g., snl_pcalc_software).  It has a name similar to pcalc-3.2.2-jar-
with-dependencies.jar

ojdbc_jar should be set to the location of the user’s Oracle ojdbc*.jar file.  This is 
only required if the user plans to use PCalc’s database features.

slbm_libdir should be set to the path of the RSTT library directory.  This is only 
required if the user plans to use RSTT to compute travel time predictions. If the 
user has specified RSTT_ROOT property in their ~/.bash_profile, then 
specification of slbm_libdir is not required.

Users may wish to add the path to the directory that contains pcalc.sh to their 
~/.bash_profile, ~/.cshrc, ~/.bashrc, or ~/.profile, e.g.: 

PATH=$PATH:/Users/acconle/github/pcalc_software

https://github.com/sandialabs/GeoTessJava
https://github.com/sandialabs/PCalc
http://www.sandia.gov/salsa3d/velocity-models.html
http://www.sandia.gov/rstt/software/downloads/models.html
http://www.sandia.gov/rstt


14

6. When complete, the user should have the following directory structure set up to run the 
examples in this manual:

pcalc_software

    ----------------------Example 

      ------Data

      ------Example01

      ------Example02

      ------Example03

      ------Example04

      ------Example05

                                    ------Example06

                                     ------Example07

    ----------------------SALSA3D_Model

     ----SALSA3D.geotess

    

    ----------------------pdu202009Du.geotess (RSTT)

    ----------------------Data

     ----MJAR.coords.xyz

    ----------------------salsa3d_v2 (LibCorr3D directory)

However, the user can utilize a different structure provided all paths in the properties files are correctly 
set.



15

4. PCALC TUTORIAL AND EXAMPLES

The input files for a PCalc run are:

1. A required properties file which contains the property settings used by PCalc for a particular 
run. Properties files will be labeled with a *.properties extension.

a. Available PCalc properties are described in detail in Appendix A.

b. Properties can be written in any order in the properties file.

c. Properties are case-sensitive, e.g., workdir ≠ workDir

2. An optional GeoTess file (see https://github.com/sandialabs/GeoTessJava) containing a 
desired Earth velocity model. If this file is not specified, PCalc will compute travel times with 
the AK135 lookup tables included within the PCalc software. GeoTess files will be labeled 
with a *.geotess extension.

In Sections 4.1.1 and 4.1.2 the user will use the GeoTess file SALSA3D.geotess to run the 
examples. The SALSA3D velocity models are available from 
www.sandia.gov/salsa3d/velocity-models.html 

3. An optional text file containing the latitude, longitude, and depth coordinates to which travel 
times, ray paths, or model queries are to be computed. This file is not required if a regular 
grid or grid along a great circle is used: the parameters describing these geometries are 
specified directly in the properties file (see Sections 4.1.2, 0, 4.2, 4.2.3, 4.3).

a. In Sections 4.1.1 and 4.1.2, the user will use the data file MJAR.coords.xyz to run the 
example. MJAR.coords.xyz consists of a list of 100 locations specified in latitude 
(degrees), longitude (degrees), and depth (km).

b. MJAR.coords.xyz is included with the PCalc software package.

4. An optional, specially configured folder containing the files necessary for the generation of 
LibCorr3D surfaces (see Section 4.4 for details on LibCorr3D surfaces).

An example version of this folder, salsa3d_v2 is included with PCalc in the GitHub 
distribution. PCalc will automatically set relevant properties equal to the necessary files in 
this folder. The user only needs to input the path to the folder in the properties file (Section 
4.4). 

A brief definition for each of the folder contents is given below. More detailed definitions 
are beyond the scope of this guide. Please refer to the Ballard et al. 2016b reference [3] and 
https://github.com/sandialabs/GeoTessJava documentation for more information on a 
particular file and how to use the GeoTess files, respectively.

a. prediction_model.geotess - the slowness model refined to a relatively dense 
resolution, typically 1 degree, suitable for calculating travel time using PCalc.

https://github.com/sandialabs/GeoTessJava
http://www.sandia.gov/salsa3d/velocity-models.html
https://github.com/sandialabs/GeoTessJava


16

b. tomo_model.geotess – a relatively coarse, variable resolution version of the slowness 
model computed by tomography.  Less suitable for computing travel times but 
required for the computation of path dependent travel time uncertainty using the 
covariance matrix.

c. activenodeIndexMap – a binary file detailing which GeoTess nodes in the model 
were modified when the tomography solution was calculated. Nodes that were 
inactive, such as the crust and core in SALSA3D models, were not included in 
inversion and do not differ from the starting model. 

d. diagonalModel.geotess – a GeoTess file containing the diagonal elements of the 
Cholesky, covariance, and resolution matrices for the GeoTess slowness model. It 
has the same geometry as the tomo_model.geotess.  Note that this file is not used as 
input for PCalc, but provides useful model information that can be queried using 
GeoTess (see https://github.com/sandialabs/GeoTessJava documentation). In 
particular, this file can be used to generate figures of the slowness uncertainty and 
model resolution.

e. layer_standard_deviations.properties – a properties file containing the property 
slownessLayerStandardDeviation_P, which defines uncertainties for inactive nodes 
(see bullet c) for each layer. 

i. The property is set equal to a semicolon delimited list of layer/uncertainty 
pairs (e.g., UPPER_CRUST 0.1 sets the upper_crust slowness uncertainty to 
0.1 seconds/km)

ii. Change property name to slownessLayerStandardDeviation_S if using an S 
model.

f. ginv – a folder containing binary files that together make up the full covariance 
matrix necessary to generate the LibCorr3D path dependent uncertainties. This 
folder will be large, on the order of ~100-200 GB disk space.

g. distance_dependent_uncertainty – contains 1D distance dependent uncertainty 
information for various phases. Used when the benderUncertaintyType property is 
set to DistanceDependent (see Section 4.4). 

h. readme.txt – a text file that provides relevant information about the model.

Several example inputs are included in the “Examples” directory of the PCalc distribution. In the 
following section the properties files and expected outputs for each example will be described. Due 
to the number of available properties and potential properties combination, we cannot provide an 
exhaustive list of examples that can cover all potential situations and uses. However, these examples 
should be sufficient to comfortably begin using PCalc. Once the software has been installed and the 
environmental variables have been set (Section 0), all examples will be run on the command line as: 
pcalc *.properties.  

https://github.com/sandialabs/GeoTessJava


17

The Examples in Section 4.1 detail using PCalc to query input models for attributes such as P-wave 
slowness. The Examples in Section 4.2 detail using PCalc to predict travel-times. The Examples in 
Section 4.3 detail using PCald to generate ray paths via raytracing through an input velocity model. 
Finally, Section 4.4 details an example of generating LibCorr3D surfaces using PCalc.

4.1. PCalc Model Query Examples

4.1.1. PCalc Model Query Using MJAR.coords.xyz File
The properties file Example01/pcalc_query_file.properties (shown below in Figure 1) contains 
input parameters to query a model at locations specified in the file Data/MJAR.coords.xyz (see 
Section 4).

The properties file in Figure 1 begins with general properties that will be common across all examples 
in this manual. These properties are required in any properties file – if they are not specified, an error 
will be thrown and the user will be asked to specify them. These properties are:

 application – specifies the type of application for PCalc to perform. The types can be 
model_query or prediction (also see Section A.2.1.1) 

 workDir – path to the working directory where PCalc output are to be stored. If the specified 
working directory does not exist, PCalc will automatically generate the directory at the 
specified path (also see Section A.2.1.2)

In this example, these properties are set to the following:

application = model_query

workDir = /Users/username/pcalc/Examples/Example01/

The model_query option of the application property specifies that PCalc will be used to extract, i.e., 
query, a specified input model for any user-requested data or metadata information. In the example 
shown in Figure 1, the user requests that PCalc query a GeoTess model with the geotessModel 
property:

geotessModel= <property:workDir>../SALSA3D_Model/SALSA3D_PUBLIC.geotess

The geotessModel property specifies the path to the input model, in this case 
SALSA3D_PUBLIC.geotess. Note the special notation <property:workDir> in the geotessModel 
path. In PCalc, <property:property_name> specifies that the value of a property with name property_name 
specified elsewhere in the property file is substituted in that location when PCalc is running. Thus, in 
this example, the workDir path is substituted for <property:workDir> such that the full geotessModel 
path is: 
 
/Users/username/pcalc/Examples/Example01/../SALSA3D_Model/SALSA3D_PUBLIC.geotess.

This type of notation can be used to quickly substitute any property value.



18

Figure 1. PCalc Model Query Properties File pcalc_query_file.properties.



19

In order to query a model, locations must be input in order for PCalc to determine where in the model 
to extract information from. To provide locations, the user specifies the inputType property. Here, 
inputType is specified as:

inputType = file

inputType can be defined as a file, database, great circle, or a grid (see Section A.2.2.1). Here we will 
describe the file option, with other options discussed in later sections. When the user sets inputType 
equal to file, an input text file will be used to specify proposed event location coordinates at which to 
query the model. 

The exact contents of the text file are specified using the inputAttributes property. In Figure 1, 
inputAttributes are set to:

inputAttributes = latitude longitude depth

Thus, the input text file must contain a latitude (degrees), longitude (degrees), and depth (km) column 
separated by white space. To modify the order of the file columns or what each file column represents, 
the user can modify the inputAttributes property (Section A.2.3.3). For instance, if the user wants to 
specify proposed event epicenters rather than hypocenters, they can specify inputAttributes to equal 
latitude and longitude only. Or if the columns of the text file are in longitude, latitude, depth order, 
the user can set inputAttributes = longitude latitude depth. If the text file does not match the defined 
inputAttributes, PCalc will throw an error, either because it does not get the values it expects or the 
number of attributes does not match the number of columns. Note that when performing a model 
query, the default attributes are “longitude latitude depth” if inputAttributes is not defined.

In this example, the inputFile is MJAR.coords.xyz, the text file provided with the PCalc software 
download (Section 4). MJAR.coords.xyz contains latitude, longitude, depth columns, thus 
inputAttributes is set to “latitude longitude depth” in this example.

The next property, batchSize is an optional property that allows the user to define the size of record 
batches read in from the file. In this example, batchSize is defined as:

batchSize = 10

Thus, PCalc will read in 10 records/rows from MJAR.coords.xyz at a time. By default, batches are of 
size 10,000 (see Section A.2.9.3). batchSize can only be applied when using a file or database (Section 
*) for input.

Now that the input parameters have been set, the remainder of the properties file sets properties 
dealing with file output.

The property outputFile (Section A.2.8.1) defines the path and file to write the PCalc results to. Here, 
the path is defined as:

outputFile = <property:workDir>/pcalc_query_file_output.dat



20

When PCalc is run, the output will be written in the text file pcalc_query_file_output.dat. Note that 
this property is required unless the inputType property is set to database (see Section A.2.2.1), where 
it will be ignored if defined.

In addition to the output file above, the user can also optionally save a log file by setting the logFile 
property equal to the path and file to save the log to. In this example, the path is defined as:

logFile = <property:workDir>/pcalc_log.txt

The next property, terminalOutput (Section A.2.1.4) echoes the general information about the PCalc 
run to screen when it is set to true. This same information is written in the log file when it is requested. 
In this example, terminalOutput is set to true:

terminalOutput = true

The terminalOutput is true by default, so setting the property to true in Figure 1 is for demonstration 
purposes only.

The property separator (Section A.2.8.2) is used to define what type of separator will be used for the 
PCalc output text file. The separator can be defined as a space (white space), comma, or tab. In this 
example, separator is defined as:

separator = space

The separator is set to space by default, so as with terminalOutput setting the property to space in 
Figure 1 is for demonstration purposes only.

The final property, outputAttributes (Section A.2.8.4) is used to define what output will be written to 
the file defined by the outputFile property. Currently, the only outputAttributes available when the 
application property is set to model_query are pslowness (P-wave slowness), pvelocity (P-wave 
velocity), sslowness (S-wave slowness), and svelocity (S-wave velocity). In turn, the availability of these 
options also depends on the model being queried – if the input model has no S-wave data, sslowness 
and svelocity will not be available outputAttributes.

In this example, outputAttributes is set to pslowness:

outputAttributes = pslowness

With this final property set, the properties file in Figure 1 can be run (see Section 4). The run should 
result in a log file (pcalc_log.txt) and an output file (pcalc_query_file_output.dat). If successful, the 
output file should contain 100 rows and four columns separated by white space. The first four rows 
are shown below.

13.710173 144.000000 80.018 8.1246
13.710173 144.000000 75.018 8.1499
13.710173 144.000000 70.018 8.1753
13.710173 144.000000 65.019 8.2009

…          …                …    …



21

The columns in this case represent the latitude, longitude, and depth being queried (these should be 
the same values as the original MJAR.coords.xyz file) and the P-wave slowness in km/s at that queried 
event hypocenter.

4.1.2. PCalc Model Query Using A Great Circle

The properties file Example02/pcalc_query_greatcircle.properties (shown below in Figure 2) 
contains input parameters to query a model at locations specified using a great circle.

Much of this example is the same as the example shown in Section 4.1.2. Thus, we will only discuss 
new properties here.

The first major difference between this example and the previous example is the definition of 
inputType. Where in Section 4.1.2 the locations to query were input via a text file, here we set 
inputType to greatcircle:

inputType = greatcircle

When the inputType is set to greatcircle, several additional properties are required to define the great 
circle along which to query the input model.

The first property, gcStart (Section A.2.4.1) is used to set the beginning of the great circle. It is 
defined as a latitude and longitude separated by a white space. For instance, in this example gcStart 
is set to:

gcStart = 0 0

Thus, this great circle will begin at 0 degrees latitude, 0 degrees longitude. Although not shown in 
this example, there is an equivalent property called gcEnd (Section A.2.4.2) that can be used to set 
the end of the great circle in the same way as gcStart.

In the next properties, gcDistance (Section A.2.4.3) and gcAzimuth (Section A.2.4.4), we specify the 
distance and azimuth the great circle will traverse. The gcDistance value is defined as the epicentral 
distance in degrees from gcStart to the end of the great circle. The gcAzimuth value is defined as the 
azimuthal direction in degrees the great circle must go to reach the end of the defined great circle. 
Note that these properties will be ignored if gcEnd is specified.

In this example, gcDistance and gcAzimuth are defined as:

gcDistance = 180   

gcAzimuth = 0

Thus, the defined great circle will travel 180 degrees from a start of 0 degrees lat, 0 degrees lon in an 
azimuthal direction of 0 degrees.



22

Figure 2. PCalc Model Query Properties File pcalc_query_greatcircle.properties



23

Figure 2 (cont). PCalc Model Query Properties File pcalc_query_greatcircle.properties

The user next needs to specify the spacing between points of the great circle. This is done by specifying 
the property gcSpacing (Section A.2.4.6). Here gcSpacing is defined as the approximate spacing, in 
degrees, between adjacent points. The actual spacing may be reduced somewhat from the specified 
value in order for an integer number of equally spaced points to span the length of the great circle.

In this example, gcSpacing is defined as:

gcSpacing = 10



24

Thus, the great circle will consist of 19 points (18 points in addition to the 0 lat, 0 lon point), with 
adjacent points separated by approximately 10 degrees distance.

The final great circle property that is defined in this example is gcPositionParameters (Section 
A.2.4.8). This property is used to set how the great circle geometry should be output. The available 
options are:

 latitude – the latitude of the point in degrees.
 longitude – the longitude of the point in degrees.
 distance – the epicentral distance from the beginning of the great circle (gcStart) to the point, 

in degrees.
 depth – the depth of the point in km relative to sea level.
 radius – the radius of the point in km.
 x, y, z – Consider the plane of the great circle and consider each point to be a vector from the 

center of the earth to the point. The y direction is a unit vector from the center of the earth 
to a point halfway along the great circle path. The z direction is a unit vector that is normal to 
the plane of the great circle, pointing in the direction of the observer. x is a unit vector defined 
by y cross z. This coordinate system is useful for plotting points in a manner that shows the 
curvature of the surface of the earth and the various seismic discontinuities within it. z will 
always be zero in this application. To convert x, y, z to distances in km, multiply the x, y, z 
values by the Earth radius at that point.

The user can specify any combination of the above parameters for output. For instance, in this 
example gcPositionParameters is defined as:

gcPositionParameters = x, y, distance, depth

Thus, the output file will define each point of the great circle with unit vectors x and y, epicentral 
distance in degrees, and depth in km.

Finally, the user needs to define properties that specify the depth of the great circle. In this example, 
we begin with the depthSpecificationMethod property (Section A.2.7.1). This property defines the 
method that will be used to specify depths at which the model queries are to be calculated. The 
available options are: 

 depths – specify a list of depths, in km, that will be used for every latitude-longitude position.
 depthRange – specify a minimum and maximum depth, in km, and the number of desired 

depths.
 depthLevels – depth will be determined above and below a specified layer in the model (see 

Section A.2.7.4 for more detail)
 maxDepthSpacing – unique depth profiles will be generated at each geographic position such 

that:
o each profile has the same number of depths, 
o there are two depth nodes at each major layer interface in the model, one of which 

records model properties above the interface and the other below the interface.
o the maximum spacing of depth nodes is no greater than maxDepthSpacing.



25

In this example, depthSpecificationMethod is set to maxDepthSpacing:

depthSpecificationMethod = maxDepthSpacing

Since maxDepthSpacing was specified, the user also specifies the properties maxDepthSpacing 
(Section A.2.7.5) and maxDepth (Section A.2.7.6). maxDepthSpacing is defined in the fourth bullet 
above. maxDepth sets the deepest point returned in each profile, where the maximum depth can be 
specified as a depth in km or as a model layer/interface name such as “moho” or “cmb” (see Section 
A.2.7.6 for details).

In this example, these properties are set to:

maxDepthSpacing = 100

maxDepth = top of m660

Thus, at each point of the great circle the requested outputAttribute (here pslowness; see Section 4.1.1 
for details on outputAttribute), the P-wave slowness at depths directly above and below each layer in 
the model will be returned in the output until the top of the M660 layer is reached. These depths will 
be separated by a maximum value of 100 km.

The remaining properties in this example, with the exception of outputHeader were covered in Section 
4.1.1. outputHeader generates a column heading for each column of output on the first line of the file. 
By default outputHeader is set to false. Here, it has been set to true:

outputHeader = true

A sample of the output when PCalc is run on this properties file is shown below:

x       y       distance        depth   pslowness
-1.000000000    0.000000000     0.000000000     -0.000207       0.6667
-1.000000000    0.000000000     0.000000000     4.871375        0.6667
-1.000000000    0.000000000     0.000000000     4.871375        0.5242
-1.000000000    0.000000000     0.000000000     5.832801        0.5242

4.1.3. PCalc Model Query Using a Grid
The properties file Example03/pcalc_query_grid.properties (shown below in Figure 3) contains 
input parameters to query a model at locations specified using a grid.

Much of this example is the same as those shown in Sections 4.1.1 and 4.1.2. Thus, we will only discuss 
new properties here.



26

Figure 3. PCalc Model Query Properties File pcalc_query_grid.properties



27

Figure 3 (cont). PCalc Model Query Properties File pcalc_query_grid.properties

The first major difference between this example and the previous examples is the definition of 
inputType. Whereas in Sections 4.1.2 and 4.1.2 the locations to query were input via a text file or by 
defining a great circle, respectively, here we set inputType to grid:

inputType = grid

When the inputType is set to grid, several additional properties are required to define the grid along 
which to query the input model. 

The two main properties needed are gridRangeLat and gridRangeLon (Sections A.2.5.1, A.2.5.2). 
These define the minimum lat/lon, maximum lat/lon and the number of lats/lons at which the model 
should be queried. For instance, in this example gridRangeLat and gridRange Lon are defined as:



28

gridRangeLat = 15 45 16

gridRangeLon = 70 110 21

the grid will range in latitude from 15 to 45 degrees, with 16 latitudes calculated within that latitude 
range, and the grid will range in longitude from 70 to 110 degrees, with 21 longitudes calculated within 
that longitude range.

Note that the depthSpecificationMethod discussed in Section 4.1.2 is set to depths in this example. 
Thus, a list of depths is provided using the depths parameter:

depthSpecificationMethod = depths

depths = 100.0, 200.0

The depths are specified in a comma-separated list. In this example only two depths of 100.0 and 
200.0 km are requested.

Note that there is no equivalent to the gcPositionParameters property in Section 4.1.2. Thus, the 
output file will always have locations defined as longitude, latitude, and depth columns, with the 
requested outputAttributes making up the remainder of the columns.

A sample of the output when PCalc is run on this properties file is shown below:

longitude       latitude        depth   pslowness
70.000000000    15.000000000    100.000000      0.1255
70.000000000    15.000000000    200.000000      0.1227
72.000000000    15.000000000    100.000000      0.1256
72.000000000    15.000000000    200.000000      0.1225

4.2. PCalc Travel Time Prediction Examples

4.2.1. PCalc Travel Time Prediction Using MJAR.coords.xyz File
The properties file Example04/pcalc_prediction_file.properties (shown below in Figure 4) 
contains input parameters to generate predictions for locations specified in a file.

Much of this example is the same as those shown in previous sections. Thus, we will only discuss new 
properties here.



29

Figure 4. PCalc Prediction Properties File pcalc_predictions_file.properties.



30

Figure 4 (cont). PCalc Prediction Properties File pcalc_prediction_file.properties.

This is the first of a few examples detailing the prediction application of PCalc. All predictions are 
computed in concurrent parallel mode (multi-threaded). Thus, the first new property is maxProcessors 
(Section A.2.9.2). maxProcessors defines the maximum number of processors to be used in the PCalc 
run. By default, all processors available will be used if this property isn’t specified. In this example, 
maxProcessors is defined as:

maxProcessors = 4
The application property is now set to predictions:

application = predictions



31

When application is set to predictions, the property predictors (Section A.2.9.1) is required. The 
predictors property consists of a list of predictors that are to be used during the run. The available 
predictors are:

 lookup2d – perform predictions with the AK135 model included in the PCalc jar file.

 tauptoolkit -perform predictions through an input model using the TauP Toolkit ray-tracing 
algorithm (see link).

 bender – perform predictions through an input model using the Bender ray-tracing algorithm. 
See Section 0 for details on Bender.

 slbm – perform predictions through an input model using the Regional Seismic Travel Time 
(RSTT) method (see link). slbm is the former name of RSTT. 

Different predictors can be applied to different seismic phases. For instance, if predictors is set equal 
to “lookup2d, bender(P, Pn), slbm(Pn, Pg)” then lookup2d will be used as the predictor for all phases 
not specified later in the list, Bender will be used for phase P, and SLBM, i.e., RSTT, will be used for 
phases Pn and Pg.

In this example, predictors is set to bender for all phases:

predictors = bender

With predictors set to bender, the benderModel property (A.2.9.11) needs to be defined. This property 
is the path to the GeoTessModel that Bender should use to calculate predictions of seismic 
observables.

In this example, we use SALSA3D.geotess, so the benderModel property is defined as: 

benderModel = <property:workDir>../SALSA3D_Model/SALSA3D_PUBLIC.geotess

As in Section 4.1.1, the MJAR.coords.xyz file provides the proposed hypocentral locations of seismic 
events as input. Note that while inputType and inputFile are defined in the same way as in Section 
4.1.1, inputAttributes is now defined as:

inputAttributes = origin_lat, origin_lon, origin_depth  

whereas in Section 4.1.1, inputAttributes was defined as “latitude longitude depth”. This change is 
because the application is now predictions rather than model_query.

When the PCalc application is predictions, by default inputAttributes (Section A.2.3.3) is set to “sta 
jdate site_lat site_lon site_elev origin_lat origin_lon origin_depth phase”, where: 

 sta is the recording station – used to apply site corrections

 jdate is the Julian date when the event origin was recorded – used to apply site corrections

 site_lat and site_lon are the latitude and longitude in degrees of the recording station

 site_elev is the elevation of the recording site

https://www.seis.sc.edu/taup/
https://www.sandia.gov/rstt/


32

 origin_lat and origin_lon are the latitude and longitude in degrees of the event

 phase is the seismic phase recorded 

Thus, when the default inputAttributes is used, the text file must contain columns corresponding to 
each of the above attributes. At a minimum, the inputAttributes origin_lat, origin_lon, must be 
included. Note that the inputAttribute origin_depth is also an option – if origin_depth is not defined 
in the text file, it must be defined using depth properties (see Section A.2.7). The inputAttributes 
site_lat, site_lon, site_elev, and phase must also be defined using properties (see Sections A.2.2.3 and 
A.2.2.4).

In this example, inputAttributes sets the required text file columns to correspond to event 
hypocenters. Because the required attributes site_lat, site_lon, and phase were not specified in the 
input text file, we now set these properties in the following lines:

phase = P
                                                               site = 36.524717, 138.24718, .6617

In this example, Bender performs raytracing for first-arrival P from the input event locations to a 
station located at 36.524717 degrees latitude, 138.24718 degrees longitude, and 0.6617 km elevation.

Because this example is designed to predict travel-times, the additional properties sta and jdate are 
defined so travel-time site corrections can be applied to the travel-time predictions. In this example, 
we apply corrections for station MJAR that were valid on January 1, 2011:
                               
sta = MJAR

jdate = 2011001

Finally, at the bottom of the properties file in Figure 4, the outputAttributes property is set. The 
predictions application has far more outputAttributes options than the model_query application seen 
in Section 4.1.1. These outputAttributes are listed in Section A.2.8.4. In this example, outputAttributes 
is set to travel_time. Thus, the final output file will contain origin_lat, origin_lon, origin_depth, and 
travel_time columns, with each row indicating an event hypocenter and the travel-time (in sec) for 
first P to go from that hypocenter to station MJAR.

Finally, in this example we see an additional property outputFormat (Section A.2.8.3) that can be used 
to format the output file.

A sample of the output when PCalc is run on this properties file is shown below:

origin_lat origin_lon origin_depth travel_time
13.710173 144.000000 80.018 299.4320
13.710173 144.000000 75.018 299.8480
13.710173 144.000000 70.018 300.2570
13.710173 144.000000 65.019 300.6660
13.710173 144.000000 60.019 301.0740



33

4.2.2. PCalc Travel Time Prediction Using Great Circles
The properties file Example05/pcalc_prediction_greatcircle.properties (shown below in Figure 
5) contains input parameters to generate predictions for locations specified by a great circle.

The properties in this file have been discussed in prior sections. Refer to Sections 4.1.2, 4.1.3, 4.2.1, 
and Appendix A for information on these properties. Note that the lookup2d predictor is used in this 
example.

A sample of the output when PCalc is run on this properties file is shown below:

longitude latitude x y distance depth travel_time
0.000000000 0.000000000 -1.000000000 0.000000000 0.000000000 50.000000 140.2321
0.000000000 0.000000000 -1.000000000 0.000000000 0.000000000 60.000000 140.1395
0.000000000 0.000000000 -1.000000000 0.000000000 0.000000000 70.000000 140.0606
0.000000000 10.066021190 -0.984807753 0.173648178 10.000000000 50.000000 8.0451



34

Figure 5. PCalc Prediction Properties File pcalc_predictions_greatcircle.properties.



35

Figure 5 (cont). PCalc Prediction Properties File pcalc_prediction_greatcircle.properties.



36

4.2.3. PCalc Travel Time Prediction Using a Grid
The properties file Example06/pcalc_prediction_grid.properties (shown below in Figure 6) 
contains input parameters to generate predictions for locations specified by a grid.

The properties in this file have been discussed in prior sections. Refer to Sections 4.1.2, 4.1.3, 4.2.1, 
and Appendix A for information on these properties.

A sample of the output when PCalc is run on this properties file is shown below:

longitude latitude depth travel_time
70.000000000 15.000000000 11.746270 631.0310
72.000000000 15.000000000 14.652013 619.8160
74.000000000 15.000000000 34.726226 607.3200
76.000000000 15.000000000 41.667169 595.2580



37

Figure 6. PCalc Prediction Properties File pcalc_predictions_grid.properties.



38

Figure 6 (cont). PCalc Prediction Properties File pcalc_prediction_grid.properties.



39

4.2.4. PCalc Travel Time Prediction Using a Database

As previously mentioned, if the user has the necessary Oracle ojdbc*.jar file available, PCalc can use 
Oracle databases for I/O rather than text files. Here is an example of a properties file that loads 
origin, assoc, arrival, site information from database tables and writes new assocs where timres, azres 
and slowres are replaced with values computed using the specified RSTT model. This file serves as a 
template for database input/output parameters that can be used with other examples in this tutorial.

#=====================================================
#
# Property file for application Predictions v. 3.0
#
#=====================================================

application = predictions
workDir = /Users/acconle/pcalc_software/testing_db

#=====================================================
#
# PREDICTORS, MODELS, UNCERTAINTY, ETC.
#
#=====================================================

# predictors may include any combination of (lookup2d, bender, slbm)
predictors = slbm

slbmModel = /Users/acconle/pcalc_software/pdu202009Du.geotess

#=====================================================
#
# INPUT PARAMETERS: GENERAL
#
#=====================================================

#inputType must be one of [file | database | greatcircle | grid]
inputType = database

dbInputInstance = jdbc:oracle:thin:@domain:port:database
dbInputUserName = username
dbInputPassword = password

dbInputTablePrefix = uebgt_
dbInputTableTypes = origin, arrival, assoc
dbInputSiteTable = uebgt_site
dbInputWhereClause = origin.orid = 48834027



40

#=====================================================
#
# OUTPUT PARAMETERS
#
#=====================================================

#outputType must = file | database
outputType = database

#optional log file
logFile = <property:workDir>/db_test_log.txt

# if terminalOutput is true then log information is written to stdout
terminalOutput = true

dbOutputInstance = <property: dbInputInstance>
dbOutputUserName = <property: dbInputUserName>
dbOutputPassword = <property: dbInputPassword>
dbOutputAssocTable = pcalc_assoc
dbOutputAutoTableCreation = true
dbOutputPromptBeforeTruncate = false
dbOutputTruncateTables = true

The user must update the properties file to provide working database access information for 
@domain:port:database, username, and password. The input table name prefix should be replaced with the 
name of database tables to which the user has access. Note that PCalc is designed to interact with the 
CSS3.0 schema or similar format.

4.3. PCalc Raypath Generation Using Great Circles
The properties file Example07/pcalc_raypaths_greatcircle.properties (Figure 7) contains input 
parameters to generate predictions for locations specified by a great circle.

Much of this example is the same as those shown in previous sections. Thus, we will only discuss new 
properties here. Note that as before, inputType can be file (Section 4.2.1), greatcircle (Section 4.2.2), 
grid (Section 4.2.3), or database (Section 4.2.4). In this example, inputType is set to greatcircle:

inputType = greatcircle

Note that this great circle is defined with the additional properties gcNpoints (Section A.2.4.5), which 
defines the number of points that will be placed along the great circle path, and gcOnCenters (A.2.4.7), 
which will cause the points along the great circle to reside at the centers of line segments rather than 
span the length of the great circle if true. If false, the first and last points will coincide with the 
beginning and end of the great circle. 



41



42

Figure 7. PCalc Prediction Properties File pcalc_raypaths_greatcircle.properties.



43

Figure 7 (cont). PCalc Prediction Properties File pcalc_raypaths_greatcircle.properties.

Here these are defined as:

gcNpoints = 19

gcOnCenters = false

Thus, the great circle will consist of 19 points and the first and last points will coincide with the 
beginning and end of the great circle. Setting gcOnCenters to false is default and is shown here for 
demonstration purposes only.



44

In this example, the user still specifies that the application perform predictions. However, rather than 
setting outputAttributes to travel_time as seen in the previous predictions examples, we now set the 
outputAttributes property (Section A.2.8.4) to ray_path:

outputAttributes = ray_path

Thus, unlike in prior predictions examples where the output file contains a list of event locations and 
their travel times to a specified receiver, the output file will now contain raypath geometries. These 
geometries represent rays calculated by the predictor (here Bender) for the specified phase (here P) 
that travel through the input model (here SALSA3D_PUBLIC.geotess) from the specified origins 
(defined by a great circle here) to the specified receiver (here ARCES).

Finally, note that the outputType (Section A.2.8.6) is explicitly set to file:

outputType = file

A sample of the output when PCalc is run on this properties file is shown below:

latitude longitude distance depth
>
0.000000 -90.000000 0.000000 -0.000207
0.000148 -89.999304 0.000711 1.226326
0.000184 -89.999141 0.000878 1.440761
0.001282 -89.994334 0.005807 3.644488
. . .
10.000131 -0.001974 89.998056 1.006994
>

One raypath consists of all rows between two arrows >, as shown in the above example. In this 
example, gcPositionParameters was set to “latitude longitude distance depth”. These can be changed 
to x, y, z output or some other combination (see Sections 4.2.2, A.2.4.8 for details).

4.4. PCalc LibCorr3D Surface Generation
The properties file Example08/pcalc_predictions_geotess.properties (shown below in Figure 
8) contains input parameters to generate LibCorr3D surfaces using PCalc. LibCorr3D surfaces are 
GeoTess models containing two attributes, tt_delta_ak135 and tt_model_uncertainty. tt_delta_ak135 
represents the difference between travel times predidcted using a 3D GeoTess slowness model, and 
travel times predicted with the standard AK135 model. tt_model_uncertainty represents either 1D 
distance dependent travel time uncertainty or path dependent travel time uncertainty computed from 
the 3D model covariance matrix that results from tomographic inversion.

To perform LibCorr3D surface generation, a special salsa3d input folder is required. We provide an 
example of one of these folders in the following section. The folder and its contents are defined in 
Section 4. As we go through the example in Figure 8, the properties requiring this folder path will be 
defined.



45

Figure 8. PCalc Prediction Properties File pcalc_libcorr3d_geotess.properties.



46

Figure 8 (cont). PCalc Prediction Properties File pcalc_libcorr3d_geotess.properties.



47

Figure 8 (cont). PCalc Prediction Properties File pcalc_libcorr3d_geotess.properties.

Several new properties can be seen in this properties file.

parallelMode can be either sequential or concurrent (the latter is recommended).  When 
parallelModel is concurrent, maxProcessors specifies the maximum number of threads PCalc can 
use to compute predictions.  The default is all threads.



48

Note that the predictors property must be set to bender to perform LibCorr3D surface generation. In 
addition, the benderUncertaintyType property (Section A.2.9.12) must be defined. 
benderUncertaintyType sets the type of travel time uncertainty desired. If set to DistanceDependent, 
the 1D distance dependent uncertainties in the salsa3d_v2 folder (see Section 4) will be used. 
Otherwise, if set to PathDependent, path dependent uncertainties will be calculated using the input 
velocity model’s full covariance matrix. In this example, the benderModel and benderUncertaintyType 
are set to:

benderModel = /snl/Projects/GNDD/GMP/salsa3d_v2

benderUncertaintyType = PathDependent

Note that unlike in prior examples, benderModel is set equal to the path to the special salsa3d model 
folder needed to generate LibCorr3D surfaces. PCalc will automatically retrieve the model necessary 
for Bender to perform ray tracing from the folder.

With benderUncertaintyType set to PathDependent, the benderUncertaintyDirectory property 
(Section A.2.9.13) does not need to be set. 

Next, the benderUncertaintyWorkDir property (Section A.2.9.15) is defined. This property is only 
necessary when computing path dependent uncertainties. Thus, it is ignored in this example which 
calculates distance dependent uncertainty. But for demonstration purposes it is included in the 
example properties file and is set to:

benderUncertaintyWorkDir = <property:outputDir>/BenderUncertaintyWorkDir

This directory can be removed or emptied anytime it is not in use by PCalc.

Next, the inputType property is defined to be geotess:

When defining which sites to generate a LibCorr3D surface for, all parameters are the same as in prior 
prediction examples except for the new property supportedPhases. supportedPhases defines which 
phases the LibCorr3D surface can be used for. For instance, here supportedPhases is defined as:

supportedPhases = P,Pn

Thus, any surfaces generated by this example can be used for phases P and Pn.

Because a LibCorr3D surface is contained in a GeoTess model, the model must be built and populated 
with GeoTessBuilder, the GeoTessBuilder properties geotessBaseEdgeLengths, 
geotessRotateGridtoStation, geotessDataType, and geotessDepthSpacing must be defined. The reader 
is referred to the GeoTess documentation to learn more about these properties.

Finally, the outputType property (Section A.2.8.6) is set to libcorr3d and the output file is set to 
generate a GeoTess file containing the outputAttributes  tt_delta_ak135 and tt_model_uncertainty 

https://sandia.gov/geotess/


49

defined at the beginning of this section (also see Section A.2.8.4). Note that the property 
overwriteExistingOutputFile (Section A.2.8.2) is set to true:

outputType = libcorr3d

outputFile = <property:outputDir>/<property:sta>_<property:phase>.geotess

overwriteExistingOutputFile = true

outputAttributes = tt_delta_ak135, tt_model_uncertainty

The output of this example file consists of two GeoTess files named test_MJAR_P.geotess. These 
files can be queried and used via GeoTess, which includes the capability to generate .vtk figures that 
can be viewed in ParaView.

4.4.1. seismicBaseData
PCalc often needs access to 2-dimentional lookup tables for travel time, azimuth and slowness 
information.  The 2 dimensions refer to distance and depth.  Lookup tables for azimuth and slowness 
are rarely used but travel time is used very frequently.  Travel time lookup tables for a great variety of 
radially symmetric velocity models have been generated but tables for models ak135 and iasp91 are 
the most common.

PCalc expects 2D lookup tables to be stored in a directory structure called seismicBaseData where a 
directory called sesimicBaseData contains subdirectories tt (travel time), az (azimuth), sh (horizontal 
slowness) and el (ellipticity corrections).  Within each of those subdirectories would be another level 
of subdirectories with names that correspond to a particular model, e.g., ak135, iasp91, etc.  Within 
each of those subdirectories would be files with names that correspond to a particular phase.  For 
example, a very commonly used lookup table would reside in seismicBaseData/tt/ak135/Pn.

While PCalc can access seismicBaseData in an external directory on the user’s file system, PCalc 
includes a copy of seismicBaseData in the PCalc jar file.  These include travel time and ellipticity 
corrections for modle ak135 and travel time tables for iasp91.  

PCalc property seismicBaseData can be used to specify the path to a directory on the user’s file system 
where lookup tables reside.  If property seismicBaseData is set to ‘seismic-base-data.jar’ or is omitted 
altogether, the lookup tables stored in the PCalc jar file will be used.

https://github.com/sandialabs/GeoTessJava
https://www.paraview.org/


50

5. SUMMARY
PCalc is a feature-rich software application that can compute travel-time predictions, ray path 
geometries and perform model-queries in 3D models of Earth’s velocity structure. PCalc has many 
useful features, especially for monitoring applications and when used with models specified in the 
GeoTess format:

 The ability to trace the phases P, PP, pP, PKPdf, PKPbc, and Pn through 3D models of 
Earth’s compressional-wave velocity structure and S, SS, sS, and SKS through 3D models of 
Earth’s shear-wave velocity structure.

 Computation of travel-time and travel-time uncertainty for the above phases.

 Seismic phase travel-times can be computed using any model stored in GeoTess format. In 
addition, travel-times can be computed using the AK135 model, which is stored within the 
PCalc Software.

 LibCorr3D surfaces can be generated on the fly with either 1D distant dependent or path 
dependent uncertainties.

 The ability to directly interact with CSS3.0 format data tables stored in an Oracle database for 
both input and output, including the insertion of newly computed origins into existing tables.

 Geographic positions at which models can be queried or travel-times computed can be 
specified in a variety of formats, including a list of locations contained in an ascii text file, a 
2D grid of points distributed in depth along a great circle path or a 3D grid specified by regular 
vertices on the earth and in depth.

When PCalc is used in conjunction with the GeoTess and LocOO3D tools (available at 
https://github.com/sandialabs/GeoTessJava and https://github.com/sandialabs/LocOO3D 
respectively) it becomes one part of a powerful toolkit for monitoring applications. The software 
and the examples specified in this manual can be downloaded through GitHub at:

https://github.com/sandialabs/PCalc
or 

www.sandia.gov/salsa3d/Software.html

https://github.com/sandialabs/GeoTessJava
https://github.com/sandialabs/LocOO3D
http://www.sandia.gov/salsa3d/Software.html


51

REFERENCES

[1] Ballard, S., J. R. Hipp and C. J. Young (2009) Efficient and accurate calculation of ray theory 
seismic travel time through variable resolution 3D Earth models. Seismological Research Letters 
80 (6), 989-999.

[2] Ballard, S., J. Hipp, B. Kraus, A. Encarnacao and C. Young (2016a) GeoTess: A generalized 
Earth model software utility, Seismological Research Letters 87 (3), 719-725.

[3] Ballard, S., J. R. Hipp, M. L. Begnaud, C.J. Young, A. V. Encarnacao, E. P. Chael and W. S. 
Phillips (2016b) SALSA3D: A tomographic model of compressional wave slowness in the 
Earth’s mantle for improved travel-time prediction and travel-time prediction uncertainty. 
Bulletin of the Seismological Society of America 106 (6), 2900-2916.

[4] Um, J. and C. Thurber (1987) A fast algorithm for two-point seismic ray tracing. Bulletin of the 
seismological society of America 77 (3), 972-986.



52

APPENDIX A. PCALC PARAMETERS

A.1. Setting Parameters
The parameters required by PCalc are preset to default values as the application is started. These 
defaults are given below in the parameter description section. Users may apply a different parameter 
value by using a property file (e.g., test.property). Only parameters whose values differ from their 
defaults need to be listed in the parameter file, since the defaults will be activated for any parameter 
not found in parameter file. 

NOTES:

 PCalc parameters are case sensitive.

 All parameters in the parameter file must contain an ‘=’ character, separating the parameter 
name from the parameter value (e.g. inputType = grid). White space around the ‘=’ sign is 
optional (ignored). 

 Properties can be recursive. If a property value contains a string ‘<property:xyz>’ then the 
phrase ‘<property:xyz>’ is replaced with the value of property ‘xyz’. For example, if the 
following records appear in the property file:

testDirectory = /home/testDir
io_log_file = <property:testDirectory>/log.txt

then the actual value of property ‘io_log_file’ will be ‘/home/testdir/log.txt’.
 If a property value contains the string ‘<env:xyz>’ then the phrase ‘<env:xyz>’ is replaced 

with the value returned by System.getenv(xxx).

A.2. Property Descriptions

A.2.1. General
The general properties, with the exception of logfile and terminalOutput, must be specified in all 
properties files. Otherwise, PCalc will throw an error.

A.2.1.1. application
<string>  [Default = none]  ( model_query | predictions )
Specifies the application that PCalc is to perform. The model_query application specifies that PCalc will 
extract requested data or metadata from an input model. The predictions application specifies that PCalc 
will generate travel-time or raypath predictions using input locations. Locations can be input as a file, 
grid, or great circle, respectively. 

A.2.1.2. logFile
<string>  [Default = null: no text output]  
Full path to log file. General information about the PCalc run is sent to this file. If property 
terminalOutput = true, the same information is sent to the screen.



53

A.2.1.3. terminalOutput
<boolean>  [Default = true]  
Echo general information about the PCalc run. This is the same information that is sent to the log 
file. If false, PCalc is silent.

A.2.2. Input 

A.2.2.1. inputType
<string>  [Default = none]  (file | database | greatcircle | grid | geotess)

String indicating how the geometry of the predictions / model queries is to be specified. This 
document contains a section for each inputType that describes the properties that are pertinent to that 
inputType.

The following input properties are used by multiple inputTypes:

A.2.2.2. sta
<String>  [no Default]  

The name of the station. If sta and jdate are supplied then Bender will include tt_site_corrections in 
total travel times, regardless of whether tt_site_corrections is one of the requested outputAttributes or 
not.

A.2.2.3. site
< >  [no Default]  

Used to specify the location of one or more sites.  Several format are supported:
1) sta, ondate, offdate, lat, lon, elevation, "staname" (in quotes), statype, refsta, dnorth, 

deast
2) Sta, refsta, lat, lon, elevation
3) Lat, lon, elevation (sta must be specified separately using the sta property

Note that several sites can be specified with the site property, delimited by a semi-colon.  When 
more than one site are specified, they are processed one at a time as though PCalc was run multiple 
time with each site separately.

When one or more sites are specified, property sta is overridden with the site.sta as each site is 
processed.

A.2.2.4. phase
<String>  [no Default]  

Seismic phase.



54

A.2.2.5. supportedPhases
<String>  [no Default]  

Comma-separated list of phases that are supported by the LibCorr3D surface. Only used when 
generating LibCorr3D surfaces.

A.2.2.6. jdate
<int>  [2286324]  

The jdate of predicted arrivals. If sta and jdate are supplied then Bender will include tt_site_corrections 
in total travel times, regardless of whether tt_site_corrections is one of the requested outputAttributes 
or not.  tt_site_corrections are stored in GeoTess slowness models used by Bender to compute total 
travel times.

A.2.3. Input from File
If inputType = file then this section defines properties that further define the input parameters.

A.2.3.1. inputFile
<String>  [no Default]  

The name of the file that is to be input.

A.2.3.2. inputHeaderRow
<boolean>  [Default = false]  

If inputHeaderRow = true then the first line of the input file that is not blank and not a comment (lines 
that start with # are comments) will be interpreted as column headings that describe what each column 
contains.

If inputHeaderRow = false then column heading information is obtained from property inputAttributes.

A.2.3.3. inputAttributes
<String>  

Ignored if inputHeaderRow is true. 

inputAttributes consists of a number of column headings separated by space(s). Each column heading 
may not contain any spaces and there must be exactly one for each column of input data. 

When application = predictions

If predictions are to be computed, then the default value of inputAttributes is 
“sta jdate site_lat site_lon site_elev origin_lat origin_lon origin_depth phase”.



55

When computing predictions, PCalc must be able to determine the origin_lat, origin_lon, 
origin_depth, site_lat, site_lon, site_elev, and the phase for each requested prediction. If sta and jdate 
columns are also supplied, then predictions will also include site corrections for predictors capable of 
supplying them.

At a minimum, inputAttributes must include origin_lat and origin_lon. 

inputAttributes may also include origin_depth. If inputAttributes does not include origin_depth, then 
depth information must be supplied using the properties described in Section A.2.7.

inputAttributes may also include site_lat, site_lon and [site_elev | site_depth]. If inputAttributes does not 
include these quantities, then the site position information must be specified with property site 
described elsewhere and that station location will be used for all origin positions. 

inputAttributes may also include ‘phase’. If phase is not included in the inputAttributes then phase must 
be specified with property phase and the same phase will be used for all predictions.

inputAttributes may also include ‘sta’. If ‘sta’ is not included in the inputAttributes then ‘sta’ may be 
specified with property sta and the same sta will be used for all predictions. If ‘sta’ is not specified, it 
defaults to ‘-‘.

When application = model_query

If model queries are being requested, then the default value of inputAttributes is “longitude latitude 
depth”.

When performing model queries, PCalc must be able to determine the latitude, longitude, and depth 
where the queries are to be performed.

At a minimum, inputAttributes must include latitude and longitude. 

inputAttributes may also include depth. If inputAttributes does not include depth, then depth information 
must be supplied using the properties described in Section A.2.7.

A.2.4. Input from Great Circle
If inputType = greatcircle then this section defines properties that further define the input parameters.
This section describes how to define the 1D array of points distributed along a great circle path. As 
defined, the points have depth set to NaN (not-a-number). See Section A.2.7 for how to specify the 
depth(s) of the points along the greatcircle.

Property gcStart defines the position of one end of the great circle and is a required property. There 
are two ways to specify the other end of the great circle: 

1. use gcEnd to specify the latitude and longitude of the other end, 



56

2. use gcDistance and gcAziumth to specify the distance and azimuth to the other end of the 
great circle. gcEnd takes precedence if both are specified.

There are two ways to define the number of points that will be positioned along the great circle path: 

1. use gcNpoints to explicitly define the number of equally spaced points, 

2. use gcSpacing to specify the approximate spacing, in degrees, between adjacent points. 
In this instance, the actual spacing may be reduced somewhat from the specified value 
in order for an integer number of equally spaced points to span the length of the great 
circle. If both are specified, gcSpacing takes precedence.

A.2.4.1. gcStart
<2 doubles>  [no Default]  

The latitude in degrees and longitude in degrees, of the beginning of the great circle.

A.2.4.2. gcEnd
<2 doubles>  [no Default]

  
The latitude in degrees and longitude in degrees of the end of the great circle. Takes precedence over 
gcDistance/gcAzimuth if both methods are specified.

A.2.4.3. gcDistance
<double>  [no Default] 

 
Epicentral distance in degrees from gcStart to the end of great circle. Ignored if gcEnd is specified.

A.2.4.4. gcAzimuth
<double>  [no Default] 
 

The azimuthal direction in degrees to move from gcStart in order to arrive at the end of the great circle. 
Ignored if gcEnd is specified.

A.2.4.5. gcNpoints
<int>  [no Default]  

The number of points that will positioned along the great circle path. Ignored if gcSpacing is also 
specified.

A.2.4.6. gcSpacing
<double>  [no Default]

  
The approximate spacing, in degrees, between adjacent points. The actual spacing may be reduced 
somewhat from the specified value in order for an integer number of equally spaced points to span 
the length of the great circle. Takes precedence over gcNpoints if both are specified.



57

A.2.4.7. gcOnCenters
<boolean>  [false]  

When gcOnCenters is true, the points along the great circle will reside at the centers of line segments 
that span the length of the great circle. When gcOnCenters is false, the first and last points will coincide 
with the beginning and end of the great circle. 

A.2.4.8. gcPositionParameters
<String> [empty string] (any subset of [latitude, longitude, x, y, z, distance, depth])

Defines how the geometry of each point should be defined in the output file. Available parameters 
are:

 latitude – the latitude of the point in degrees.
 longitude – the longitude of the point in degrees.
 distance – the epicentral distance from the beginning of the great circle (gcStart) to the point, 

in degrees.
 depth – the depth of the point in km relative to sea level.
 radius – the radius of the point in km.
 x, y, z – Consider the plane of the great circle and consider each point to be a vector from the 

center of the earth to the point. The y direction is a unit vector from the center of the earth 
to a point halfway along the great circle path. The z direction is a unit vector that is normal to 
the plane of the great circle, pointing in the direction of the observer. X is a unit vector defined 
by y cross z. This coordinate system is useful for plotting points in a manner that shows the 
curvature of the surface of the earth and the various seismic discontinuities within it. z will 
always be zero in this application.

A.2.4.9. depthFast
<boolean>  [true]  

The order in which distance-depth information is written to output. When true, depths vary fastest. 
When false, distances vary fastest. 

A.2.5. Input from Grid
If inputType = grid then this section defines properties that further define the input parameters.
This section describes how to define the 2D array of grid points in map view. As defined, the points 
have depth set to NaN (not-a-number). See Section A.2.7 for how to specify the depth(s) of the points 
on the grid.

A.2.5.1. gridRangeLat
<2 doubles, 1 int>  [no Default]  

The minimum latitude, maximum latitude, and number of latitudes.



58

A.2.5.2. gridRangeLon
<2 doubles, 1 int>  [no Default]  

The minimum longitude, maximum longitude, and number of longitudes. 

A.2.5.3. gridCenter
<2 doubles>  [no Default]  

Latitude and longitude, in degrees, of the center of the grid. Ignored if gridRangeLat and gridRangeLon 
are specified, required otherwise.

A.2.5.4. gridPole
<string>  [no Default]  (northPole, 90DegreesNorth, or 2 doubles)

The pole of rotation. If gridPole = northPole then the pole of rotation is the north pole. If gridPole = 
90DegreesNorth, then pole of rotation is the point found by moving 90 degrees away from gridCenter 
moving in a northerly direction. If gridPole = (2 doubles), then the doubles are interpreted to be the 
latitude and longitude of the pole of rotation, in degrees.

Ignored if gridRangeLat and gridRangeLon are specified; required if gridCenter is specified.

A.2.5.5. gridHeight
<1 double, 1 int>  [no Default] 

 
The size of the grid in the direction from gridCenter to gridPole, in degrees. Ignored if gridRangeLat and 
gridRangeLon are specified; required if gridCenter is specified.

A.2.5.6. gridWidth
<1 double, 1 int>  [no Default]  

The size of the grid in the direction perpendicular to the direction from gridCenter to gridPole, in degrees.
Ignored if gridRangeLat and gridRangeLon are specified; required if gridCenter is specified.

A.2.5.7. depthFast
<boolean>  [true] 
 

The order in which distance-depth information is written to output. When true, depths vary fastest. 
When false, distances vary fastest. 

A.2.5.8. yFast
<boolean>  [true]  

The order in which geographic information is written to output. When true, y or latitude variable 
varies fastest. When false, x or longitude information varies fastest. 



59

A.2.5.9. gridPositionParameters
<string>  [longitude latitude depth]

  
The geographic information that is to be included in the output. The order of the position 
parameters in the output can be controlled with this parameter.

A.2.6. Input/Output from/to Database 
If property inputType is equal to database, then information is loaded from tables origin, assoc, arrival 
and site and a new assoc table is populated with new values for timeres, azres, slores and vmodel, 
using the specified predictors. 

A.2.6.1. dbInputUserName, dbOutputUserName
<string>  [Default = user’s environment variable DB_USERNAME] 

 
Database account usernames. 

A.2.6.2. dbInputPassword, dbOutputPassword
<string>  [Default = user’s environment variable DB_PASSWORD_<username>]  

Database input/output account passwords.  

A.2.6.3. dbInputInstance, dbOutputInstance
<string>  [Default = user’s environment variable DB_INSTANCE]  

Database instance for input/output. 

A.2.6.4. dbInputDriver, dbOutputDriver
<string>  [Default = user’s environment variable DB_DRIVER, or oracle.jdbc.driver.OracleDriver]  

Database driver for input/output. Generally equals oracle.jdbc.driver.OracleDriver.

A.2.6.5. dbIntputTableTypes 
<string>  [Default = ]  

If the dbInputTableTypes parameter is specified then the input table types specified with this 
parameter will default to the value of the dbInputTablePrefix parameter with the appropriate table 
type appended on the end. 

A.2.6.6. dbInputTablePrefix 
<string>  [Default none]  

If this parameter is specified then the four input tables (dbInputOriginTable, dbInputAssocTable, 
dbInputArrivalTable, dbInputSiteTable) will default to the value of this parameter with the 



60

appropriate table type (ORIGIN, ASSOC, ARRIVAL, SITE) appended on the end. If any of the four 
tables are also explicitly specified, then the explicitly specified name has precedence. 

A.2.6.7. dbInputOriginTable 
<string>  [Default not allowed]  

Name of the input origin table. Specifying this parameter will override any default values set by other 
parameters.

A.2.6.8. dbInputAssocTable 
<string>  [Default not allowed]  

Name of the input assoc table. Specifying this parameter will override any default values set by other 
parameters. 

A.2.6.9. dbInputArrivalTable 
<string>  [Default not allowed]  

Name of the input arrival table. Specifying this parameter will override any default values set by other 
parameters. 

A.2.6.10. dbInputSiteTable 
<string>  [Default not allowed]  

Name of the input site table. Specifying this parameter will override any default values set by other 
parameters.

A.2.6.11. dbInputWhereClause 
PCalc will execute a sql query similar to:

select origin.*, assoc.*, arrival.*, site.* 
   from leb_origin origin, leb_assoc assoc, leb_arrival arrival, idc_site site, 

idc_affiliation affiliation 
   where origin.orid=assoc.orid and assoc.arid=arrival.arid and 

arrival.sta=site.sta 
and arrival.jdate greater than or equal to site.ondate and 
(site.offdate = -1 or arrival.jdate <= site.offdate) 
and site.sta=affiliation.sta and [dbInputWhereClause] 

The affiliation table is optional and is only implemented if the Schema has an affiliation table specified.
Users can specify a where clause string using this property.

A.2.6.12. dbOutputAssocTable
<string>  [Default = none]  

Name of the assoc table where output is to be written. 



61

A.2.6.13. dbOutputAutoTableCreation
<bool>  [Default = false]  

Boolean flag should be set to true if output database tables should be created if they do not already 
exist.

A.2.6.14. dbOutputTruncateTables
<bool>  [Default = false]  

Boolean flag should be set to true if output database tables should be automatically truncated at the 
start of the run. Unless the dbOutputPromptBeforeTruncate parameter has been set to false, the user will 
be prompted before table truncation actually occurs.

A.2.6.15. dbOutputPromptBeforeTruncate
<bool>  [Default = true]  

If dbOutputTruncateTables is true and this parameter is true, then the user is prompted before output 
table truncation actually occurs. If dbOutputTruncateTables is true and this parameter is false, table 
truncation occurs without warning.  

A.2.7. Input Depth Specification 
This section describes various ways in which one or more depths can be specified. These depth(s) will 
be applied to a whole range of latitude-longitude positions as described elsewhere.

A.2.7.1. depthSpecificationMethod
<string>  [no default]  ( depths | depthRange | depthLevels | maxDepthSpacing )

Specified which method will be used to specify the depths at which predictions / model queries are 
to be calculated. Each depth specification method requires another parameter specification as 
described below.

A.2.7.2. depths
<list of doubles>  [no default]  

A list of depths, in km, that will be used for every latitude-longitude position.

A.2.7.3. depthRange
<2 doubles and 1 int>  [no default]  

Minimum and maximum depths, in km, and the number of desired depths.

A.2.7.4. depthLevels
<list of strings>  [no default]  



62

Depth will be determined at one or more major layer interfaces in the model. Example values include:
 topography
 top of upper_crust
 bottom of lower_crust
 above moho
 below moho
 etc.

A comma separated list of these values will generate multiple depths.
SALSA3D_2.0 has the following layers/interfaces defined:

 SURFACE
 UPPER_CRUST
 MIDDLE_CRUST
 LOWER_CRUST
 MOHO
 M410
 M660
 CMB
 ICB

These can be thought of either as layers or as interfaces. For example, MOHO can refer to the 
interface or to the layer that includes the upper mantle between the 410 discontinuity and the moho. 
Some layers/interfaces have names that sound more like interfaces (MOHO) while others have names 
that sound more like layers (UPPER_CRUST). To facilitate dealing with this, there are two ways to 
refer to each desired depth: 

 Top/bottom of <layer name>
 Above/below <interface>

For example, “below moho” and “top of moho” would produce the same result, even though “below 
moho” is probably more natural. Same goes for ‘bottom of middle_crust’ and ‘above lower_crust’. 
The former is more natural, but the latter is valid and produces the same result.

Specifying just a layer name, eg. ‘moho’, is equivalent to specifying ‘top of moho’ or ‘below moho’. If 
‘topography’ is specified, then property topographyModel is required and should have a value that 
corresponds to the path to the desired topography model file.

It is valid to specify multiple depth levels, separated by commas, eg.:

“depthLevels = surface, top of upper_crust, top of middle_crust, top of lower_crust, above moho”

would return the depths of the tops of the specified layers and the model values at the top of each.

A.2.7.5. maxDepthSpacing
<double>  [no default] 



63

Unique depth profiles will be generated at each geographic position such that:
 each profile has the same number of depths, 
 there are two depth nodes at each major layer interface in the model, one of which 

records model properties above the interface and the other below the interface.
 the maximum spacing of depth nodes is no greater than maxDepthSpacing.

A.2.7.6. maxDepth
<double or string>  [default = infinity (center of the Earth)]  

Optional if maxDepthSpacing is defined, ignored otherwise.
When maxDepthSpacing is specified, this property defines the deepest point returned in each profile.
There are two ways to specify the maximum depth: 

1. the maximum depth in km (a value of type double)
2. a model layer/interface name such as ‘moho’ or ‘cmb’

SALSA3D.2.0 has the following layers/interfaces defined:
 SURFACE
 UPPER_CRUST
 MIDDLE_CRUST
 LOWER_CRUST
 MOHO
 M410
 M660
 CMB
 ICB

A.2.8. Output Parameters

A.2.8.1. outputFile
<string>  [no Default]

Full path to output file where results are sent. Ignored if inputType = database, required otherwise.

A.2.8.2. overwriteExistingOutputFile
<boolean>  [default true]  

If the file defined by the outputFile property exists, overwrite the file. True by default.

A.2.8.3. separator
<string>  [Default = space]  ( space | comma | tab )

Specify the character that should be used to separate information in each record of the output.



64

A.2.8.4. outputFormat
<string>  [Default = %1.4f]  (java format specifier for values of type double )

The first digit specifies the total width of the field and the second the number of digits to the right of 
the decimal point. For exponential notation, replace ‘f’ with ‘e’. See 
http://download.oracle.com/javase/1.5.0/docs/api/java/util/Formatter.html#syntax
for information about java format specifiers.

A.2.8.5. outputAttributes
<string>  [no Default]  

The attributes that should be sent to output by PCalc. 

For model queries, PCalc supports whatever attributes are stored in the relevant GeoTessModel. 
SALSA3D GeoTessModels can return:

 pvelocity
 pslowness
 svelocity
 sslowness

For predictions, the following attributes are supported:

 travel_time (total travel time, including all applicable corrections, in seconds)
 tt_model_uncertainty (in seconds)
 tt_site_correction (in seconds)
 tt_ellipticity_correction (in seconds)
 tt_elevation_correction (travel time elevation correction at the station, in seconds)
 tt_elevation_correction_source (travel time elevation correction at the source, in seconds)
 dtt_dlat (derivative of travel time wrt latitude, seconds/radian)
 dtt_dlon (derivative of travel time wrt longitude, seconds/radian)
 dtt_dr (derivative of travel time wrt radius, seconds/km)
 slowness (in seconds/radian)
 slowness_degrees (in seconds/degree)
 slowness_model_uncertainty (in seconds/radian)
 slowness_model_uncertainty_degrees (in seconds/degree)
 dsh_dlat (derivative of horizontal slowness wrt latitude, in sec/radian^2)
 dsh_dlon (derivative of horizontal slowness wrt longitude, in sec/radian^2)
 dsh_dr (derivative of horizontal slowness wrt radius, in sec/radian/km)
 azimuth (receiver-source azimuth, in radians)
 azimuth_degrees (receiver-source azimuth, in degrees)
 azimuth_model_uncertainty (uncertainty of receiver-source azimuth, in radians)
 azimuth_model_uncertainty_degrees (in degrees)
 daz_dlat (derivative of receiver-source azimuth wrt latitude, unitless)

http://download.oracle.com/javase/1.5.0/docs/api/java/util/Formatter.html#syntax


65

 daz_dlon (derivative of receiver-source azimuth wrt longitude, unitless)
 daz_dr (derivative of receiver-source azimuth wrt radius, degrees/km)
 backazimuth (source-receiver azimuth, in radians)
 backazimuth_degrees (source-receiver azimuth, in degrees)
 turning_depth (deepest point on the ray, in km)
 out_of_plane (The maximum amount by which a seismic ray deviates from the great circle 

plane containing the source and the receiver, in km. Considering source and receiver to be 3 
component vectors in Earth centered coordinate system, the sign of out_of_plane is the same 
as the sign of source cross receiver.)

 distance (source-receiver epicentral distance, in radians)
 distance_degrees (source-receiver epicentral distance, in degrees)
 ray_type (a string indicating the type of ray produced: REFRACTION, REFLECTION, 

etc.)
 calculation_time (time required to compute the predicted values, in seconds)

To generate ray path geometries, specify ‘ray_path’

For LibCorr3D surface generation, the following attributes are supported and are written to the 
LibCorr3D GeoTess model:

 tt_delta_ak135 (represents the difference between 3D GeoTess model predicted travel-times 
and standard AK135 model predicted travel-times.

 tt_model_uncertainty (represents either the distance-dependent or the path-dependent 
travel-time uncertainty of the input 3D GeoTess model in seconds)

A.2.8.6. outputType
<string>  [no Default]  

Defines the type of output to write the data to. Can be set to: file, database, geotess, or libcorr3d.

A.2.9. outputHeader
<boolean>  [default false]  

If true then a column heading will be generated for each column of output and appear as the first line 
of the output file.

A.2.10. Predictors
If model queries are to be returned, all the properties in this section are ignored. If predictions are to 
be computed, then property predictors is required and other properties in this section that pertain to 
one of the predictors listed in predictors are also required.

A.2.10.1. predictors
<string>  [Default = none]  (lookup2d, bender, slbm)



66

String indicating list of predictors that are to be used. For example, if value is “lookup2d, bender(P, 
Pn), slbm(Pn, Pg)” then lookup2d will be used for all phases not specified later in the list, Bender will 
be used for phase P and SLBM will be used for phase Pn and Pg. Even though Pn is specified by 
bender, it will be computed by slbm since slbm(Pn) comes later in the list then bender(Pn).

A.2.10.2. maxProcessors
<int>  [Default = all available processors]  

All predictions are computed in concurrent parallel mode (multi-threaded). To limit the number of 
processors that PCalc will use to compute predictions, specify the desired number with this property.

A.2.10.3. batchSize
<int>  [Default = 10,000]  

Records will be read from the input file, processed, and output to the output file in batches of this 
size. Applies only when input is from file or database. For greatcircle and grid input, this parameter is 
ignored.

A.2.10.4. lookup2dModel 
<string> [Default = ak135] (ak135) 

Name of the 1D model that Lookup2D should use to calculate predictions of seismic observables. 

A.2.10.5. seismicBaseData
<string> [Default = seismic-base-data.jar] () 

Path to the seismicBaseData directory. If omitted or set equal to the default value, then distance-depth 
lookup tables stored in the PCalc jar files are used.  These default tables support ak135 and iasp91 
travel time lookup tables.

If this parameter is specified then the next two parameters, lookup2dTableDirectory and 
lookup2dEllipticityCorrectionsDirectory, are not required.

A.2.10.6. lookup2dTableDirectory 
<string> [Default = none] () 

Name of the directory where the travel time lookup tables reside. This directory will contain a separate 
file for each phase that will be supported. The file names can be names like ‘PKP’ or ‘ak135.PKP’. 

A.2.10.7. lookup2dEllipticityCorrectionsDirectory 
<string> [Default = none] () 

Path of the directory where ellipticity correction coefficients are located for use with the Lookup2D 
predictor. LocOO3D will throw an exception if this parameter is not specified and tauptoolkit is one 
of the options specified in parameter loc_predictor_type. A recommended value is 
<SNL_Tool_Root>/seismicBaseData/el/ak135. 



67

A.2.10.8. lookup2dUseEllipticityCorrections
<boolean> [Default = true] ( true | false) 

If false, then ellipticity corrections are not applied.

A.2.10.9. lookup2dUseElevationCorrections
<boolean> [Default = true] ( true | false) 

If false, then elevation corrections are not applied.

A.2.10.10. lookup2dSedimentaryVelocity 
<double> [Default = 5.8 km/sec] () 

Seismic velocity used in the calculation of elevation corrections.

A.2.10.11. benderModel
<string>  [Default = none]  ()

Path to GeoTessModel that Bender should use to calculate predictions of seismic observables.  This 
can either be a file or a special salsa3d directory (see section 4.4 for details about salsa3d directories).

A.2.10.12. benderUncertaintyType
<string>  [Default = DistanceDependent]  (DistanceDependent, PathDependent)

Type of travel time uncertainty desired. 

A.2.10.13. benderUncertaintyDirectory
<string>  [Default = none]  ()

Directory where distance dependent uncertainty values can be found for use with Bender predictions.
Expecting to find subdirectories such as: 

<benderUncertaintyDirectory>/<attribute>/< <benderUncertaintyModel>

For example: if uncertainty information is in: 
file /index/SNL_tool_Root/seismicBaseData/tt/ak135 

then specify

benderUncertaintyDirectory = /index/SNL_tool_Root/seismicBaseData
benderUncertaintyModel = ak135 

A.2.10.14. benderUncertaintyModel
<string>  [Default = none]  ()



68

Subdirectory where distance dependent uncertainty values can be found for use with Bender 
predictions. Expecting to find subdirectories such as:
 
<benderUncertaintyDirectory>/<attribute>/< <benderUncertaintyModel>

For example, if uncertainty information is in file:
 
/index/SNL_tool_Root/seismicBaseData/tt/ak135 

then specify

benderUncertaintyDirectory = /index/SNL_tool_Root/seismicBaseData
benderUncertaintyModel = ak135

A.2.10.15. benderUncertaintyWorkDir
<string>  [Default = none]  ()

A path to a directory where PCalc can store temporary files when computing path dependent 
uncertainties. The directory will be generated automatically by PCalc if it does not exist. This 
directory can be removed or emptied any time it is not in use by PCalc. Property is ignored for 
DistanceDependent uncertainty.

A.2.10.16. benderAllowMOHODiffraction 
<boolean> [Default = false]

If a crustal ray (Pg, Lg) impinges on the Moho, and this property is false, then the ray will be invalid.

A.2.10.17. benderAllowCMBDiffraction
<boolean> [Default = false]

If a mantle ray impinges on the core-mantle boundary, and this property is false, then the ray will be 
invalid.

A.2.10.18. use_tt_model_uncertainty
<boolean>  [Default = true]  

If true, travel time residuals and derivatives are weighted by the total uncertainty which consists of a 
combination of the model uncertainty and the pick uncertainty. If false, only the pick uncertainty is 
used.

A.2.10.19. use_az_model_uncertainty
<boolean>  [Default = true]  



69

If true azimuth residuals and derivatives are weighted by the total uncertainty which consists of a 
combination of the model uncertainty and the pick uncertainty. If false, only the pick uncertainty is 
used.

A.2.10.20. use_sh_model_uncertainty
<boolean>  [Default = true]  

If true slowness residuals and derivatives are weighted by the total uncertainty which consists of a 
combination of the model uncertainty and the pick uncertainty. If false, only the pick uncertainty is 
used.

A.2.10.21. use_tt_site_terms
<boolean>  [Default = true]  

If true, then travel time site terms computed for each station during tomography are applied to 
computed values. The site terms are stored in GeoTessModels read by Bender.

A.2.11. LibCorr3D 

A.2.11.1. <predictor>PathCorrectionsType 
<string> [Default = none] (libcorr) 

<predictor> is lookup2d or slbm. 

Set the value to ‘libcorr’ to apply libcorr3d corrections. If this parameter is omitted, then corrections 
will not be applied. 

A.2.11.2. <predictor>LibCorrPathCorrectionsRoot 
<string> [Default = none] 

<predictor> is lookup2d or slbm. 

The name of the directory where all the libcorr3D correction surfaces reside. This directory should 
contain a separate file for each correction surface. 

A.2.11.3. <predictor>LibCorrPathCorrectionsRelativeGridPath 
<string> [Default = “.”] 

<predictor> is lookup2d or slbm. 

The relative path from the directory where the correction surface files reside to the directory where 
the grid files reside. 

A.2.11.4. <predictor>LibCorrInterpolatorType 
<string> [Default = “linear”] ( linear | natural_neighbor ) 



70

<predictor> is lookup2d or slbm. 

Type of horizontal interpolation to use. 

A.2.11.5. <predictor>LibCorrPreloadModels 
<boolean> [Default = false] 

<predictor> is lookup2d or slbm. 

Whether all libcorr models should be loaded at startup or loaded on an ‘as needed’ basis. 

A.2.11.6. <predictor>UsePathCorrectionsInDerivatives 
<boolean> [Default = false]

<predictor> is lookup2d or slbm. 

Whether or not path corrections should be included in total values when computing derivatives of 
travel time with respect to source location.

A.2.12. Model Queries 

A.2.12.1. benderModel
<string>  [Default = none]  ()

Path to GeoTessModel that Bender should should query for model values.  This can either be a file 
or a special salsa3d directory (see section 4.4 for details about salsa3d directories).

A.2.13. Ray Path Geometry 
PCalc can compute and output the geometry of ray paths through the SALSA3D model using Bender. 
In order for this to succeed, the following properties must be specified:

 application = predictions
 predictors = bender
 inputType = greatcircle or file
 outputAttributes = ray_path
 rayPathNodeSpacing = Point spacing along the computed ray paths, in km.
 If inputType is greatcircle, properties site and gcStart must both be specified, and their 

latitudes and longitudes must be equal.

A.2.13.1. rayPathNodeSpacing
<double>  [Default = -1]  

Point spacing along the computed ray paths, in km. If <= 0, then an error is thrown.



71

DISTRIBUTION
Email—External

Name Company Email Address Company Name

Mike Begnaud mbegnaud@lanl.gov
Los Alamos National 
Laboratory

Sanford Ballard sballard999@gmail.com Retired

Email—Internal
Name Org. Sandia Email Address

Stephanie Teich-McGoldrick 06756 steichm@sandia.gov 

John Merchant 06752 bjmerch@sandia.gov 

Rigobert Tibi 06752 rtibi@sandia.gov

Steve Vigil 06752 srvigil@sandia.gov 

Andrea Conley 06752 acconle@sandia.gov

Kathy Davenport 06756 kdavenp@sandia.gov

Technical Library 01977 sanddocs@sandia.gov

mailto:mbegnaud@lanl.gov
mailto:sballard999@gmail.com
mailto:steichm@sandia.gov
mailto:bjmerch@sandia.gov
mailto:rtibi@sandia.gov
mailto:srvigil@sandia.gov
mailto:acconle@sandia.gov
mailto:kdavenp@sandia.gov


72

This page left blank



Sandia National Laboratories 
is a multimission laboratory 
managed and operated by 
National Technology & 
Engineering Solutions of 
Sandia LLC, a wholly owned 
subsidiary of Honeywell 
International Inc. for the U.S. 
Department of Energy’s 
National Nuclear Security 
Administration under contract 
DE-NA0003525.


