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ABSTRACT

We consider the development of multifluid models for partially ionized multispecies plasmas. The models are
composed of a standard set of five-moment fluid equations for each species plus a description of electromagnet-
ics. The most general model considered utilizes a full set of fluid equations for each charge state of each atomic
species, plus a set of fluid equations for electrons. The fluid equations are coupled through source terms describ-
ing electromagnetic coupling, ionization, recombination, charge exchange, and elastic scattering collisions in the
low-density coronal limit. The form of each of these source terms is described in detail, and references for required
rate coefficients are identified for a diverse range of atomic species. Initial efforts have been made to extend these
models to incorporate some higher-density collisional effects, including ionization potential depression and three-
body recombination.

Some reductions of the general multifluid model are considered. First, a reduced multifluid model is derived
which averages over all of the charge states (including neutrals) of each atomic species in the general multifluid
model. The resulting model maintains full consistency with the general multifluid model from which it is derived
by leveraging a quasi-steady-state collisional ionization equilibrium assumption to recover the ionization frac-
tions required to make use of the general collision models. Further reductions are briefly considered to derive
certain components of a single-fluid magnetohydrodynamics (MHD) model. In this case, a generalized Ohm’s law
is obtained, and the standard MHD resistivity is expressed in terms of the collisional models used in the general
multifluid model.

A number of numerical considerations required to obtain robust implementations of these multifluid models are
discussed. First, an algebraic flux correction (AFC) stabilization approach for a continuous Galerkin finite element
discretization of the multifluid system is described in which the characteristic speeds used in the stabilization of
the fluid systems are synchronized across all species in the model. It is demonstrated that this synchronization
is crucial in order to obtain a robust discretization of the multifluid system. Additionally, several different formu-
lations are considered for describing the electromagnetics portion of the multifluid system using nodal continu-
ous Galerkin finite element discretizations. The formulations considered include a parabolic divergence cleaning
method and an implicit projection method for the traditional curl formulation of Maxwell’s equations, a purely-
hyperbolic potential-based formulation of Maxwell’s equations, and a mixed hyperbolic-elliptic potential-based
formulation of Maxwell’s equations. Some advantages and disadvantages of each formulation are explored to com-
pare solution robustness and the ease of use of each formulation.

Numerical results are presented to demonstrate the accuracy and robustness of various components of our im-
plementation. Analytic solutions for a spatially homogeneous damped plasma oscillation are derived in order to
verify the implementation of the source terms for electromagnetic coupling and elastic collisions between fluid
species. Ionization balance as a function of electron temperature is evaluated for several atomic species of inter-
est by comparing to steady-state calculations using various sets of ionization and recombination rate coefficients.
Several test problems in one and two spatial dimensions are used to demonstrate the accuracy and robustness of
the discretization and stabilization approach for the fluid components of the multifluid system. This includes stan-
dard test problems for electrostatic and electromagnetic shock tubes in the two-fluid and ideal shock-MHD limits,
a cylindrical diocotron instability, and the GEM challenge magnetic reconnection problem. A one-dimensional
simplified prototype of an argon gas puff configuration as deployed on Sandia’s Z-machine is used as a demon-
stration to exercise the full range of capabilities associated with the general multifluid model.
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1. INTRODUCTION

1.1. Notation

The following notation is assumed throughout:

(i) When used as a subscript, the symbol e will be used to denote quantities associated with the electron species.

(ii) NA denotes the number of atomic species, which are indexed by α,β ∈ {1, . . . , NA}.

(iii) zα denotes the maximum tracked charge state of atomic species α. We note that this value may be different
than the maximum charge state zmax

α for the species; ie., 0 < zα ≤ zmax
α .

(iv) An ordered pair (α,k) will be used to denote associations with neutrals (k = 0) or ions (k > 0) of atomic
species α with charge state k. We assume always that k ≥ 0.

(v) Standard non-bold fonts will be used for scalar quantities in R.

(vi) Bold fonts will be used for vector quantities in R3 (eg., u for velocity).

(vii) Bold fonts with a single underline will be used for second-order tensors in R3 ⊗R3 (eg., P for the pressure
tensor).

(viii) An exponent applied to a vector quantity will be used to denote the dot product of that quantity with itself;
ie., u2 = u ·u.

(ix) Quantities associated with a particle species s will be denoted as follows:

ms particle mass Ps pressure tensor

ns number density ps scalar pressure

ρs mass density Πs deviatoric stress tensor

qs electric charge es specific internal energy

Zs signed charge number Ts temperature

Es total energy hs heat flux

us average fluid velocity

These quantities satisfy the following relations:

ρs = ms ns , Es = 1

2
ρs u2

s +ρs es ,

qs =−Zs qe , Ps = ps I+Πs .

(x) Products of quantities for the same species may be grouped via parentheses to share one species subscript;
eg., for momentum ρs us = (ρu)s .

(xi) The following constants are used:

(a) kB is the Boltzmann constant.

(b) ε0 is the vacuum electrical permittivity.

(c) µ0 is the vacuum magnetic permeability.

(d) c = (ε0µ0)−1/2 is the speed of light in vacuum.

(e) qe is the (negative) elementary electric charge.

(f) e (in an upright typeface) may occasionally be used to denote the positive elementary electric charge
|qe |. The use of this notation will generally be limited to cases in which the use of the signed charge qe

is particularly cumbersome.
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Implementation. Comments related to the implementation of the multifluid models described herein in
the Drekar code are given in a box of this format. These comments are intended to aid in the implementa-
tion of these models, or describe specific implementation details motivated by purely numerical consider-
ations.

1.2. Kinetic model

We consider models for a partially-ionized plasma composed of multiple atomic species indexed byα ∈ {1, . . . , NA},
each of which may be present in one of several charge states k ∈ {0,1, . . . , zα}. The fluid descriptions that are the
focus of this document can be derived by taking various moments (with respect to the velocity variables) of a
coupled set of kinetic equations. Each such kinetic equation takes a form typical for charged particle motion:

∂t fs +v ·∇x fs + qs

ms
(E+v×B) ·∇v fs = Cs

[
fs

]+Ss , (1)

where fs = fs (x,v, t ) is the one-particle distribution function for species s, Ss is a source of particles of type s, and
s represents one of:

(i) e (for the electron species),

(ii) (α,0) with α ∈ {1, . . . , NA} (for neutral species), or

(iii) (α,k) with α ∈ {1, . . . , NA} and k ∈ {1, . . . , zα} (for ion species with charge k);

or more simply s ∈ΛG, where the index setΛG is defined by

ΛG = {
(α,k) :α= 1, . . . , NA ;k = 0, . . . , zα

}∪ {e}. (2)

The kinetic equations (1) are coupled through the collision operators Cs , which describe interactions between par-
ticles. These interactions may occur between species of the same type or between species of different types. Col-
lisions of both scattering and reacting types are considered, with reacting interactions covering electron-collision
ionization, radiative and dielectronic recombination, three-body recombination, and resonant charge exchange
events. The following general assumptions are made:

(i) It is assumed that resonant charge-exchange interactions occur only between ion and neutral species of the
same type; that is, we neglect effects due to charge exchange between two ions and charge exchange between
different atomic species.

(ii) The plasma is assumed to be optically thin, so that modeling the dynamics of the radiation field and and its
effects on the plasma (eg., photoionization) may be neglected.

(iii) We assume that atoms of different species α 6=β engage in only scattering interactions; that is, reacting in-
teractions are restricted to particles of the same atomic species.

For purposes of notation, the collision operators Cs may be decomposed into a sum of contributions from various
interaction types:

Cs = Csc
s +Cion

s +Crec
s +Ctbr

s +Ccx
s +Crad

s , (3)

where each term denotes interactions as follows:

Csc
s : Scattering interactions, (4a)

Cion
s : Ionization reactions, (4b)

Crec
s : Recombination reactions, (4c)

Ctbr
s : Three-body recombination reactions, (4d)

Ccx
s : Charge-exchange reactions, (4e)

Crad
s : Radiative emission. (4f)

For more thorough discussions concerning the form of the collision operators Cs see, for example, [64, 65].
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1.3. Summary of fluid models

Each multifluid model is based on a standard set of five-moment fluid equations, which can be derived by taking
various velocity moments of a set of kinetic equations of the form (1). The resulting fluid equations can be written
as

∂tρs +∇· (ρs us
)= C[0]

s +S [0]
s , (5a)

∂t
(
ρs us

)+∇· (ρs us ⊗us +ps I+Πs

)= qs ns (E+us ×B)+C[1]
s +S [1]

s , (5b)

∂tEs +∇· [(Es +ps
)

us +us ·Πs +hs
]= qs ns us ·E+C[2]

s +S [2]
s , (5c)

where the notation used here largely follows that of [46]. While the derivation of these fluid equations proceeds
under the assumption of an ideal gas for each fluid, they have been written in a general form to permit non-
ideal closures and equations of state to be used if desired. The form of these fluid equations is provided here
for reference: detailed derivations of these fluid equations can be found in, eg., [19, 46]. The remainder of this
document focuses primarily on the structure of the interaction terms C[0]

s , C[1]
s , and C[2]

s , and on certain numerical
considerations related to the robust implementation of multifluid models in the Drekar code.

2. GENERAL MULTIFLUID MODEL

2.1. Model description

We now consider a general multifluid model based on taking various velocity moments the kinetic equations (1) for
each species. This yields a set of standard five-moment fluid equations (continuity, momentum, and total energy)
for each species. The source terms for each equation are written in a general form for either an electron species
or an arbitrary atomic species. In order to avoid repetition, only the most general form of each source term is
provided for the atomic species: This is done with the understanding that not all ionization and recombination
terms will be present for each species; ie., neutral atoms do not recombine and ions of the maximum charge state
for a species do not further ionize. Even though the corresponding source terms are included in the description of
the general source terms, these terms are effectively zero.

The continuity, momentum, and total energy equations for each species are given by (5), where

C[0]
s ≈ ms

∫
Cs

[
fs

]
dv, C[1]

s ≈ ms

∫
vCs

[
fs

]
dv, and C[2]

s ≈ ms

∫
v2Cs

[
fs

]
dv (6a)

describe exchange of mass, momentum, and energy due to collisional interactions between species, and

S [0]
s ≈ ms

∫
Ss dv, S [1]

s ≈ ms

∫
vSs dv, and S [2]

s ≈ ms

∫
v2Ss dv, (6b)

represent external sources. We do not derive the expressions for the fluid source terms here: the interested reader
is referred to the derivations in [64, 65] on which this work is based. The purpose of the model development
here is to extend the work of [64, 65] (largely through modifications of notation) from the case of a three-species
plasma (neutral, ion, electron) to a more general context for plasmas containing arbitrarily many atomic species
and charge states. Additionally, the fluid energy equations are written directly in terms of internal and kinetic
energy densities to remove the assumption of an ideal gas equation of state and allow for an arbitrary equation of
state to be used for each fluid species.

Expressions are provided for the collision terms in two forms. In section 2.1.1, the source terms are written using
notation that is a direct extension of that of [64, 65]. In section 2.1.2, the source terms are re-written strictly in
terms of the conserved fluid quantities.
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2.1.1. Meier notation

Mass exchange. The collision sources C[0]
s have the form

C[0]
e = me

∑
(α,k)∈NS

k 6=zα

Γion
(α,k) −me

∑
(α,k)∈NS

k 6=0

(
Γrec

(α,k) +Γtbr
(α,k)

)
, (7a)

C[0]
(α,k) = m(α,k)

(
Γion

(α,k−1) −Γion
(α,k) −Γrec

(α,k) +Γrec
(α,k+1) −Γtbr

(α,k) +Γtbr
(α,k+1)

)
, (α,k) ∈ΛG, (7b)

where

Γion
s = ne ns Is , Γrec

s = ne ns Rs , Γtbr
s = n2

e ns R tbr
s , (8a)

and

Is = 〈σion
s ve〉, Rs = 〈σrec

s ve〉, R tbr
s = 〈σtbr

s ve〉 (8b)

are the ionization, radiative-plus-dielectronic recombination, and three-body recombination rate parameters, re-
spectively.

Exchange of momentum. The collision sources C[1]
s have the form

C[1]
e = me

∑
(α,k)∈NS

k 6=zα

u(α,k)Γ
ion
(α,k) −me ue

∑
(α,k)∈NS

k 6=0

(
Γrec

(α,k) +Γtbr
(α,k)

)
+ ∑

(α,k)∈NS

Re;(α,k) (9a)

for the electron species, and

C[1]
(α,k) = m(α,k)u(α,k−1)Γ

ion
(α,k−1) −m(α,k)u(α,k)

(
Γion

(α,k) +Γrec
(α,k) +Γtbr

(α,k)

)
+ (

m(α,k+1)u(α,k+1) +me ue
)(
Γrec

(α,k+1) +Γtbr
(α,k+1)

)
+ ∑

s∈ΛGà(α,k)
R(α,k);s +Ccx,[1]

(α,k)

(9b)

for the atomic species, where

Ccx,[1]
(α,k) =

−
zα∑
`=1

Ccx,[1]
(α,`) , k = 0,

m(α,k)
(
u(α,0) −u(α,k)

)
Γcx

(α,k) +Rcx
(α,k);(α,0) −Rcx

(α,0);(α,k), k > 0,
(9c)

and Γcx
(α,k) is the charge exchange rate parameter.

Exchange of energy. Written out term-by-term, the collision sources C[2]
s have the form1

C[2]
e = ∑

(α,k)∈NS
k 6=zα

(
1
2 me u2

(α,k) +me e(α,k) −φion
(α,k)

)
Γion

(α,k) −
( 1

2 me u2
e +me ee

) ∑
(α,k)∈Ns

k 6=0

(
Γrec

(α,k) +Γtbr
(α,k)

)

+ ∑
(α,k)∈NS

(
ue ·Re;(α,k) +Qe;(α,k)

)+Qrad
e

(10a)

for the electron species, and

C[2]
(α,k) =

(
1
2 m(α,k)u2

(α,k−1) +m(α,k)e(α,k−1)

)
Γion

(α,k−1) −
(

1
2 m(α,k)u2

(α,k) +m(α,k)e(α,k)

)(
Γion

(α,k) +Γrec
(α,k) +Γtbr

(α,k)

)
+

(
1
2 m(α,k+1)u2

(α,k+1) +m(α,k+1)e(α,k+1) + 1
2 me u2

e +me ee

)(
Γrec

(α,k+1) +Γtbr
(α,k+1)

)
+φion

(α,k)Γ
tbr
(α,k+1)

+ ∑
s∈ΛGà(α,k)

(
u(α,k) ·R(α,k);s +Q(α,k);s

)+Ccx,[2]
(α,k) +Qrad

(α,k)

(10b)

1The forms of the ionization, recombination, and charge exchange sources largely follows that of [64, 65], with the exception that the terms
representing the transfer of thermal energy are written in terms of the specific internal energy es of each species instead of the fluid temper-
ature Ts . Whereas [64, 65] assumes only an idea gas, our formulation permits a more general form of the expression for internal energy.
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for the atomic species, where

Ccx,[2]
(α,k) =


−

zα∑
`=1

Ccx,[2]
(α,k) , k = 0,

1
2 m(α,k)

(
u2

(α,0) −u2
(α,k)

)
Γcx

(α,k) +u(α,0) ·Rcx
(α,k);(α,0) −u(α,k) ·Rcx

(α,0);(α,k)

+Qcx
(α,k);(α,0) −Qcx

(α,0);(α,k), k > 0.

(10c)

Here Qrad
e ,Qrad

(α,k) represent sources or losses of energy through radiative processes (eg., bremsstrahlung, line radi-

ation, emission from recombination, etc.) and φion
(α,k) denotes the ionization potential2 for species (α,k). It should

be noted that the form of C[2]
(α,k) in (10b) is such that the ionization energy associated with radiative and dielectronic

recombination reactions is always assumed to be lost as a radiative emission. Further losses as a result of these
reactions, typically as a function of the electron internal energy [64, 65], would be included as additional terms in
Qrad

(α,k).

2.1.2. Conserved quantities notation

Mass exchange. In terms of conserved quantities, the collision sources C[0]
s can be written as

C[0]
e = ρe

∑
(α,k)∈NS

k 6=zα

ρ(α,k)

m(α,k)
I(α,k) −ρe

∑
(α,k)∈NS

k 6=0

ρ(α,k)

m(α,k)

(
R(α,k) +

ρe

me
R tbr

(α,k)

)
(11a)

for the electron species, and

C[0]
(α,k) =

m(α,k)

m(α,k−1)

ρe

me
ρ(α,k−1)I(α,k−1) −

ρe

me
ρ(α,k)I(α,k)

+ m(α,k)

m(α,k+1)

ρe

me
ρ(α,k+1)

(
R(α,k+1) +

ρe

me
R tbr

(α,k+1)

)
− ρe

me
ρ(α,k)

(
R(α,k) +

ρe

me
R tbr

(α,k)

) (11b)

for the atomic species

Exchange of momentum. In terms of conserved quantities, the collision sources C[1]
s can be written as

C[1]
e = ρe

∑
(α,k)∈NS

k 6=zα

(ρu)(α,k)

m(α,k)
I(α,k) − (ρu)e

∑
(α,k)∈NS

k 6=0

ρ(α,k)

m(α,k)

(
R(α,k) +

ρe

me
R tbr

(α,k)

)
+ ∑

(α,k)∈NS

Re;(α,k) (12a)

for the electron species, and

C[1]
(α,k) =

m(α,k)

m(α,k−1)

ρe

me
(ρu)(α,k−1)I(α,k−1) −

ρe

me
(ρu)(α,k)I(α,k)

+
(
ρe

me
(ρu)(α,k+1) +

ρ(α,k+1)

m(α,k+1)
(ρu)e

)(
R(α,k+1) +

ρe

me
R tbr

(α,k+1)

)
− ρe

me
(ρu)(α,k)

(
R(α,k) +

ρe

me
R tbr

(α,k)

)
+ ∑

s∈ΛGà(α,k)
R(α,k);s +Ccx,[1]

(α,k)

(12b)

for the atomic species.

2Instead of the ground-state ionization potential φion
(α,k), the authors of [65] use an effective ionization potential φeff

(α,k) that “approximately

includes the electron binding energy plus the excitation energy that is expended (on average) for each ionization event,” and additionally
includes contributions from the dissociation of diatomic gases. We have excluded these additional contributions since (i) they are highly
uncertain and serve as only very rough approximations of reality, and (ii) these contributions would not apply in many of our applications
of interest.
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Exchange of energy. In terms of conserved quantities, the collision sources C[2]
s can be written as

C[2]
e = ρe

∑
(α,k)∈NS

k 6=zα

E(α,k)

m(α,k)
I(α,k) −

ρe

me

∑
(α,k)∈NS

k 6=zα

ρ(α,k)

m(α,k)
φion

(α,k)I(α,k) −Ee
∑

(α,k)∈NS
k 6=0

ρ(α,k)

m(α,k)

(
R(α,k) +

ρe

me
R tbr

(α,k)

)

+ ∑
(α,k)∈NS

(
(ρu)e

ρe
·Re;(α,k) +Qe;(α,k)

)
+Qrad

e

(13a)

for the electron species, and

C[2]
(α,k) =

m(α,k)

m(α,k−1)

ρe

me
E(α,k−1)I(α,k−1) −

ρe

me
E(α,k)I(α,k) +

ρ2
e

m2
e

ρ(α,k+1)

m(α,k+1)
φion

(α,k)R
tbr
(α,k+1)

+
(
ρe

me
E(α,k+1) +

ρ(α,k+1)

m(α,k+1)
Ee

)(
R(α,k+1) +

ρe

me
R tbr

(α,k+1)

)
− ρe

me
E(α,k)

(
R(α,k) +

ρe

me
R tbr

(α,k)

)
+ ∑

s∈ΛGà(α,k)

(
(ρu)(α,k)

ρ(α,k)
·R(α,k);s +Q(α,k);s

)
+Ccx,[2]

(α,k) +Qrad
(α,k)

(13b)

for the atomic species.

Further consideration is paid to the charge-exchange and elastic scattering terms in section 2.2, where their full
definition for specific models is given.

2.2. Collisional transfer models

We now turn our attention to specifying values for collisional transfer coefficients that appear in C[0]
s , C[1]

s , and C[2]
s .

Our focus here is on analytic models from which derivatives may be obtained for the assembly of Jacobian matrices
used for the solution of nonlinear systems resulting from implicit time discretization of the multifluid system. In
Drekar, these Jacobian matrices are constructed using automatic differentiation [27, 75]. Future work will explore
using collisional transfer coefficients provided by libraries such as the FLYCHK library [22], which may not provide
derivative information or support general interfaces that can leverage the automatic differentiation libraries that
are currently used in Drekar to construct the necessary Jacobian matrices.

The collisional transfer models considered here focus primarily on the lower-density, optically-thin coronal limit.
In this limit, photons do not interact with the plasma after they are emitted (hence photoionization is neglected),
excited states are assumed to be unpopulated and transitions between charge states are assumed to occur from
the ground state, and higher-density effects such as three-body recombination are generally neglected.

We have begun initial efforts to explore extending these models to include some higher-density effects such as
ionization potential depression and three-body recombination. At this time, the implementation of ionization
potential depression and three-body recombination models is still under development, and has not been tested
within Drekar. The mathematical approaches described here for these models should therefore be considered
exploratory in nature, and largely untested and unverified. Further, it should be noted that these effects represent
only a limited selection of the models that should be included to accurately model plasmas in the regimes in which
these effects would be important.

2.2.1. Ionization rate

The ionization rate parameter I(α,k) specifies the ionization rate of atomic species α from charge state k to k +1 by
electron-impact ionization. We consider the following functional forms for ionization rate parameters:

(i) Mattioli, et al. [63] have generated coefficients for functional fits of the form

I(α,k) = 10−11T −1/2
e

N(α,k)∑
i=1

c(α,k)
i exp

(
−E (α,k)

i /Te

)
(14)
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based on the data of Loch, et al. [53] for all charge states of Kr, where c(α,k)
i , E (α,k)

i , and N(α,k) are tabulated fit
parameters. The expression (14) is given in units of cm3s−1, and the electron temperature Te is expected in
units of eV.

(ii) Voronov [96] provides coefficients for functional fits of the form

I(α,k) = A(α,k)
1+P(α,k)

√
U(α,k)

X(α,k) +U(α,k)

(
U(α,k)

)K(α,k) exp
(−U(α,k)

)
. (15)

Here U(α,k) =φion
(α,k)/Te is the (dimensionless) relative temperature, φion

(α,k) is the ionization energy for species
α and charge state k, and A(α,k), K(α,k), P(α,k), and X(α,k) are tabulated fit parameters. The expression (15) is
given in units of cm3s−1. Fit parameters are found in [96] for over 400 cases from H to Ni27+ that are (in most
cases) accurate to within 10% for temperatures between 1 eV and 20 KeV. For some ions of higher charge
states, the fit parameters are computed for temperature ranges up to 100 KeV.

Sterling, et al. [87] have computed additional coefficients using Voronov’s fit formula for all charge states of
Kr. We note that there appears to be an inconsistency in the units used for computing the fit coefficients in
[87], as direct application of these coefficients seems to yield unusual results. We have inferred that the fit
coefficients computed in [87] expect that inside of the exponential term U(α,k) is computed with Te given in
units of eV, but all other values of U(α,k) are computed with Te given in units of degrees Kelvin. To ensure
consistency, we scale the coefficients of [87] as follows, so that U(α,k) is always computed with Te given in
units of eV:

X(α,k) = E X̂(α,k), A(α,k) = E 1−K(α,k) Â(α,k), (16)

where X(α,k) and A(α,k) are the scaled values used, X̂(α,k) and Â(α,k) are the original values from [87], and
E = 1.16045221E+4 is the conversion factor from units of eV to degrees Kelvin. Using these adjusted values
yields ionization rates with the expected behavior.

(iii) The following functional approximation from Lotz [54, 55] may also be used:

I(α,k) = (2.97E−6)
ξ(α,k)

φion
(α,k)

p
Te

E1
(
U(α,k)

)
, (17)

where ξ(α,k) is the number of electrons in the outer shell of the atom being ionized, U(α,k) =φion
(α,k)/Te , and E1

is the exponential integral of the first kind. The expression (17) is given in units of cm3s−1, and the leading
constant is chosen forφion

(α,k) and Te both in units of eV. One important advantage of this formula is that as the

ionization energy φion
(α,k) approaches zero, the ionization rate I(α,k) monotonically approaches infinity. This

ionization model may therefore be combined with models for ionization potential depression to capture
effects of pressure ionization phenomena in high-density plasmas, as is done, for example, in the FLYCHK
library [22]. Other ionization models, such as the fits of Voronov, are not appropriate for use with modified
ionization energies and are not well-behaved in this limit.

Implementation. We use the following combination of approximations from [2], originally sourced
from [4] and [38], respectively, in order to evaluate the exponential integral term:

E1(x) ≈


− ln x +a0 +a1x +a2x2 +a3x3 +a4x4 +a5x5, x ≤ 1,

e−x

x

x2 + c1x + c2

x2 +b1x +b2
, x ≥ 1,

(18)
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with

a0 =−0.57721566, b1 = 3.330657, (19a)

a1 = 0.99999193, b2 = 1.681534, (19b)

a2 =−0.24991055, (19c)

a3 = 0.05519968, (19d)

a4 =−0.00976004, c1 = 2.334733, (19e)

a5 = 0.00107857, c2 = 0.250621. (19f)

This approximation has an absolute error of less than 5.0E−5 over the entire real axis. Note that this
piecewise approximation is continuous, but it’s first derivative is discontinuous at x = 1.

2.2.2. Recombination rate

We treat the total recombination rate as a sum of two components: R(α,k) specifies the recombination rate of atomic
speciesα from charge state k to k−1 due to radiative (RR) and dielectronic recombination (DR), and R tbr

(α,k) specifies
the recombination rate due to three-body recombination (TBR). It should be noted that dielectronic recombina-
tion only applies to cases in which the reactant atom contains one or more bound electrons. We consider multiple
sources of data for each recombination rate parameter. Where data from preferred sources is unavailable, alter-
native sources are used. In general, dielectronic recombination rates can be effectively suppressed by sufficiently
high electron densities [70, 71], but we have not included such effects at this time.

Radiative recombination. We leverage the following sources of data for radiative recombination, in order of
preference:

(i) Badnell [13] provides coefficients for fits based on the functional form of Verner and Ferland [95], which can
be written as

Rrad
(α,k) = A(α,k)

[√
Te /T (α,k)

0

(
1+

√
Te /T (α,k)

0

)1−D(α,k)
(
1+

√
Te /T (α,k)

1

)1+D(α,k)
]−1

, (20a)

where

D(α,k) = B(α,k) +C(α,k) exp
(
−T (α,k)

2 /Te

)
(20b)

is the modified exponential coefficient introduced by Gu [33], and A(α,k), B(α,k), C(α,k), and T (α,k)
i for i = 0,1,2

are tabulated fit parameters. Except for some low-charge ions, it is usually the case that C(α,k) = T (α,k)
2 = 0, in

which case D(α,k) = B(α,k). The expression (20) is given in units of cm3s−1, and coefficients are provided for
electron temperatures in units of eV or K. Fits are provided for all elements up to Zn (inclusive), plus Kr, Mo,
and Xe, for all isoelectronic sequences up to Na-like forming Mg-like. The fits are claimed to be accurate for
electron temperatures between 10k2 and 107k2 degrees Kelvin to within 1% for multiply charged ions and 5%
for singly and doubly ionized states. Further, the fit formula is designed to produce the correct asymptotic
forms outside of these temperature ranges in both the low- and high-temperature limits.

(ii) Sterling [86] has computed fit coefficients for Kr+ through Kr6+ using a two-part formula. The formula con-
sists of a fit of the form (20) that, for certain ions, is combined with a fit of the form (25) above some specified
temperature. These fits yield rates in units of cm3s−1 and expect electron temperatures in units of degrees
Kelvin.

(iii) Mattioli, et al. [63] provide fit coefficients for all charge states of Kr using the original functional form of
Verner and Ferland [95] (ie., the formula (20) with D(α,k) = B(α,k)). The coefficients generate rates in units of
cm3s−1 with electron temperatures expected in units of eV.
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(iv) Kotelnikov, et al. [45] supply the following approximate analytic formula based on a hydrogenic approxima-
tion:

Rrad
(α,k) =

8.414kα4ca2
0 [ln(1+λ)+3.499]

(1/λ)1/2 +0.6517(1/λ)+0.2138(1/λ)3/2
, (21a)

where α is the fine-structure constant, a0 is the Bohr radius, c is the speed of light in vacuum, and

λ= hR∞ck2

kBTe
, (21b)

with h, kB, and R∞ representing the Planck, Boltzmann, and Rydberg constants, respectively. When us-
ing standard SI units for all supplementary constants, the expression (21a) yields rates in units of m3s−1.
The accuracy of this formula is expected to be within 3% for 1.0E−4 <λ< 1.0E+4. Unlike some radiative re-
combination rate formulas, this formula yields rates Rrad

(α,k) ∝ T −1/2
e and Rrad

(α,k) ∝ T −3/2
e in the low- and high-

temperature limits, respectively, so that reasonable (though not necessarily accurate) rates are obtained out-
side of the targeted temperature range in both limits.

Implementation. For electron temperatures given in units of degrees Kelvin, we may write

A = (8.141E+6)kα4ca2
0 = (2.0030269543112400E−14)k, (22a)

B = (1.5788750459524500E+5)k2, (22b)

λ= B/Te . (22c)

Then the expression

Rrad
(α,k) = A

ln(1+λ)+3.499

(1/λ)1/2 +0.6517(1/λ)+0.2138(1/λ)3/2
(23)

yields recombination rates in units of cm3s−1.

(v) Landini, et al. [49, 50] provide coefficients for functional fits of the form

Rrad
(α,k) = A(α,k) (Te ∗1.0E−4)−X(α,k) , (24)

where A(α,k) and X(α,k) are tabulated fit parameters. The expression (24) is given in units of cm3s−1, and
the electron temperature Te is expected in units of degrees Kelvin. Because the functional form of these fits
contains only a single, constant exponent, this formula cannot reproduce the asymptotic behavior expected
in the low- and high-temperature limits. However, data are provided for lower ionization states of some
heavier atomic species not found in other sources – in particular, S, Cl, Ar, K, Ca, Ti, Cr, Mn, Fe, Co, and Ni.

Dielectronic recombination. We leverage the following sources of data for dielectronic recombination, in or-
der of preference:

(i) In a sequence of papers, [1, 5, 6, 7, 8, 12, 14, 17, 24, 25, 26, 42, 68, 100, 101, 102, 103] Badnell, et al. provide
coefficients for functional fits of the form

Rdie
(α,k) = T −3/2

e

N(α,k)∑
i=1

c(α,k)
i exp

(
−E (α,k)

i /Te

)
, (25)

where c(α,k)
i , E (α,k)

i , and N(α,k) are tabulated fit parameters. The expression (25) is given in units of cm3s−1,
and the electron temperature is expected in units of degrees Kelvin. The fits are generated using data ob-
tained from atomic structure calculations, and are claimed to reproduce the computed data on which they
are based to within 5% in general, and in most cases to within 1%.

(ii) Sterling [86] has computed fit coefficients for Kr+ through Kr6+ using the formula (25). Similar to other
sources, these fits yield rates in units of cm3s−1. The coefficients are given for electron temperatures in units
of degrees Kelvin, but may be easily converted for units of eV.
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(iii) Mattioli, et al. [63] provide fit coefficients for all charge states of Kr using a functional fit of the form (25). The
coefficients generate rates in units of cm3s−1 with electron temperatures expected in units of eV.

(iv) Landini, et al. [49, 50] provide coefficients for fits of the form

Rdie
(α,k) = A(α,k)T

−3/2
e exp

(
−T (α,k)

0 /Te

)(
1+B(α,k) exp

(
−T (α,k)

1 /Te

))
, (26)

where A(α,k), B(α,k), T (α,k)
0 , and T (α,k)

1 are tabulated fit parameters. The expression (26) is given in units of
cm3s−1, and the electron temperature is expected in units of degrees Kelvin. While believed to be generally
less accurate than the formula (25), the fits of Landini, et al. can be used as a substitute for data not provided
by Badnell, et al. for lower ionization states of some heavier atomic species – in particular, S, Cl, Ar, K, Ca, Ti,
Cr, Mn, Fe, Co, and Ni.

(v) A collection of semi-empirical models are given by Hahn [34, 35] based on fitting data by excitation mode
rather than isoelectronic sequence. The total dielectronic rate coefficient is decomposed as

Rdie
(α,k) =α1s +α2s +α2p +α3s +α3p, (27)

where the parametersα∗ represent the contribution of dielectronic recombination due to electron excitation
from the 1s, 2s, 2p, 3s, and 3p orbitals, respectively. The individual rates are given by

α1s = A1T −3/2
e exp(−A2/Te )exp

(−A3 (N −2)2)( 6

4+N

)0.9

, (28a)

α2s = B1T −3/2
e exp(−B2/Te ) (N −2)(10−N ) (N +B3)−2.5 (

1+0.3T −0.21
e

)
, (28b)

α2p =C1T −3/2
e exp

(
−C2

Te

(
1+ 0.0001

N +1

))
exp(−C3|N −9.6|)

√
10

N +1
, (28c)

α3s = D1T −3/2
e exp

(
−D2

Te

(
1.0− 0.15

(N −10)1.5

))
(N −10)(Zc −N )

N −D3
, (28d)

α3p = E1T −3/2
e exp(−E2/Te )exp

(−E3 (N −12)2) (N −10)(Zc −10)
1

8
, (28e)

where N is the number of electrons in the recombining ion, Zc is the nuclear core charge of the recombining
ion, Z = Zc −2, Z ′ = Zc −10, Z ′′ = Zc −7, and

A1 = 1230exp

(
− 44

Zc +2.86

)
Z−0.14

c , (29a)

A2 = (0.0075)(Zc +1/N )2 , (29b)

A3 = 0.0222Zc , (29c)

B1 = 52exp

(
− 18

1+Z

)(
Zc

10+0.011Z 2
c

)0.65

, (29d)

B2 = 0.0023Z

1+0.0015Z 2 , (29e)

B3 = 0.8, (29f)

C1 = 2.15exp
(−0.004(Z −35)2) Z 1.8, (29g)

C2 = (0.00115) Z 2 (1−0.003Z ) , (29h)

C3 = 0.17, (29i)

D1 = (0.16)
(
Z ′)2 exp

(−0.11Z ′) , (29j)

D2 = (0.0024) Z ′ (1−0.01Z ′) , (29k)

D3 = 6, (29l)

E1 = 0.45

Z ′ exp

(
Z ′

4+0.02Z ′

)
, (29m)
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E2 = 0.0003
(
Z ′′)2 (

1−0.003Z ′′) , (29n)

E3 = 0.02. (29o)

For a given ion, at most three of the individual terms are included in the overall recombination rate. Specif-
ically, α1s should be taken to be zero unless N < 10, α2s should be taken to be zero unless 2 < N < 10, α2p

should be taken to be zero unless N > 2, and α3s and α3p should be taken to be zero unless N > 10.

These formulas are intended to be valid for a reasonably large range of ions. The author claims that these
formulas should be reliable to within ±50% for Zc < 50 and N < 13, when compared to the data used to gen-
erate the formulas. In our experience, these formulas appear to generate reasonable values for larger values
of N , in the sense that the values generated are physically plausible (eg., nonnegative) with roughly reason-
able profiles compared to other data sources, though the accuracy of the rates in this regime is questionable.
Further, the use of a five-shell model neglects contributions from higher levels that are populated in ground-
state ions with N > 18.

Three-body recombination. Rates for three-body recombination are obtained from collisional ionization rates
using the principle of detailed balance. For a plasma in equilibrium, the collisional ionization and three-body
recombination rates balance, so that

n(α,k)I(α,k) = n(α,k)ne R tbr
(α,k) (30a)

or

n(α,k+1)ne

n(α,k)
= I(α,k)

R tbr
(α,k+1)

. (30b)

Equating the right side of (30b) with the right side of the Saha equation

n(α,k+1)ne

n(α,k)
= 2

λ3

gi+1

gi
exp

(
−φion

(α,k)/Te

)
, (31)

we find that

R tbr
(α,k+1) =

λ3

2

g(α,k+1)

g(α,k)
I(α,k) exp

(
φion

(α,k)/Te

)
, (32)

where

λ2 def= h2

2πme kBTe
(33)

is the thermal de Broglie wavelength of an electron, and g(α,k) and g(α,k+1) are the statistical weights (degeneracy
of states) of the neighboring charge states.

For collisional ionizaton rates given using the formula of Lotz (17), the three-body recombination rate may be
written as

R tbr
(α,k+1) = (4.92E−36)

g(α,k)

g(α,k+1)

ξ(α,k)

φion
(α,k)T

2
e

U
(
1,1,φion

(α,k)/Te

)
, (34)

where U (a,b, x) is the confluent hypergeometric function of the second kind, which satisfies

U (1,1, x) = ex E1 (x) . (35)

The formula (34) is given in units of cm6s−1, and the leading constant is chosen for φion
(α,k) and Te in units of eV.

Implementation. It is important to note that the evaluation of (32) must be carefully considered for very
low electron temperatures. When the electron temperature is very low, evaluation of the product ex E1(x)
as written (ie., as the product of two function evaluations) is numerically unstable. It is therefore important
that some method for evaluating U (1,1, x) be available. While many numerical libraries contain subroutines
for evaluating functions of this type, we leverage the following modification of (18) to avoid introducing any
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library dependencies:

U (1,1, x) ≈


ex

(− ln x +a0 +a1x +a2x2 +a3x3 +a4x4 +a5x5
)

, x ≤ 1,

1

x

x2 + c1x + c2

x2 +b1x +b2
, x ≥ 1,

(36)

with the parameters ai , bi , and ci given previously in (19).

Implementation. For a given electron temperature, the equilibrium ionization fractions are typically
vanishingly small outside of a limited range of charge states. When these models are implemented into fluid
codes, difficulties with numerical precision can arise when very low ionization fractions are encountered.
In an attempt to alleviate difficulties with low-density fluids and scaling issues between different fluids,
a limiting procedure is applied to the ionization and recombination rates based on the densities of the
reactants of each process.

Given a crossover value D and a slope p for the reactant number densities (eg. D = 1010 m−3 and p = 4), the
ionization and recombination rates I(α,k) and R(α,k) are replaced by the values ηI(α,k) and ηR(α,k), respec-
tively, where

η
def= 1

1+ r p
e

1

1+ r p
(α,k)

, with rs = D

ns
. (37)

This results in the ionization and recombination rates being artificially suppressed when the reactant den-
sities are very low, and effectively creates a number density floor for each species.

2.2.3. Ionization potential depression (IPD)

We leverage the ionization potential depression model of Stewart and Pyatt [88]. The amount by which the ioniza-
tion energy is depressed is given by

δφion
(α,k) =

3(k +1)q2
e

8πε0λD

[
(a/λD)3 +1

]2/3 −1

(a/λD)3 , (38a)

where

a3 def= 3(k +1)

4πne
, (38b)

λ2
D

def= ε0kB

q2
e

[
ne

Te
+ ∑

(α,`)

`2n(α,`)

T(α,`)

]−1

, (38c)

are the ion sphere radius and the Debye length of the plasma, respectively. The standard ionization rate φion
(α,k) is

then replaced by the depressed value

φ̂ion
(α,k)

def= φion
(α,k) −δφion

(α,k). (39)

This value is used in the formulas for computing rate coefficients for ionization and three-body recombination. It
is important to note here that the ionization rate formula of Lotz (17) must be used if depressed ionization energy
values are desired: The other sources of ionization rate coefficients discussed previously do not yield the correct
behavior as φ̂ion

(α,k) → 0.

2.2.4. Equilibrium ionization fractions (Coronal)

For comparison purposes, the equilibrium ionization fractions of several elements of interest have been computed
using the previously discussed sources of ionization and recombination rate coefficients in the low-density (coro-
nal) limit. In this case, only collisional ionization, radiative recombination, and dielectronic recombination are
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Model Species Coefficient Rate Preference

Generic He, Be, Ne, Al, Ar, Kr
Ionization Lotz
RR Kotelnikov
DR Hahn

Fit 1 Ne, Al, Ar
Ionization Voronov
RR Landini, Kotelnikov
DR Landini

Fit 2 Kr
Ionization Mattioli
RR Mattioli
DR Mattioli

Fit 3 He, Be, Ne, Al, Ar, Kr
Ionization Mattioli, Voronov
RR Sterling, Badnell, Mattioli, Kotelnikov
DR Sterling, Badnell, Mattioli, Landini

TABLE 2.1. Summary of different sets of ionization and recombination rate coefficients used to compare the equi-
librium ionization fractions of some elements of interest.

considered: the effects of three-body recombination and ionization potential depression are neglected. The ion-
ization fractions are computed under a steady-state assumption using the approach described in section 3.2.1.
Four combinations of ionization and recombination rates are considered, with most differences due to the choice
of recombination rates:

• Generic: Consists of models that are all designed to be applied to wide ranges of atomic species. Specifically,
the formulas of Lotz [54, 55], Kotelnikov, et al. [45], and Hahn [34, 35], for ionization, radiative recombina-
tion, and dielectronic recombination, respectively.

• Fit 1: Combines Voronov’s analytic fit formulas for ionization [96] with the recombination rate fits of Landini,
et al. [49, 50]. Since these references do not include rates for hydrogenic ions, we use the radiative recombi-
nation rate formula of Kotelnikov, et al. for these species. Applies only to those species of interest for which
data is provided by Landini, et al. (ie., Ne, Al, Ar).

• Fit 2: Sources ionization, radiative recombination, and dielectronic recombination rates from the work of
Mattioli, et al. [63]. Applies only to Kr.

• Fit 3: Uses our preferred recombination rates for all species of interest. Leverages the recombination rates
of Badnell, et al. [1, 5, 6, 7, 8, 12, 13, 14, 17, 24, 25, 26, 42, 68, 100, 101, 102, 103] and Sterling, et al. [86]
where available. When such rates are not available, the rates of Mattioli, et al. [63], Kotelnikov, et al., [45],
and Landini, et al., [49, 50] are used, in that order.

The differences between each case are outlined in table 2.1. The ionization fractions and the corresponding aver-
age charge state for a some species of interest computed using each applicable set of ionization and recombination
rates is shown in fig. 2.1. Z values computed by the FLYCHK library [22] in the low-density limit are included for
comparison purposes.

2.2.5. Equilibrium ionization fractions (Higher-density)

The equilibrium ionization fractions of several elements of interest have been computed with high-density effects
(ie., ionization potential depression and three-body recombination) included. All forms of ionization and recombi-
nation are considered, including collisional ionization and three-body recombination (both computed accounting
for ionization potential depression) in addition to radiative and dielectronic recombination. Here the ionization
rate formula of Lotz [54, 55] is used, with three-body recombination rates computed by detailed balance. Radiative
and dielectronic recombination rates are computed using the fits of Badnell, et al. [1, 5, 6, 7, 8, 12, 13, 14, 17, 24, 25,
26, 42, 68, 100, 101, 102, 103] and Sterling, et al. [86] where available. When such rates are not available, the rates of
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FIGURE 2.1. Comparison of equilibrium ionization fractions for various elements using different sources of ion-
ization and recombination rate parameters in the low-density (coronal) limit. The various sources used for each
case are summarized in table 2.1. Each plot shows the fraction of each charge state (top) and the resulting average
charge state (bottom) for the models relevant to that atomic species. Select values for the average charge of each
species computed using the FLYCHK library [22] at low density (ne = 1012 cm−3) are included in the comparison.
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FIGURE 2.2. Comparison of equilibrium ionization fractions for various elements at different densities using models
incorporating high-density effects (ionization potential depression and three-body recombination). We can see
that the expected valence state is reproduced for Al and Be at solid densities.
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Mattioli, et al. [63], Kotelnikov, et al., [45], and Landini, et al., [49, 50] are used, in that order. Note that in contrast
to the coronal models in fig. 2.1, we consider only one set of ionization and recombination rate coefficients for
each atomic species in this case. Suppression of dielectronic recombination rates due to high-density effects is not
currently included in this model.

Including ionization potential depression and three-body recombination and applying a steady-state assumption
results in a nonlinear system that must be solved to obtain the charge state fractions. This is done using a Newton
iteration implemented in a simple script implemented in the python language. Computed average charge states
for some species of interest using the aforementioned ionization and recombination models are shown in fig. 2.2.
For each element, ten logarithmically-spaced density values are selected based on typical density values for solid
and gas phases. Densities plotted using a light green color correspond roughly to a gas phase and densities plot-
ted using a dark red color correspond roughly to a solid phase. For metals such as Be, Al, and Cu, solid densities
are given at room temperature, and gas-phase densities are approximated based on the number densities of at-
mospheric gasses at STP. For atmospheric gases (ie., H, He, Ne, Ar, Kr) gas-phase densities are chosen at standard
temperature and pressure (STP), and solid densities are approximated based on the number densities of metals at
room temperature.

Implementation. One of the primary motivations for the use of ionization potential depression models
is to properly capture the conductivity behavior of metals such as Be and Al in solid and liquid phases. In
such regimes, the metal may be modeled roughly as a two-component system of ions and an electron fluid.
In order to properly capture this behavior, the ionization energies of valence electrons must be depressed
below zero by the IPD model used. For example, we can see that in fig. 2.2 the charge state for Al at solid
density is three in the low-temperature limit, which matches the expected valence of solid Al.

One difficulty associated with the use of IPD models for solid-density metals is that the ionization rate
formula of Lotz (17) is only defined for strictly positive ionization energies and diverges to positive infinity
as the ionization energy approaches zero. If it is known a priori that the average charge state will not fall
below three, then the lower charge states may be excluded from the computation entirely. However, because
density values often vary significantly over the duration of a simulation, there are likely to be regions of low-
density material where the expected average charge state would require these lower charge states. It is
therefore necessary to produce some method for handling negative ionization energies without completely
excluding the corresponding charge states from the calculation.

Our current attempts to handle potentially negative ionization energies leverage the fact that the ionization
rate formula (17) diverges monotonically to positive infinity as the ionization energy approaches zero. By
clipping the ionization energy to a minimum value that is positive and of small magnitude, the ionization
rate may be made arbitrarily large but always defined. To ensure that the resulting rate coefficients yield
continuous derivatives, a smooth exponential damping formula is applied. The damped ionization energy
is then given by

φ̂ion,∗
(α,k)

def= φion
(α,k)F

(
ε∗,δ∗, φ̂ion

(α,k)/φ
ion
(α,k)

)
(40a)

where

F (ε∗,δ∗, x)
def=

δ∗+ (ε∗−δ∗)exp

(
− (x −ε∗)2

2ε2∗
− x −ε∗
δ∗−ε∗

)
, x ≤ ε∗,

x x ≥ ε∗.
(40b)

In order to properly reproduce the desired valence conduction behavior, the three-body recombination
rate should ideally go to zero, but at the very least not grow as fast as the ionization rate. We use the latter
approach since it is somewhat easier to enforce: to do so, we define two damped ionization energies

φ̂ion,∗
(α,k) =φion

(α,k)F
(
ε∗,δ∗, φ̂ion

(α,k)/φ
ion
(α,k)

)
and φ̂ion,†

(α,k) =φion
(α,k)F

(
ε†,δ†, φ̂ion

(α,k)/φ
ion
(α,k)

)
(41)

to be used in the evaluation of the ionization and three-body recombination rates I(α,k) and R tbr
(α,k+1), re-
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spectively. The results in fig. 2.2 were generated using the following parameters:

ε∗ = 10−2, δ∗ = 10−12, (42a)

ε† = 10−2, δ† = 10−4. (42b)

We have found that these parameters work reasonably well for most cases, though these values are less
effective for the case of Cu near solid densities. A more suitable approach for this case has not yet been
identified.

2.2.6. Momentum transfer due to elastic collisions

The momentum transfer from species s to species t due to elastic, non-reacting collisions is specified by Rs;t ,
defined as [61, 62]

Rs;t =αs;tρsρt (ut −us )Φs;t =αs;t

[
ρs (ρu)t −ρt (ρu)s

]
Φs;t , (43)

whereαs;t is the friction coefficient, andΦs;t is a correction factor that depends on the drift speed |us −ut | and the
reduced thermal speed

Vtherm =
√

2kB (mt Ts +ms Tt )

ms mt
. (44)

It is found that Φs;t = 1 in the limit of vanishing drift speed, and this value is generally sufficient when the drift
speed is much smaller than the thermal speed. Expressions for more general scenarios can be found in [81].

The friction coefficient is composed of different expressions depending on whether the interaction involves one or
more neutral species [62]. For two interacting charged species, the friction coefficient is given by

αs;t
def= Z 2

s Z 2
t |qe |4 lnΛs;t

6π
p

2πε2
0ms mt ms;t (kBTs /ms +kBTt /mt )3/2

, (45)

where

ms;t
def= ms mt

ms +mt
(46)

is the reduced mass and

lnΛs;t
def= ln

[
12π (ε0kB)3/2 (Ts +Tt )

|Zs Zt ||qe |3
(

Ts Tt

Z 2
s ns Tt +Z 2

t nt Ts

)1/2]
(47)

is Coulomb’s logarithm. For interactions that involve one or more neutral species, the friction coefficient is given
by

αs;t
def= 1

ms +mt

4

3

[
8

π

(
kBTs

ms
+ kBTt

mt

)]1/2

σs;t , (48)

where σs;t is the collisional cross section.

Constant values for some collisional cross sectionsσs;t between species up to He are included in [62]. These values
are summarized in table 2.2. For heavier species, we compute constant cross section values using a simple hard-
sphere approximation, where

σs;t =π (rs + rt )2 (49)

with rs and rt the radii of the neutral charge state of species s and t , respectively. Cross section values computed
using atomic radii from [23] are summarized in table 2.3.
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Species Value (m2) Model

H+−H 1.0E−18 Quant. mech. calc. [97]
H+−He 1.0E−19 Quant. mech. calc. [97]
H−e 1.5E−19 Quant. mech. calc. [97]
He−e 5.0E−20 Quant. mech. calc. [97]
H−He 1.5E−19 [52]
H−He+ 2.0E−20 Hard sphere [62]
H−He2+ 1.0E−20 Hard sphere [62]
He−He+ 5.0E−19 Quant. mech. calc. [31]
He−He2+ 3.0E−21 Hard sphere [62]

TABLE 2.2. Elastic scattering cross section values for some interactions involving neutral species.

2.2.7. Momentum transfer due to charge exchange

The following approximation for Γcx
(α,k) is given in [72]:

Γcx
(α,k) =σcx

(α,k)

(
U cx

(α,k)

)
n(α,k)n(α,0)U

cx
(α,k), (50)

where

U cx
(α,k) =

(
4

π
u2

T(α,k)
+ 4

π
u2

T(α,0)
+u2

(α,k);(α,0)

)1/2

, (51)

with

u2
s;t =

∥∥us;t
∥∥2 , us;t = us −ut , u2

Ts
= 2kBTs

ms
, (52)

and σcx
s denotes the charge exchange cross section for species s. The author of [65] has observed this approxima-

tion to be accurate to within a few percent.

Using this approximation, the momentum sources Ccx,[1]
(α,k) can be written more concretely in terms of conserved

quantities. This gives

Ccx,[1]
(α,k) = 1

m(α,0)

[
ρ(α,k)(ρu)(α,0) −ρ(α,0)(ρu)(α,k)

]
σcx

(α,k)

(
U cx

(α,k)

)
U cx

(α,k) +Rcx
(α,k);(α,0) −Rcx

(α,0);(α,k), (53)

and, similarly for the total energy sources Ccx,[2]
(α,k) ,

Ccx,[2]
(α,k) = 1

2m(α,0)

[
ρ(α,k)

ρ(α,0)
(ρu)2

(α,0) −
ρ(α,0)

ρ(α,k)
(ρu)2

(α,k)

]
+ (ρu)(α,0)

ρ(α,0)
·Rcx

(α,k);(α,0) −
(ρu)(α,k)

ρ(α,k)
·Rcx

(α,0);(α,k)

+Qcx
(α,k);(α,0) −Qcx

(α,0);(α,k).
(54)

The momentum transfer between an ion species i = (α,k) and a neutral species n = (α,0) due to charge exchange
interactions is specified by Rcx

i ;n and Rcx
n;i , which are defined as [72]

Rcx
i ;n =σcx

i

(
U cx

i

)
nnρi (un −ui )u2

Tn

[
4

(
4

π
u2

Ti
+u2

i ;n

)
+ 9π

4
u2

Tn

]−1/2

, (55a)

Rcx
n;i =σcx

i

(
U cx

i

)
nnρi (ui −un)u2

Ti

[
4

(
4

π
u2

Tn
+u2

i ;n

)
+ 9π

4
u2

Ti

]−1/2

, (55b)

or, to emphasize conserved quantities,

Rcx
i ;n =σcx

i

(
U cx

i

)[
ρi (ρu)n −ρn(ρu)i

]u2
Tn

mn

[
4

(
4

π
u2

Ti
+u2

i ;n

)
+ 9π

4
u2

Tn

]−1/2

, (55c)

Rcx
n;i =σcx

i

(
U cx

i

)[
ρn(ρu)i −ρi (ρu)n

]u2
Ti

mn

[
4

(
4

π
u2

Tn
+u2

i ;n

)
+ 9π

4
u2

Ti

]−1/2

. (55d)
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Elastic scattering cross section (m2)

Radius (m) H He Be Ne Al Ar e−

H 5.30E−11 3.53E−20 2.22E−20 8.55E−20 2.60E−20 9.19E−20 4.83E−20 8.82E−21
He 3.10E−11 2.22E−20 1.21E−20 6.42E−20 1.50E−20 6.97E−20 3.27E−20 3.02E−21
Be 1.12E−10 8.55E−20 6.42E−20 1.58E−19 7.07E−20 1.66E−19 1.05E−19 3.94E−20
Ne 3.80E−11 2.60E−20 1.50E−20 7.07E−20 1.81E−20 7.65E−20 3.73E−20 4.54E−21
Al 1.18E−10 9.19E−20 6.97E−20 1.66E−19 7.65E−20 1.75E−19 1.12E−19 4.37E−20
Ar 7.10E−11 4.83E−20 3.27E−20 1.05E−19 3.73E−20 1.12E−19 6.33E−20 1.58E−20

TABLE 2.3. Atomic radii and elastic scattering cross section values computed using a hard-sphere approximation.
Values for interactions involving electrons are computed using an electron radius of zero. Values of atomic radii
sourced from [23].

A common approach to constructing approximate values for the charge exchange cross sections σcx
i is a fit of the

form
σcx

i (v) = (
A+C logb v

)2 , (56)

where A, C , and b are constants. In [72] a fit formula from [32] for charge exchange between H and H+ is used that
is characterized by

A = 2.1E−7, C =−9.2E−9, and b = e, (57)

with units of cm2. Based on data from [16], the author of [65] proposes the following fits:

H−H+ : A = 1.12E−18, C =−7.15E−20, b = e, (58a)

D−D+ : A = 1.09E−18, C =−7.15E−20, b = e, (58b)

with units of m2.

2.2.8. Thermal energy transfer due to elastic collisions

The thermal energy transfer from species s to species t due to elastic, non-reacting collisions is specified by Qs;t ,
defined as [62]

Qs;t =
αs;tρsρt

ms +mt

[
As;t kB (Tt −Ts )Ψs;t +mt (ut −us )2Φs;t

]
(59a)

= αs;t

ms +mt
ρsρt As;t kB (Tt −Ts )Ψs;t +

αs;t

ms +mt

mt

ρsρt

[
ρs (ρu)t −ρt (ρu)s

]2
Φs;t , (59b)

whereαs;t is the friction coefficient given by either (45) or (48), andΨs;t andΦs;t are correction factors that depend
on the drift speed |us −ut | and the reduced thermal speed (44). The parameter As;t takes the value 4 for electron-
neutral interactions, and 3 for all other types of interactions. The correction factors Ψs;t and Φs;t take the value 1
in the limit of vanishing drift speed, and this value is generally sufficient when the drift speed is much smaller than
the thermal speed. Expressions for more general scenarios can be found in [81].

2.2.9. Thermal energy transfer due to charge exchange

The transfer of thermal energy between an ion species i = (α,k) and a neutral species n = (α,0) due to charge
exchange interactions is specified by Qcx

i ;n and Qcx
n;i . The following approximations from [72] are used:

Qcx
i ;n =σcx

i

(
U cx

i

)
nnρi

3

4
u2

Tn

(
4

π
u2

Ti
+u2

i ;n + 64

9π
u2

Tn

)1/2

, (60a)

Qcx
n;i =σcx

i

(
U cx

i

)
nnρi

3

4
u2

Ti

(
4

π
u2

Tn
+u2

i ;n + 64

9π
u2

Ti

)1/2

, (60b)
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or

Qcx
i ;n =σcx

i

(
U cx

i

)
ρnρi

3

4

u2
Tn

mn

(
4

π
u2

Ti
+u2

i ;n + 64

9π
u2

Tn
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, (60c)

Qcx
n;i =σcx

i

(
U cx

i

)
ρnρi

3

4

u2
Ti

mn

(
4

π
u2

Tn
+u2

i ;n + 64

9π
u2

Ti

)1/2

, (60d)

to emphasize conserved quantities.

2.2.10. Radiative losses

As described earlier in section 2.1.1, it is assumed that the ionization energy associated with the charge state transi-
tion is always radiated during radiative and dielectronic recombination reactions. Additional sources, as a function
of electron internal energy, are used to more carefully account for the remainder of the radiated energy, depending
on the specific details of the reaction. In general, since this additional loss constitutes some fraction of the elec-
tron internal energy participating in the reaction, we may bound the additional loss above and below, by the cases
where all or none of the electron internal energy is radiated away, respectively. If no portion of the electron internal
energy is radiated away during recombination, then no additions need be made to the source terms as described
previously. If all of the electron internal energy is radiated away during recombination, then the contribution

ρ(α,k)

m(α,k)
ρe ee R(α,k) (61)

should be added to the loss term Qrad
(α,k−1), for each recombining ion (α,k). At this time, our implementation is lim-

ited to these two extremes (all or none of this energy emitted). We are currently investigating potential approaches
for incorporating these effects, including approaches similar to [60] where the loss term is parameterized in terms
of an effective loss factor.

3. FULLY-AVERAGED MULTIFLUID MODEL

We now consider a reduced multifluid model in which the fluid equations for the individual charge states of a
given atomic species are combined into a single fluid for that species. The resulting model consists of one set of
fluid equations for each atomic species plus a set of fluid equations for the electron species. In the remainder of
this section, the subscript α will be used to denote quantities associated with this average atomic state for atomic
species α.

3.1. Model description

The values for total mass, momentum, and energy densities for species α are given by summing across all charge
states:

ρα
def=

zα∑
k=0

ρ(α,k), (62a)

ραuα
def=

zα∑
k=0

ρ(α,k)u(α,k), (62b)

Eα
def=

zα∑
k=0

E(α,k). (62c)

The total number and charge densities are obtained similarly:

nα
def=

zα∑
k=0

n(α,k), (62d)

qαnα
def=

zα∑
k=0

q(α,k)n(α,k). (62e)
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The average charge state Zα is defined through the relation

nαZα
def=

zα∑
k=0

kn(α,k). (62f)

The model developed here tracks only the conserved variables ρα, (ρu)α, Eα for the charge-state averaged fluid
for each atomic species. As such, only center-of-mass averages for quantities such as velocity and specific internal
energy are available. The natural assumption, and the one that we make here, is therefore that the velocities and
specific internal energies of the individual charge states are exactly that of the averaged fluid: ie., u(α,k) = uα and
e(α,k) = eα for each k.

The above assumptions may be combined with a method for computing the charge state fractions of the atomic
species α to separate the conserved quantities for each charge state. More specifically, suppose that an algorithm
is provided that takes as input the conserved variables for the electron fluid and the conserved variables for each
averaged ion fluid, and outputs the charge state fractions

f(α,k)
def= n(α,k)

nα
(63)

for each k. It should be noted that the charge state fractions are assumed to satisfy basic properties such as

f(α,k) ∈ [0,1] and
zα∑

k=0
f(α,k) = 1. (64)

Define the averaged mass mα and mass fractions f m
(α,k) by

mα
def=

zα∑
k=0

f(α,k)m(α,k) and f m
(α,k)

def= m(α,k) f(α,k)

mα
, (65)

respectively. Then the conserved variables for each charge state are recovered (under these approximations) by

ρ(α,k)
def= ρα f m

(α,k), (ρu)(α,k)
def= (ρu)α f m

(α,k) and E(α,k)
def= Eα f m

(α,k). (66)

The final assumption made in this section is that the masses of the individual charge states are related by

m(α,k) = m(α,k+1) +me = m(α,0) −kme . (67)

Continuity. Summing (5a) with s = (α,k) for k = 0, . . . , zα and applying the relations (62) yields the following con-
tinuity equation for the total atomic number density:

∂tρα+∇· (ραuα
)= C[0]

α +S [0]
α , (68)

where

C[0]
α

def=
zα∑

k=0
C[0]

(α,k) and S [0]
α

def=
zα∑

k=0
S [0]

(α,k). (69)

Summing the contributions due to ionization and recombination reactions and using the mass relation (67), the
collision source reduces to

C[0]
α = ρe

ρα

mα

(
Rα+ ρe

me
R tbr
α

)
−ρe

ρα

mα
Iα, (70)

where

Rα
def=

zα∑
k=1

f(α,k)R(α,k), R tbr
α

def=
zα∑

k=1
f(α,k)R

tbr
(α,k), and Iα

def=
zα−1∑
k=0

f(α,k)I(α,k). (71)

The electron collision source is similarly reduced to

C[0]
e = ∑

α∈NA

ρe
ρα

mα
Iα−

∑
α∈NA

ρe
ρα

mα

(
Rα+ ρe

me
R tbr
α

)
. (72)
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Momentum. Summing (5b) with s = (α,k) for k = 0, . . . , zα, applying the relations (62), and transforming the sys-
tem into a reference frame moving with the mean atomic fluid velocity uα yields

∂t
(
ραuα

)+∇· (ραuα⊗uα+pαI+Πα

)= qαnα (E+uα×B)+C[1]
α +S [1]

α , (73)

where

C[1]
α

def=
zα∑

k=0
C[1]

(α,k), and S [1]
α

def=
zα∑

k=0
S [1]

(α,k). (74)

The averaged collision source is obtained by simply summing the contributions from each charge state. The sym-
metry of the charge exchange terms results in their cancellation and removal from the momentum source for the
averaged model. The reduction of the remaining components yields

C[1]
α = (ρu)e

ρα

mα

(
Rα+ ρe

me
R tbr
α

)
−ρe

(ρu)α
mα

Iα+
∑

s∈ΛFAàα
Rα;s , (75)

where

Rα;e
def=

zα∑
k=0

R(α,k);e , Rα;β
def=

zα∑
k=0

zβ∑
`=0

R(α,k);(β,`), (76)

and (76) is written with the understanding that R(α,k);(α,k) = 0. Similarly, the collision source for the electron fluid
becomes

C[1]
e = ∑

α∈NA

ρe
(ρu)α

mα
Iα−

∑
α∈NA

(ρu)e
ρα

mα

(
Rα+ ρe

me
R tbr
α

)
+ ∑
α∈ΛFA

Re;α, (77)

where

Re;α
def=

zα∑
k=0

Re;(α,k). (78)

Energy. Summing (5c) with s = (α,k) for k = 0, . . . , zα, applying the relations (62), transforming the system into
a reference frame moving with the mean species velocity uα, and neglecting the individual ion drift velocities as
before yields

∂tEα+∇· [(Eα+pα
)

uα+uα ·Πα+hα
]= qαnαuα ·E+C[2]

α +S [2]
α , (79)

where

C[2]
α

def=
zα∑

k=0
C[2]

(α,k) and S [2]
α

def=
zα∑

k=0
S [2]

(α,k). (80)

Summing the contributions from each charge state, and again noting that the terms due to charge exchange inter-
actions cancel, the averaged total energy source reduces to

C[2]
α = Ee

ρα

mα

(
Rα+ ρe

me
R tbr
α

)
−ρe

Eα
mα

Iα+
ρ2

e

m2
e

ρα

mα
Φtbr
α + ∑

s∈ΛFAàα

(
uα ·Rα;s +Qα;s

)
, (81)

where

Φtbr
α

def=
zα∑

k=1
f(α,k)φ

ion
(α,k−1)R

tbr
(α,k), (82)

Rα;e and Rα;β are given in (76), and Qα;e and Qα;β are defined in a similar manner; ie.,

Qα;e
def=

zα∑
k=0

Q(α,k);e , and Qα;β
def=

zα∑
k=0

zβ∑
`=0

Q(α,k);(β,`). (83)

The collision source for the electron species becomes

C[2]
e = ∑

α∈NA

ρe
Eα
mα

Iα−
∑

α∈NA

Ee
ρα

mα

(
Rα+ ρe

me
R tbr
α

)
− ∑
α∈NA

ρe

me

ρα

mα
Φion
α +

NA∑
α=1

(
ue ·Re;α+Qe;α

)+Qrad
e , (84)

where

Qe;α
def=

zα∑
k=0

Qe;(α,k) and Φion
α

def=
zα−1∑
k=0

f(α,k)φ
ion
(α,k)I(α,k). (85)
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3.2. Collisional transfer models

3.2.1. Quasi-steady-state collisional ionization equilibrium (QSS-CIE)

Most of the models for collisional interactions described in section 2.2 depend on quantities associated with indi-
vidual charge states, such as the number densities n(α,k). However, the averaged multifluid model tracks only total
mean quantities aggregated over all ionization states. Quantities associated with individual charge states can be
computed from the aggregate quantities using (65) and (66) if the charge state fractions f(α,k) are known.

The following quasi-steady-state collisional ionization equilibrium (QSS-CIE) model is used to compute the charge
state fractions [21]. This is done by solving a steady-state reaction system for each point in the physical domain. In
the QSS-CIE model, the ionization fractions of two successive charge states are related by

f(α,k+1)

f(α,k)
= I(α,k)

R(α,k+1)
, (k = 0, . . . , zα−1) . (86)

Combining the relations (86) with the additional constraint

zα∑
k=0

f(α,k) = 1 (87)

yields a linear system for the values of the ionization fractions, which can be written as
1 1 1 · · · 1

−I(α,0) R(α,1)

−I(α,1) R(α,2)

. . .
. . .

−I(α,zα−1) R(α,zα)




f(α,0)

f(α,1)

f(α,2)
...

f(α,zα)

=


1
0
0
...
0

 . (88)

Once the system (88) is solved, the ionization fractions obtained can be used to compute required quantities such
as the individual ion number densities n(α,k) and the average ion charge state Zα.

3.2.2. Momentum transfer due to elastic collisions

Using the general model (43) for momentum transfer, the reduced source terms defined in (76) can be simplified
as

Rs;e =αs;eρsρe (ue −us ) , (89a)

Rs;t =αs;tρsρt (ut −us ) , (89b)

where αs;e and αs;t are the mass-weighted friction coefficients

αs,e
def=

zs∑
k=0

α(s,k);e f m
(s,k), (90a)

αs,t =
zs∑

k=0

zt∑
`=0

α(s,k);(t ,`) f m
(s,k) f m

(t ,`). (90b)

3.2.3. Thermal energy transfer due to elastic collisions

Using the general model (59) for thermal energy transfer, the reduced source terms defined in (83) can be simplified
slightly as

Qs;e = α̃s;eρsρe kB (Te −Ts )Ψs;e + α̂s;eρsρe (ue −us )2Φs;e , (91a)

Qs;t = α̃s;tρsρt kB (Tt −Ts )Ψs;t + α̂s;tρsρt (ut −us )2Φs;t , (91b)
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where

α̃s;e =
zs∑

k=0

α(s,k);e f m
(s,k) A(s,k);e

m(s,k) +me
, α̂s;e =

zs∑
k=0

α(s,k);e f m
(s,k)me

m(s,k) +me
, (92a)

α̃s;t = 3
zs∑

k=0

zt∑
`=0

α(s,k);(t ,`) f m
(s,k) f m

(t ,`)

m(s,k) +m(t ,`)
, α̂s;t =

zs∑
k=0

zt∑
`=0

α(s,k);(t ,`) f m
(s,k) f m

(t ,`)m(t ,`)

m(s,k) +m(t ,`)
. (92b)

4. SINGLE-FLUID EXTENDED MAGNETOHYDRODYNAMICS MODEL

We now consider the derivation of a generalized Ohm’s law for a single-fluid magnetohydrodynamics (MHD)
model as a reduction of the multifluid models. In general, the derivation of the single-fluid MHD model as-
sumes quasineutrality between the electrons and ions, and the separate fluid equations for ions and electrons
are summed to produce a set of fluid equations describing conservation of total fluid mass, momentum, and en-
ergy. The resulting fluid equations are combined with a description of electromagnetics and an Ohm’s law that
describes the evolution of current density.

The focus of this section is the derivation of the full generalized Ohm’s law, that may be reduced term-by-term, ulti-
mately to the level of a traditional resistive or ideal MHD Ohm’s law. The primary motivation is to show the relation-
ship between the material parameters used for typical single-fluid MHD models (ie., resistivity) and the material
parameters used in the multifluid context (ie., ionization, recombination, and elastic scattering rates). Discussion
of the remainder of the consistent single-fluid MHD model (ie., the fluid equations themselves) is omitted. This
presentation is based on the fully-averaged multifluid model described in section 3, since that model already in-
cludes some of the reductions required to form the single-fluid model. We restrict our discussion here to the case
of a single atomic species α in order to reduce the complexity of the model, but this can be extended to multiple
atomic species.

4.1. Center-of-mass quantities

The total mass, momentum, and energy densities for the plasma are given by summing the contributions from
electrons and ions:

ρ
def= ρα+ρe , (93a)

ρu
def= ραuα+ρe ue , (93b)

E def= Eα+Ee . (93c)

Note that the definitions for the total mass and momentum densities given above implicitly define the center-of-
mass velocity u.

4.2. Generalized Ohm’s law

In this context, it is useful to write the charge of each species in terms of a positive unit charge quantity e = |qe |,
where qe =−e. The ion particle charge in this notation is given by qα = Zαe. The derivation of Ohm’s law proceeds
by computing a charge-weighted sum of the momentum equations of each species [19], and assuming quasineu-
trality: ie., ne = Zαnα. Multiplying the ion and electron momentum equations by Zαe/mα and −e/me , respec-
tively, and summing yields, after some algebraic manipulation,
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∂t J− (mαnαuα)∂t

(
Zαe

mα

)
−

(
∇Zαe

mα

)(
mαnαuα⊗uα+pαI+Πα

)
+∇·

[(
1+ me Zα

mα

)
(u⊗ J+ J⊗u)− me Zα

mα
(ue ⊗ J+ J⊗ue )− 1

Zαenα
(J⊗ J)

− e

me

((
pe I+Πe

)− me Zα

mα

(
pαI+Πα

))]

= Zαe2nα
me

[(
1+ me Zα

mα

)(
E+u×B−ηJ+ηionZαenαu

)
−ηrecJ

]
− e

me

(
1− me Zα

mα

)
J×B.

(94)

Here the values

η= me mα

Zαe2
αe;α (95a)

ηion = me

Zαe2

(
Rα+ZαnαR tbr

α − Iα
)

(95b)

ηrec = me

Zαe2

(
Rα+ZαnαR tbr

α + me Zα

mα
Iα

)
. (95c)

denote terms that induce resistive effects.

It should be noted that the only assumption made in the derivation of (94) is quasineutrality of the plasma. Addi-
tional assumptions are typically used to further simplify (94) as part of generating the desired Ohm’s law for a given
application. Two assumptions are often used for this purpose. The first is to neglect the contributions of ionization
and recombination, which is particularly suited to the case of fully ionized plasmas with a constant Z . In this case,
η as defined in (95a) denotes the traditional resistivity.

The second assumption is that the electron particle mass is orders of magnitude smaller than the particle mass of
the ions. The result of this assumption is to neglect terms of order

me Zα

mα
. (96)

The justification for this is that the ratio (96) is on the order of 5E−4 for monatomic proteum and decreases as the
atomic mass number of the ions increases. Under these additional assumptions, (94) simplifies to

∂t J+∇·
[

u⊗ J+ J⊗u− 1

Zαenα
J⊗ J− e

me

(
pe I+Πe

)]= Zαe2nα
me

(
E+u×B−ηJ

)− e

me
J×B, (97)

which is the familiar generalized Ohm’s law used in most contexts.

5. DISCRETIZATION OF THE MULTIFLUID SYSTEM

In this section we discuss some crucial aspects of the discretization of the fluid equations in the multifluid system.
This is done using the general expressions (5) for the fluid equations for an arbitrary species s, where the index set
to which s belongs varies depending on the exact form of the multifluid model (for example the general multifluid
model described in section 2 or the fully averaged model described in section 3). The details of the finite element
discretization and associated stabilization scheme follow that of [27], which extends the work of [58, 59] to a two-
fluid system, and is included here mostly for the sake of completeness. In the context of the multifluid model
development that is the focus of this manuscript, the primary concern is synchronization of the artificial diffusion
across all species in the multifluid system.
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5.1. Continuous Galerkin finite element discretization

The fluid equations (5) may be written in the form of a general balance law:

∂t Us +∇·F (Us ) = Ss (Us ) , (98)

where

Us =
 ρs

ρs us

Es

 , (99a)

F (Us ) =
 ρs us

ρs us ⊗us +ps I+Πs(
Es +ps

)
us +us ·Πs +hs

 , (99b)

Ss (Us ) =

 C[0]
s +S [0]

s

qs ns (E+us ×B)+C[1]
s +S [1]

s

qs ns us ·E+C[2]
s +S [2]

s

 . (99c)

Given a convex domainΩ⊂R3 with boundary ∂Ω, let Th be a collection of elements K that partition the domainΩ
such that Ω=∪Ne

e=1Ke , where Ne and Nh are the number of elements and nodes in the mesh, respectively. Let

V h denote the finite element space of continuous piecewise-linear functions such that each uh ∈V h satisfies
uh |K ∈ P 1(K ) for each K ∈ Th . Let Uh

s denote the finite element approximation of the solution Us . The finite el-
ement discretization is based on the weak form∫

Ω
ν∂t Us dΩ−

∫
Ω

F(Us ) ·∇νdΩ+
∫
∂Ω
νF(Us ) ·nd s −

∫
Ω
νSs (Us )dΩ= 0. (100)

Let {νk }Nh
k=1 denote the standard nodal basis for V h , so that Uh

s =∑
k Us,kνk where Us,k is the vector of nodal solu-

tion values at node k. Let Uh
s = [Us,1, . . . ,Us,Nh ]T denote the vector of all nodal unknowns. Then the semidiscrete

scheme can be written in matrix form as

MC∂tUh
s +Ks (Uh

s )+Bs (Uh
s )+Ss (Uh

s ) = 0, (101)

where

MC =
{

Mk,`

}Nh

k,`=1
, Mk,` = mk,`Im×m , mk,` =

∫
Ω
νkν`dΩ (102a)

Ks (Uh
s ) = {

(Ks )k
}Nh

k=1, (Ks )k =−
∫
Ω

F(Uh
s ) ·∇νk dΩ (102b)

Bs (Uh
s ) = {

(Bs )k
}Nh

k=1 (Bs )k =
∫
∂Ω
νk F(Uh

s ) ·nd s (102c)

Ss (Uh
s ) = {

(Ss )k
}Nh

k=1 (Ss )k =−
∫
Ω
νk Ss (Uh

s )dΩ (102d)

and m is the number of conserved variables in Us .

The semidiscrete formulation (101) may produce solutions with spurious oscillations, particularly when steep gra-
dients or discontinuities are present. Stabilization must therefore be applied in order to produce solutions without
these features. Here we use an algebraic flux correction scheme that introduces artificial dissipation into the sys-
tem to smooth out these oscillatory characteristics.

5.2. AFC stabilization

The AFC stabilization scheme for each fluid system uses the algebraic flux correction (AFC) method of [47, 48, 58,
59] with the iterative limiting strategy used in [58, 59]. This scheme requires three modifications to the semidiscrete
formulation (101):
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(i) Lumping the mass matrix applied to the time derivative term,

(ii) Adding a low-order artificial dissipation operator applied to each of the conserved variables, and

(iii) Adding an anti-diffusive correction to remove the lower-order artificial dissipation in regions where the so-
lution is sufficiently smooth.

With these modifications, (101) becomes

ML∂tUh
s +Ks (Uh

s )+Bs (Uh
s )+Ss (Uh

s )+Ds ·Uh
s −Aα(Uh

s ) = 0. (103)

The global lumped mass matrix is given by summing over all elements ML =∑
e M(e)

L , where

M(e)
L =

{
M(e)

k

}Nh

k=1
, M(e)

k = m(e)
k Im×m , m(e)

k =∑
`

m(e)
k,`, m(e)

k,` =
∫

Ke

νkν`dΩ. (104)

The diffusion operators are composed of element-wise contributions Ds =
∑

e D(e)
s where each component is con-

structed using Rusanov diffusion:

D(e)
s = {[

D(e)
s

]
k,`

}Nh
k,`=1,

[
D(e)

s

]
k,` = [d (e)

s ]k,`INs×Ns
(105)

and Ns is the number of equations in the Euler subsystem (five for three-dimensional problems). The form of
[d (e)

s ]k,` depends on the approach taken. Initial development utilized discrete diffusion operators computed sep-
arately for each species. In this case the values of [d (e)

s ]k,` for species s are given by

[d (e)
s ]k,` = max

{
‖c(e)

k,`‖λmax

(
n(e)

k,` ·Js (Us,`)
)

, ‖c(e)
`,k‖λmax

(
n(e)
`,k ·Js (Us,k )

)}
, k 6= `, (106a)

[d (e)
s ]k,k =− ∑

k 6=`
[d (e)

s ]k,`, (106b)

where

Js =
∂Fs

∂Us
(107)

is the physical flux Jacobian, λmax(·) denotes the maximum eigenvalue magnitude, and c(e)
k,` is the element convec-

tion operator given by

c(e)
k,` =

∫
Ke

ν`∇νk dΩ, n(e)
k,` =

c(e)
k,`

‖c(e)
k,`‖

. (108)

The eigenvalues of the flux Jacobian may be bounded by [78]

λmax

(
n(e)

k,` ·Js
(
Us,`

))≤ ‖n(e)
k,` ·us,`‖+ (cs )s,`, (109)

where us,` and (cs )s,` denote the fluid velocity and sound speed for species s, respectively, at the node `.

Unfortunately, the above strategy for generating the diffusion operators was found to produce unsatisfactory re-
sults, even when only the low-order method was considered. The issue is that the diffusion operators are computed
separately for each species. When physical particle masses are used, the electron sound speed will tend to be more
than an order of magnitude larger than that of the atomic species, resulting in significantly more diffusion being
added to the electron species. This can cause the electrons to diffuse past the ions, even if no fluid convective
motion is present, artificially producing charge separation between the species, and ultimately resulting in non-
physical behavior and the development of severe instabilities.

As an alternative, the same diffusion operator is used for all species. This is done by setting [d (e)
s ]k,` = d (e)

k,` for all
species s, where

d (e)
k,` = max

{
‖c(e)

k,`‖max
s
λmax

(
n(e)

k,` ·Js (Us,`)
)

, ‖c(e)
`,k‖max

s
λmax

(
n(e)
`,k ·Js (Us,k )

)}
(110)
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for k 6= `. This constructs a diffusion operator based on the maximum characteristic speed across all fluid species.
While this strategy is ultimately more diffusive, it has been found to be significantly more robust.

The anti-diffusive term Aα(Uh
s ) is constructed in terms of element-wise contributions:

Aα(Uh
s ) =∑

e
α(e)A(e)(Uh

s ) (111)

where
A(e)(Uh

s ) =
(
M(e)

L −M(e)
C

)
∂tUh

s +D(e) ·Uh
s (112)

and α(e) is the element limiter. One may alternatively neglect the mass matrix terms in (112), which results in a
scheme where the mass matrix is always fully lumped.

The element limiter is designed to detect when the solution is smooth and the anti-diffusive term should be used
to remove the artificial dissipation from the system. It should be noted that we assume that the limiter α(e) is
computed synchronously across all fluid species in the system as follows (hence the lack of species index s). Let
u :Ω→R be a scalar function with a finite element approximation uh =∑

k uh
kνk , and let ū(e) be the average of uh

on the mesh cell Ke ; that is,

ū(e) = 1

|Ke |
∫

Ke

uh dΩ, |Ke | =
∫

Ke

dΩ. (113)

The nodal limiterΦk :R→ [0,1] is defined by [59]

Φk (uh) = 1−


∣∣∣∑e
∫

Ke
νk

(
uh − ū(e)

)
dΩ

∣∣∣∑
e

∣∣∣∫Ke
νk

(
uh − ū(e)

)
dΩ

∣∣∣+εh

q

, (114)

where ε is a small number that is used to prevent division by zero without distinguishing between the cases of
vanishing and nonvanishing denominators. The parameter q ≥ 1 acts as a steepener: increasing this value reduces
the amount of numerical dissipation that is included when away from local extrema. In cases where all limited
quantities uh have magnitudes on the order of 1, a constant value for ε in the vicinity of the machine epsilon
generally works well (eg., ε= 10−14). However, problems defined in physical units often produce quantities that
have magnitudes significantly smaller or larger than 1: For example, the electron mass density ρe given in units
of kg/m3 is typically much less than 1. In these cases, we use a scaled value ε= ε0ūh where ε0 is on the order of
machine epsilon (eg., ε0 = 10−14) and

ūh = 1

|Ω|
∫
Ω

uh dΩ (115)

is the average value of uh across the problem domainΩ.

Given a set of quantities uh for which the nodal limiters are calculated, the element limiters α(e) are computed
from the nodal limiters as

α(e) = min
u

min
k∈Nh (Ke )

Φk (uh), (116)

where Nh(Ke ) = {k : xk ∈ Ke } is the set of nodes adjacent to the element Ke . For the leftmost minimum in (116), u
ranges over a set of limited quantities which may depend on the problem. For example, to compute limiters based
on the mass density and pressure of every species s in the system, u ranges over the union⋃

s
{ρs , ps }. (117)

The limiter (114) differs from the one used previously in [59] only in that the εh term is not included in the numer-
ator, which changes the behavior of the limiter when the quantity uh is constant. Using (114) for constant uh yields
Φk (uh) = 1, resulting in the high-order method being used. If the εh term is included in the numerator, then for
constant uh the limiter yields the value zero, and the low-order method is used. If all of the conserved quantities
are also constant, then both cases yield the same behavior. However, suppose that a system contains two species i
and e, and that ρi is constant, ρe is not, and α(e) is computed as a function of u ∈ {ρi ,ρe }. Then the limiter used in
[59] would cause the low-order scheme to be used regardless of the behavior of ρe , whereas the limiter (114) would
only cause the low-order scheme to be used if it was required to stabilize ρe . This therefore prevents the low-order
scheme from being used in cases where it is not needed and would adversely affect the solution.
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6. ELECTROMAGNETICS

We consider several cases: an electrostatic model, a parabolic divergence cleaning method and an implicit projec-
tion method for the traditional curl formulation of Maxwell’s equations, a purely-hyperbolic potential-based for-
mulation of Maxwell’s equations, and a mixed hyperbolic-elliptic potential-based formulation of Maxwell’s equa-
tions.

6.1. Electrostatic model

We consider a standard electrostatic model in which the electric field E is described by a scalar potential φ satisfy-
ing

ε0∇2φ+q = 0, (118)

with E =−∇φ. By construction, the electrostatic model satisfies the electric field divergence constraint (Gauss’s
Law) (121a) to numerical precision.

6.1.1. Finite element discretization

Given a convex domain Ω⊂R3 with boundary ∂Ω, the finite element discretization of (118) is based on the weak
form

−ε0

∫
Ω
∇φ ·∇νdΩ+

∫
Ω

qνdΩ= 0. (119)

In general, we do not include the boundary flux term in the weak form, thereby weakly enforcing the condition
E ·n = 0 along the boundary of the domain.

6.2. Curl form of Maxwell’s equations

In first-order form, Maxwell’s equations may be written as

∂t E− c2∇×B+ 1

ε0
J = 0, (120a)

∂t B+∇×E = 0, (120b)

where the electric field E and magnetic field B are required to satisfy their respective Gauss’s Laws:

∇·E = q

ε0
, (121a)

∇·B = 0. (121b)

6.2.1. Finite element discretization

Given a convex domainΩ⊂R3 with boundary ∂Ω, the finite element discretization of (120) overΩ is based on the
weak form ∫

Ω
ν∂t EdΩ− c2

∫
Ω

B×∇νdΩ+
∫
∂Ω
νFE ·nd s + 1

ε0

∫
Ω
νJdΩ= 0, (122a)∫

Ω
ν∂t BdΩ+

∫
Ω

E×∇νdΩ+
∫
∂Ω
νFB ·nd s = 0, (122b)

where the fluxes FE and FB along the boundary are given by

FE
def=

 0 −c2Bz c2By

c2Bz 0 −c2Bx

−c2By c2Bx 0

 and FB
def=

 0 Ez −Ey

−Ez 0 Ex

Ey −Ex 0

 . (123)
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6.2.2. Eliminated parabolic divergence cleaning

Accumulation of numerical errors can cause the electromagnetic fields computed through (120) to deviate from
the divergence constraints (121). The eliminated parabolic cleaning method introduces penalty terms into each
equation of (120), producing the following set of equations:

∂t E− c2∇×B+ 1

ε0
J−∇·

[
c2

p

(
∇·E− q

ε0

)
I
]
= 0, (124a)

∂t B+∇×E−∇·
[

c2
p (∇·B)I

]
= 0, (124b)

where I is the 3×3 identity matrix and cp ∈R is a given penalty parameter. The finite element discretization of
(124) is based on the weak form∫

Ω
ν∂t EdΩ− c2

∫
Ω

B×∇νdΩ+
∫
∂Ω
νFE ·nd s + c2

p

∫
Ω

(
∇·E− q

ε0

)
∇v dΩ+ 1

ε0

∫
Ω
νJdΩ= 0, (125a)∫

Ω
ν∂t BdΩ+

∫
Ω

E×∇νdΩ+
∫
∂Ω
νFB ·nd s + c2

p

∫
Ω

(∇·B)∇v dΩ= 0. (125b)

One of the primary difficulties with the use of this form of divergence cleaning is the selection of a suitable value
for cp . In general, this value must be chosen large enough to sufficiently penalize any deviation from the diver-
gence constraints, but our experience also suggests that values that are too large can either degrade the numerical
conditioning of the resulting finite element system significantly, or produce erroneous solutions. We have gen-
erally found that most problems tend to be rather insensitive to the value chosen for cp when relatively coarse
meshes are used. In these these situations, the value cp =p

0.18c recommended in [30] typically works sufficiently
well. However, solutions on much finer meshes tend to be much more sensitive to the value chosen for cp , and
the value cp =p

0.18c is often too large. Motivated by the simple dimensional analysis in [27, 66], we have found

that cp =p
hc (where h denotes the size of the mesh) is a much more effective choice for the problems we have

considered.

6.2.3. Implicit projection

In some cases, the divergence error in the electric field grows faster than the eliminated parabolic cleaning can
address, regardless of the value chosen for cp . In order to sufficiently constrain the evolution of the electromagnetic
fields in these situations, we propose the following implicit projection scheme. It should be noted that this method
is currently in the initial stages of development, and some unresolved issues (eg., solvability and enforcement of
boundary conditions) are still being examined.

Over each timestep, the fields E and B are evolved as in (120). A pair of corrected fields

Ê
def= E+∇φE and B̂

def= B+∇φB (126)

are evolved alongside the original fields, where the potentials φE and φB satisfy the equations

ε0∇2φE +ε0∇·E−q = 0, (127a)

∇2φB +∇·B = 0. (127b)

Using the definitions (126) in the divergence constraints (121) and applying the relations (127), it is clear that the
corrected fields Ê and B̂ satisfy the divergence constraints exactly.

The finite element discretization of (127) is based on the weak form

−ε0

∫
Ω

(
E+∇φE

) ·∇νdΩ+ε0

∫
∂Ω
νE ·nd s −

∫
Ω
νq dΩ= 0, (128a)

−
∫
Ω

(
B+∇φB

) ·∇νdΩ+
∫
∂Ω
νB ·nd s = 0. (128b)
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Two observations should be made concerning the form of (128). First, by excluding the gradients of the potentials
from the boundary fluxes, the conditions

∇φE ·n = 0 and ∇φB ·n = 0 (129)

are enforced weakly along the boundary. This is generally required in order to obtain good solutions. Second, the
potentials φE and φB are defined only up to an additive constant. In order to remove the null space from the linear
system that is obtained in the finite element discretization of (128), the values of the potentials may be fixed at
a single point chosen in the interior of the computational domain. It is important to emphasize that this point
should be chosen on the interior of the domain (not on the boundary), in order for the conditions (129) to be
enforced along the boundary of the computational domain. If, for example, one chooses to remove this null space
by utilizing a Dirichlet condition along some segment of the boundary (as is commonly done for the computation
of electrostatic potentials) the corrected fields Ê and B̂ that are produced will tend to be incorrect, and severe
instabilities may result.

To ensure that the fluids are evolved consistently with the divergence constraints (121), the corrected fields Ê and
B̂ are used to evaluate the Lorentz force terms in the fluid equations: ie.,

∂t
(
ρs us

)+∇· (ρs us ⊗us +ps I+Πs

)= qs ns
(
Ê+us × B̂

)+·· · (130a)

∂tEs +∇· [(Es +ps
)

us +us ·Πs +hs
]= qs ns us · Ê+·· · (130b)

Finally, at the end of each timestep, the original field E is overwritten by the corrected field Ê before beginning the
next timestep.

Our results have shown that this approach is able to reduce the divergence errors in the electromagnetic fields to
machine precision. However, one significant disadvantage of this method is that the prescription of appropriate
electromagnetic boundary conditions is much more complicated, and it is not always clear what the appropriate
conditions are for a given situation. Periodic boundary conditions have proven to be particularly troublesome for
this formulation. Our current hypothesis is that these non-physical potentials are unable to correctly represent
this divergence error in the presence of periodic boundary conditions. This is consistent with the fact that the
field generated by a periodic potential must have mean zero. If the vector field representing the divergence er-
ror has nonzero mean, then a periodic potential will be unable to represent (and correct for) this error. Possible
approaches for resolving this issue include (i) not enforcing periodic conditions on φE and φB when periodic con-
ditions are used for the physical variables, and (ii) adding an additional set of unknowns to represent the mean
value of the divergence error, so that (126) becomes

Ê
def= E+∇φE +ΦE and B̂

def= B+∇φB +ΦB, (131)

where ΦE and ΦB are functions of time only. Unfortunately, at this point we have not been able to test any of the
suggested approaches for applying this method to problems with periodic boundary conditions.

6.3. Potential form of Maxwell’s equations

The evolution of the electric field E and magnetic field B may alternatively be described by an electric potential φ
and a magnetic vector potential A, such that

E =−∇φ−∂t A, (132a)

B =∇×A. (132b)

Under the Lorenz gauge
∂tφ+ c2∇·A = 0, (133)

the potentials satisfy the system of wave equations

∂2
tφ− c2∇2φ= c2

ε0
q, (134a)

∂2
t A− c2∇2A = 1

ε0
J. (134b)
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Introducing a set of auxiliary variables

C
def= 1

c
∂t A and ψ

def= 1

c
∂tφ, (135)

the system (134) can be written in the following first-order form:

∂tψ− c∇2φ= c

ε0
q, (136a)

∂tφ− cψ= 0, (136b)

∂t C− c∇2A = 1

cε0
J, (136c)

∂t A− cC = 0, (136d)

so that (132) becomes

E =−∇φ− cC, (137a)

B =∇×A. (137b)

6.3.1. Finite element discretization

Given a convex domain Ω⊂R3 with boundary ∂Ω, the finite element discretization of (136) is based on the weak
form ∫

Ω
ν∂tψdΩ+ c

∫
Ω
∇φ ·∇νdΩ+

∫
∂Ω
νFφ ·nd s − c

ε0

∫
Ω
νq dΩ= 0, (138a)∫

Ω
ν∂tφdΩ− c

∫
Ω
νψdΩ= 0, (138b)∫

Ω
ν∂t CdΩ+ c

∫
Ω
∇A ·∇νdΩ+

∫
∂Ω
νFA ·nd s − 1

cε0

∫
Ω
νJdΩ= 0, (138c)∫

Ω
ν∂t AdΩ− c

∫
Ω
νCdΩ= 0. (138d)

The fluxes Fφ and FA may be chosen to enforce a range of boundary conditions. The natural fluxes, given by

Fφ =−c∇φ, (139a)

FA =−c∇A, (139b)

are typically used in combination with a set of constraints to be enforced.

To enforce the condition E ·n = 0, (137a) implies that replacing the natural flux (139a) with

Fφ = c2C (140)

is sufficient.

The radiation conditions [80, 84]

∂tφ+ c∇φ ·n = 0, (141a)

∂t A+ c∇A ·n = 0, (141b)

may be used to permit waves traveling in a direction exactly normal to the boundary to exit the computational do-
main without reflections, where n is the unit outward normal along the boundary. To enable outflow in numerical
simulations, we utilize the fluxes

Fφ = cψn, (142a)

FA = cC⊗n. (142b)

It should be noted that a well-known difficulty associated with radiation conditions of this form is that components
of waves that do not propagate in a direction that is exactly perpendicular to the boundary will be reflected in
numerical simulations. In general, we therefore restrict the use of these outflow conditions to one-dimensional
geometries.
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6.3.2. An elliptic equation for the scalar potential

One of the advantages offered by the potential formulation (134) is control over the divergence error of B. In gen-
eral, the divergence error in B is bounded by the discretization error of the discrete curl operator that is used to
evaluate (132b). More importantly, this divergence error is not cumulative, since the time evolution of the poten-
tials is not dependent on the value of B. However, satisfaction of the divergence constraint (121a) on E relies on the
extent to which the computed potentials satisfy the gauge condition (133). Substituting (132a) followed by (134a)
into the expression ∇·E shows this explicitly:

∇·E =−∇2φ−∂t∇·A = q

ε0
− 1

c2 ∂t

(
∂tφ+ c2∇·A

)
. (143)

In most cases, we have found that this error is well controlled without having to apply any additional gauge clean-
ing procedures, which agrees with the observations of [36].

However, there are occasions where the numerical implementation fails to adequately satisfy the gauge condition,
and the solution becomes unstable. In these situations, we can replace (134a) with an equivalent elliptic equation
that necessarily ensures that the divergence constraint (121a) on E is satisfied to numerical precision [99]. Using
the gauge condition (133) to substitute for ∂tφ in (134a) yields

−∇· (∇φ+∂t A
)− q

ε0
= 0. (144)

The equation (144) is used in combination with (134b) to produce the full electromagnetics model. Using the defi-
nition (132a) for E in (144) implies that the divergence constraint (121a) is directly enforced to numerical precision
by this formulation.

The finite element discretization of (144) is based on the weak form∫
Ω
∇ν · (∇φ+ cC

)
dΩ+

∫
∂Ω
νFφ ·nd s − 1

ε0

∫
Ω
νq dΩ= 0, (145)

where we have used the auxiliary vector potential defined in (135). In this case, the natural flux for Fφ is given by

Fφ =−∇φ− cC = E. (146)

Enforcement of the condition E ·n = 0 can be achieved by simply setting

Fφ = 0. (147)

Substituting for ∂tφ in (141a) using the gauge condition (133) yields the equivalent relation

−c∇·A+∇φ ·n = 0. (148)

Thus the flux

Fφ =−c (∇·A)n+ cC (149)

is used to enable outflow in one-dimensional simulations.

When used in combination with the first order equations (138c) and (138d) for the vector potential, this model
yields a system consisting of only seven equations, whereas the previous potential formulation in purely hyperbolic
form requires eight. More importantly, we have observed no stability issues with this formulation in any of the
verification problems we have considered.

7. IMPLEMENTATION VERIFICATION

7.1. Spatially homogeneous plasma oscillations

A collection of tests are considered here with the aim of verifying that the various source terms required for the
general multifluid model described in section 2 are correctly implemented. For the tests in this subsection it is
assumed that:
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(i) all quantities lack spatial gradients; and

(ii) all external source terms (S [0]
s , S [1]

s , S [2]
s ) are zero.

In this case, the fluid equations (5) reduce to

∂tρs = C[0]
s , (150a)

∂t
(
ρs us

)= qs

ms
ρs (E+us ×B)+C[1]

s , (150b)

∂tEs = qs

ms
ρs us ·E+C[2]

s . (150c)

7.1.1. Collisional relaxation

First, we consider the transfer of momentum and energy between a collection of two or more species through elas-
tic collisions. Including only interactions due to elastic scattering collisions, the momentum and energy sources
for each species, using (43) and (59), are given by

C[1]
s = ∑

t 6=s
αs;tρsρt (ut −us ) , (151a)

C[2]
s = ∑

t 6=s

[
αs;tρsρt us · (ut −us )+ αs;tρsρt

ms +mt

[
3kB (Tt −Ts )+mt (ut −us )2]] . (151b)

An equation of state for an ideal monatomic gas is assumed for each species, so that the internal energy densities
satisfy

ρs es = 1

γ−1
ns kBTs , (152)

with γ= 5/3. The electric field E and magnetic field B are both assumed to be zero (ie., external fields are assumed
to be absent and the contributions from any fields induced by the motion of charged particles are neglected).

In these tests, the species simply relax to common velocity and temperature values u∗ and T∗ as t →∞. By con-
servation of momentum, it must hold that ∑

s
ρs us = u∗

∑
s
ρs (153a)

for all times, which implies that

u∗ =
∑

s ρs us∑
s ρs

. (153b)

Similarly, conservation of energy requires that

∑
s
Es =

∑
s

(
1

2
ρs u2

s +
1

γ−1
ns kBTs

)
= 1

2
u2
∗
∑

s
ρs + 1

γ−1
kBT∗

∑
s

ns , (153c)

for all times, which implies that

T∗ =
∑

s Es − 1
2 u2∗

∑
s ρs

1
γ−1 kB

∑
s ns

. (153d)

We consider two settings: a two-fluid configuration and a three-fluid configuration. The initial conditions for both
tests are shown in table 7.1. Only ions and electrons are included in the two-fluid case. Solutions computed using
the Drekar code were compared to: (i) the time evolution of an explicit ODE solver applied to a reduced system for
the velocities and temperatures of the species, and (ii) the analytic equilibrium values given by (153). Deviations
of all values from the equilibrium quantities are computed in a relative sense; eg.,∣∣∣∣Ts −T∗

T∗

∣∣∣∣ . (154)
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Neutral (n) Ion (i) Electron (e)

ms 3.0E-27 2.0E-27 1.0E-27
Ts 1.0E+3 1.0E+4 2.0E+4

us

0.0
0.0
0.0

 1.0E+4
0.0
0.0

 −1.4E+4
0.0
0.0


ns 4.0E+16 2.0E+16 2.0E+16

Neutral (n) Ion (i) Electron (e)

ρs 1.2E-10 4.0E-11 2.0E-11

ρs us

0.0
0.0
0.0

 4.0E−7
0.0
0.0

 −2.8E−7
0.0
0.0


ρs es 8.2860E-4 4.1430E-3 8.2860E-3
Es 8.2860E-4 6.1430E-3 1.0246E-2

TABLE 7.1. Initial conditions for verification problems for implementation of elastic collision sources.

If the friction coefficientsαs;t are assumed to be constant, analytic solutions may be derived for the two-fluid case.
The velocity difference between species is given by

ue (t )−ui (t ) = (
ue (t0)−ui (t0)

)
exp

(−Ae;i t
)

, (155a)

where

Ae;i =αe;i
(
ρe +ρi

)
, (155b)

and the temperature difference between species is given by

Te (t )−Ti (t ) = (
Te (t0)−Ti (t0)

)
exp

(−Be;i t
)+ Ce;i

Be;i −2Ae;i

[
exp

(−2Ae;i t
)−exp

(−Be;i t
)]

, (155c)

where

Be;i = 3
(
γ−1

)
αe;i

me mi

me +mi
(ne +ni ) , (155d)

Ce;i = γ−1

kB
αe;i

(
ρi −ρe

) me mi

me +mi

(
ue (t0)−ui (t0)

)2. (155e)

The time evolution of numerically computed velocity and temperature values from Drekar and an explicit ODE
solver are compared in fig. 7.2. Further, each solver is compared to the analytic solutions (155) for the two-fluid
case. We observe that: (i) the numerical implementations are in very good agreement, (ii) each numerical im-
plementation relaxes toward the appropriate equilibrium values, and (iii) both numerical implementations yield
small errors relative to the analytic solutions for the two-fluid case. The results of convergence studies using var-
ious implicit time-integration schemes made available through the Tempus library are shown in fig. 7.1 at time
t = 4.0E-8. The expected convergence orders are observed for all schemes considered.
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FIGURE 7.1. Convergence of velocity and temperature values for two-fluid collisional relaxation problems using a
variety of implicit time integration schemes from the Tempus library. Error values are computed in a relative norm
using the analytic values (155) at the final time t = 4.0E-8.
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(A) Two-fluid velocity and temperature relaxation with αe;i = 1.0E+18.
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(B) Three-fluid velocity and temperature relaxation with αe;i = 1.0E+18 and αn;e =αn;i = 2.0E+17.
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(C) Three-fluid velocity and temperature relaxation with friction coefficients computed using (45) and (48).

FIGURE 7.2. Velocity and temperature values for two- and three-fluid collisional relaxation problems. The rows
of each subfigure show: (i) the computed velocity and temperature values (“Values”), (ii) the relative error in the
computed velocity and temperature difference between species compared to the analytic solutions (155) (“Error”),
and (iii) the deviation (in a relative sense) of the computed velocity and temperature values from the equilibrium
values (153) (“Equilibrium”).
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7.1.2. Damped plasma oscillation

We now consider configurations where the effects of electric fields induced by the motion of charged particles are
included, but contributions due to magnetic fields and external electric fields are omitted. Here the evolution of
the electric field E is described by

ε0∂t E+ J = 0, (156)

where ε0 is the permittivity of free space and the total current density J is given by

J
def= ∑

s

qs

ms
ρs us . (157)

We consider three scenarios:

(i) A collisionless two-fluid system containing an ion and an electron species interacting only through the elec-
tric field coupling. The result is a perfect harmonic oscillator.

(ii) A collisional two-fluid system containing an ion and an electron species with constant friction coefficients
with the value αe;i = 1.0E+18. The result is a damped oscillation.

(iii) A collisional three-fluid system containing an ion, an electron, and a neutral species with constant friction
coefficients αe;i = 1.0E+18 and αn;e =αn;i = 2.0E+17. The result is again a damped oscillation.

If the friction coefficients αs;t are assumed to be constant, analytic solutions may be derived for the two-fluid
case with the additional assumption of charge-neutrality; ie., we assume that ni = ne in this case. For the velocity
difference between the two charged species, the analytic solution is given by

ue (t )−ui (t ) = (
ue (t0)−ui (t0)

)
exp

(
−νe;i t

2

)
cos

(
ηe;i t −φe;i

)
cosφe;i

, (158a)

where

νe;i =αe;i
(
ρe +ρi

)
, ω2

e;i =
q2

e

ε0
ni

(
1

me
+ 1

mi

)
, (158b)

η2
e;i =ω2

e;i −
ν2

e;i

4
, φe;i = tan−1

(
− νe;i

2ηe;i

)
. (158c)

The electric field E, which is initially zero, is given by

E (t ) =−(
ue (t0)−ui (t0)

) qe ni

ε0

exp
(−νe;i t/2

)
ω2

e;i cosφe;i

[
ηe;i sin

(
ηe;i t −φe;i

)− νe;i

2
cos

(
ηe;i t −φe;i

)
+exp

(
νe;i t/2

)(νe;i

2
cosφe;i +ηe;i sinφe;i

)]
.

(158d)

The temperature difference between the charge species is given by

Te (t )−Ti (t ) = exp
(−Ae;i t

)
Ce;i +

De;i exp
(−νe;i t

)
cos2φe;i

[
4η2

e;i +2G2
e;i cos2 (

ηe;i t −φe;i
)

+4ηe;i Ge;i sin
(
ηe;i t −φe;i

)
cos

(
ηe;i t −φe;i

)] (158e)

where

Ae;i = 2αe;i
me mi

me +mi
(ne +ni ) , (158f)

Be;i = γ−1

kB
αe;i

(
ρi −ρe

) me mi

me +mi

(
ue (t0)−ui (t0)

)2, (158g)

Ce;i =
(
Te (t0)−Ti (t0)

)−De;i

[
4η2

e;i

cos2φe;i
+2Ge;i

(
Ge;i −2ηe;i tanφe;i

)]
, (158h)

De;i =
Be;i

2Ge;i

(
4η2

e;i +G2
e;i

) , (158i)

Ge;i = Ae;i −νe;i . (158j)
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(A) Two-fluid collisionless oscillation.
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(B) Two-fluid damped oscillation with αe;i = 1.0E+18.
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(C) Three-fluid damped oscillation with αe;i = 1.0E+18 and αn;e =αn;i = 2.0E+17.

FIGURE 7.3. Velocity, temperature, and electric field values for two- and three-fluid collisional and collisionless
plasma oscillations using the curl form of Maxwell’s equations. The rows of each subfigure show: (i) the computed
velocity, temperature, and electric field values (“Values”), (ii) the relative error in the computed velocity difference,
temperature difference, and generated electric field values compared to the analytic solutions (158) (“Error”), and
(iii) the deviation (in a relative sense) of the computed velocity and temperature values from the equilibrium values
(153) (“Equilibrium”).
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(A) Two-fluid collisionless oscillation.
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(B) Two-fluid damped oscillation with αe;i = 1.0E+18.
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(C) Three-fluid damped oscillation with αe;i = 1.0E+18 and αn;e =αn;i = 2.0E+17.

FIGURE 7.4. Velocity, temperature, and electric field values for two- and three-fluid collisional and collisionless
plasma oscillations using the potential form of Maxwell’s equations. The rows of each subfigure show: (i) the
computed velocity, temperature, and electric field values (“Values”), (ii) the relative error in the computed velocity
difference, temperature difference, and generated electric field values compared to the analytic solutions (158)
(“Error”), and (iii) the deviation (in a relative sense) of the computed velocity and temperature values from the
equilibrium values (153) (“Equilibrium”).
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(A) Curl form of Maxwell’s equations, A-stable integrator.
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(B) Potential form of Maxwell’s equations, A-stable integrator.

FIGURE 7.5. Same as figs. 7.3 and 7.4 with friction coefficients computed by (45) and (48). Timesteps for the ODE
solver are adaptively chosen to be small enough to resolve the oscillation frequency, while the Drekar code lever-
ages an A-stable implicit DIRK scheme with a timestep size of 2E−6 to step over the timescale of the plasma oscil-
lation.

The time evolution of numerically computed velocity and temperature values from Drekar and an explicit ODE
solver (written in python) are compared in figs. 7.3 and 7.4, using the curl form and potential form of Maxwell’s
equations, respectively. Further, each solver is compared to the analytic solutions (158) for the two-fluid cases. We
again observe that: (i) the numerical implementations are in very good agreement, (ii) each numerical implemen-
tation relaxes toward the appropriate equilibrium values, and (iii) both numerical implementations yield small
errors relative to the analytic two-fluid solutions.

Additional results are shown in figs. 7.5 and 7.6 for the three-fluid case with friction coefficients computed using
(45) and (48). In this case, the timescale of the collisional relaxation process is significantly longer than that of
the plasma oscillation of the charged species. In order to numerically integrate the solution at a time scale that is
larger than that required to resolve the oscillation, an implicit time integration scheme with appropriate stability
properties may be used. Here we consider diagonally implicit Runge-Kutta (DIRK) schemes. In general, the con-
struction of DIRK schemes involves a tradeoff between order of accuracy and stability properties. For a two-stage
DIRK method, the typical choice of methods is either a second-order L-stable scheme, or a third-order A-stable
scheme [43]. In figs. 7.5 and 7.6, the impact of L-stability over A-stability is clear: the L-stable method integrates
over the fast plasma oscillation with essentially no oscillatory features, whereas the A-stable method is able to in-
tegrate over the fast plasma oscillation, but produces some amount of unresolved oscillatory behavior. The two
methods nevertheless produce similar behavior in the longer-time limit, but the L-stable scheme is better able to
damp the effects of the unresolved physics.
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(A) Curl form of Maxwell’s equations, L-stable integrator.
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(B) Potential form of Maxwell’s equations, L-stable integrator.

FIGURE 7.6. Same as figs. 7.3 and 7.4 with friction coefficients computed by (45) and (48). Timesteps for the ODE
solver are adaptively chosen to be small enough to resolve the oscillation frequency, while the Drekar code lever-
ages an L-stable implicit DIRK scheme with a timestep size of 2E−6 to step over the timescale of the plasma oscil-
lation.

The results of convergence studies for the two-fluid oscillations (for which analytic solutions are available) using
various implicit time-integration schemes made available through the Tempus library are shown in fig. 7.7 at time
t = 4E−8.

7.2. Ionization and recombination

We now turn our attention to the implementation of the ionization and recombination rates. To ensure that the
implemented rate values are correct, we compare the average charge state values generated by: (i) directly com-
puting equilibrium ionization fractions (using the QSS-CIE approach described in section 3.2), and (ii) integrating
the time-dependent fluid system in Drekar to reach an equilibrium state. Here only the ionization and recombi-
nation source terms are included in (150). Further, we do not evolve the total energy variables for each fluid in this
case, but simply assume that all fluids have a common constant temperature value. Each test contains an electron
species and all charge states of one atomic species, with a total ion number density of 1024 m−3. The ionization
fractions for each charge state are initially equal. In order to ensure that the reactions progress reasonably quickly
even in the low-temperature limit (where the average charge state would be near zero) we do not assume quasi-
neutrality: instead, we increase the initial electron number density by 1024 m−3 beyond the quasi-neutral density
value. That is, the initial electron number density is given by 1024(1+Z 0), where Z 0 is the initial average ion charge
state.

The temperature of all species is set to the same constant value, and each system is integrated to a final time of
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(C) Collisionless; Maxwell potential form; Implicit methods (Tempus).
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FIGURE 7.7. Convergence tests for collisionless and collisional two-fluid oscillation problems.
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FIGURE 7.8. Comparison of equilibrium ionization fractions (top) computed directly (solid lines) or through time-
evolution using the Drekar code (dashed lines). The various sources of ionization and recombination rates used
for each case are summarized in table 2.1. Each plot shows the final average charge state (top), the absolute dif-
ference between the expected equilibrium values and the time-evolved values from Drekar (middle), and relative
errors in the conservation of total mass and momentum in the system across all species (bottom). Note that the
difference between the reference (solid lines) and Drekar results (dashed lines) is small enough that the two cases
are indistinguishable in the top section of each subfigure.
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Ion Fluid Electron Fluid
δ ωpi ωpe ωci ωce Sod Brio-Wu Sod Brio-Wu

1.00E+0 6.28E−2 1.99E−3 5.02E+0 5.02E−3 2.84E−5 1.85E−5 1.68E−6 1.63E−6
1.00E−1 6.28E−3 1.99E−4 5.02E−1 5.02E−4 2.84E−5 1.85E−5 1.68E−6 1.63E−6
1.00E−2 6.28E−4 1.99E−5 5.02E−2 5.02E−5 2.84E−5 1.85E−5 1.68E−6 1.63E−6
1.00E−3 6.28E−5 1.99E−6 5.02E−3 5.02E−6 2.84E−5 1.85E−5 1.68E−6 1.63E−6
1.00E−4 6.28E−6 1.99E−7 5.02E−4 5.02E−7 2.84E−5 1.85E−5 1.68E−6 1.63E−6

FIGURE 7.9. Characteristic timescales associated with the hydrodynamics, plasma frequencies, and cyclotron fre-
quencies of the electron and ion species for the two-fluid Sod and Brio-Wu problems with ε= 10−3 and τ= 10−2.
Fluid timescales are computed for the case of 20,000 mesh cells using representative values from the two-fluid ini-
tial conditions and the maximum velocities observed in highly-refined single-fluid simulations of each problem.

t = 10−4 using the implicit Euler method. This final time is specifically chosen to be large enough that each con-
figuration should reach a state that is close to the equilibrium ionization distribution by the end of the simulation.
The results of the tests for a selection of species of interest over a broad range of temperatures are shown in fig. 7.8.
The agreement between the expected equilibrium values and the time-evolved values is very good in each case.

7.3. Two-fluid Sod problem

We consider a two-fluid version of the single-fluid Sod problem [83]. The problem is defined over the spatial
domain x ∈ [0,1] and time interval t ∈ [0,0.1]. In the single-fluid case, the velocity is initially zero everywhere, and
the initial density and pressure values are given by

ρ =
{

1.0, x < 0.5,

0.125, x > 0.5,
p =

{
1.0, x < 0.5,

0.1, x > 0.5.
(159)

We employ a non-dimensional scaling of the two-fluid system similar to that used by [9] based on three scaling pa-
rameters: ε, τ, and δ. These parameters determine the values of the ion/electron mass ratio, vacuum permittivity,
and unit charge magnitude in the nondimensional setting:

me = ε

1+ε , mi = 1

1+ε , ε0 = τ2, e = |qe | = 1

δ
. (160)

It is useful to note the asymptotic behavior of various plasma parameters relative to these scaling parameters for
fixed density, temperature, magnetic field strength, etc. In the non-dimensional setting, the electron plasma fre-
quency scales as ωpe ∼ (τδ

p
ε)−1, the electron and ion cyclotron frequencies scale as ωce ∼ (δ

p
ε)−1 and ωci ∼ δ−1,

respectively, and the Debye length scales as λD ∼ τδ. It can be observed from these values that the quasineutral
ideal MHD limit is recovered as ε,τ,δ→ 0. Timescales associated with a range of specific cases considered for the
two-fluid Sod (here) and Brio-Wu (section 7.4) problems are shown in fig. 7.9. All timescales are computed for the
case of ε= 10−3, τ= 10−2, and 20,000 mesh cells using representative values from the two-fluid initial conditions
and the maximum velocities observed in highly-refined single-fluid simulations of each problem.

The decomposition of the initial conditions for the two-fluid case is done using a mass weighting for the initial
densities of the species

ρi = miρ, ρe = meρ, (161a)

and an equal weighting for the pressure of each species:

pi = pe = p

2
. (161b)

The values of other parameters in the nondimensional setting are given by µ0 = 1, kB = 1, and c = (ε0µ0)−1/2.

We use the two-fluid Sod problem to explore issues relating to the AFC stabilization applied to the fluid equations.
Two approaches are considered for stabilizing the multifluid system. The first approach, which we refer to as the
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FIGURE 7.10. The effect of synchronizing the AFC stabilization between electrons and ions in the two-fluid Sod
problem. In each case, 400 mesh cells are used with an electrostatic model, and the scaling parameters are set to
ε= 10−4, τ= 10−4, and δ= 1.0. High-order methods use a value of q = 2 and (ρs , ps ,Es ) limiting for each species s.

unsynchronized approach, simply stabilizes the Euler subsystem for each fluid independently. Two fluids with
different sound speeds will therefore receive different amounts of dissipation in this case. The second approach,
which we refer to as the synchronized approach, applies equivalent stabilization to all fluids simultaneously. In
this case, the dissipation applied to each species depends on the maximum sound speed across all species. Fur-
ther, the same limiter parameter α is used for all species, again determined by the species that requires the most
stabilization.

The impact of synchronizing the stabilization across the fluid species is shown in fig. 7.10 at early simulation times.
In each case, 400 mesh cells and an electrostatic approximation are used, and the scaling parameters are set to
ε= 10−4, τ= 10−4, and δ= 1.0. The high-order methods use a value of q = 2 and (ρs , ps ,Es ) limiting for each species
s. In the unsynchronized cases, the system rapidly becomes unstable, and the profiles of the electron velocity and
pressure both differ significantly from that of the ions and the single-fluid solution. When the stabilization applied
to the fluids is synchronized, the electron and ion species remain coupled, as would be expected in this scaling
limit, and the results agree well with the single-fluid solution (albeit with more dissipation than is observed in the
single-fluid solution). These results indicate that synchronizing the fluid stabilization is a crucial component of
the overall robustness of the implementation.

Additional comparisons for the two-fluid Sod problem using various electromagnetics formulations are shown in
figs. 7.11 and 7.12 using mass ratios of ε= 10−2 and ε= 10−3, respectively, with τ= 10−2 and

δ ∈ {10−0,10−1,10−2}. (162)

We run each test using an electrostatic model (ES), the curl form of Maxwell’s equations using the eliminated
parabolic divergence cleaning (Par) or the implicit projection approach (Proj), and the potential form of Maxwell’s
equations in both the purely hyperbolic form (Pot) or using the elliptic form equation for the scalar potential
(E Pot). The cleaning parameter for the eliminated parabolic divergence cleaning formulation is set to cp =p

hc in
all cases, where h is a measure of the finite element mesh size. Each simulation uses a two-stage SDIRK scheme
that is L-stable with second-order accuracy [3]. Timesteps are chosen based on the characteristic speed of the
ion fluid with a CFL number of 1.2. The computational domain is extended beyond the original range of x ∈ [0,1]
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(A) 2,000 mesh cells.
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FIGURE 7.11. Solutions of the two-fluid Sod problem for δ= 10−0, δ= 10−1, and δ= 10−2. All simulations use
ε= 10−2 and τ= 10−2. Solutions are shown for two mesh resolutions (coarse and fine). The pressure plot for the
single-fluid solution (Euler) is scaled to one-half the pressure value from the simulation.
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FIGURE 7.12. Solutions of the two-fluid Sod problem for δ= 10−0, δ= 10−1, and δ= 10−2. All simulations use
ε= 10−3 and τ= 10−2. Solutions are shown for two mesh resolutions (coarse and fine). The pressure plot for the
single-fluid solution (Euler) is scaled to one-half the pressure value from the simulation.
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FIGURE 7.13. Solutions of the two-fluid Sod problem for ε= 10−3, τ= 10−2, and δ= 10−1 using the purely hyper-
bolic potential formulation of Maxwell’s equations for various mesh resolutions. Some solutions develop severe
instabilities due to a failure of the method to properly control the gauge error and divergence error in the electric
field.

in order to emulate the effects of outflow boundary conditions. Each figure also includes results for a simulation
using a single-fluid Euler model with matching temporal and spatial discretizations.

In most instances, the results obtained show the expected behavior. When the value of δ is large, a much greater
degree of charge separation exists between the electron and ion species, and dispersive waves propagating from
the shock change the structure of the fluid expansion. Decreasing the value ofδ increases the electrostatic coupling
between the electrons and ions, pushing the two-fluid solution towards quasineutrality, and producing solutions
that agree well with the single-fluid model.

A careful examination of fig. 7.12b shows that results using the purely hyperbolic potential formulation of Maxwell’s
equations (Pot) are absent from the middle row (δ= 10−1) of this figure. This is done because this method becomes
unstable for this parameter setting (ε= 10−3, τ= 10−2, δ= 10−1) as the mesh is refined. To prevent these results
from obscuring the plots of the other formulations, we have plotted the solutions for this potential formulation by
themselves in fig. 7.13 using three different mesh resolutions. The source of this instability seems to be associated
with a lack of sufficient control over the divergence in the electric field.

For each electromagnetics formulation, we compute the norm of the error in the divergence involution for each
field. The divergence error for the electric field is computed using an L2 norm

1

|Ω|
(∫
Ω

∣∣ε0∇·E−q
∣∣2 dΩ

)1/2

(163)

scaled by the domain volume, and is plotted as a function of time in fig. 7.14 using various parameter scalings
and mesh resolutions. In section 6.3 it was noted that the divergence error in the electric field for the potential
formulation depends on the degree to which the computed potentials satisfy the gauge condition. We have also
measured this gauge error (not shown), and found that its evolution closely tracks that of the divergence error in
the electric field in cases where this instability occurs. It is worth noting that the authors in [36] did not observe
any such instability when this formulation was used for Maxwell’s equations coupled to a two-fluid model, though
our numerical approach (continuous finite elements) differs from theirs (finite volumes). It is possible that the
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FIGURE 7.14. Divergence errors in the electric field for the two-fluid Sod problem with δ= 10−0, δ= 10−1, and
δ= 10−2. All simulations use τ= 10−2.

occurrence of this instability is associated with our particular finite element discretization, and that additional
stabilization is required to ensure robustness in this scheme in all cases. However, we have not observed any such
instabilities in any of the problems we have run when using the elliptic potential formulation, and hence it may be
preferable to simply use that approach instead.

7.4. Two-fluid Brio-Wu problem

We consider a two-fluid version of the Brio-Wu electromagnetic shock problem [20]. This problem is a common
test for two-fluid systems in a variety of limits: see [9, 36, 56] for some examples. The same non-dimensional
scaling used for the two-fluid Sod problem is used here as well. The initial conditions for the fluids are the same as
that of the two-fluid Sod problem described in section 7.3, and magnetic fields are added with the initial conditions

B =
{

(0.75,+1.0,0.0) , x < 0.5,

(0.75,−1.0,0.0) , x > 0.5.
(164)

When using the potential form of Maxwell’s equations, the y component of the magnetic field is specified through
an appropriate initial condition on the vector potential A. Since the x component of the magnetic field is constant
in both space and time, we treat this component as an externally applied field separate from the vector potential A.
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FIGURE 7.15. Norm of the electric field divergence error (163) versus simulation time for the two-fluid Brio-Wu
problem under the scaling ε= 10−3, τ= 10−2, δ= 10−4. Each column uses a different value for the parameter cp

used in the parabolic divergence cleaning for Maxwell’s equations.

Thus, the magnetic field is given by
B = Bext +∇×A, (165a)

where

Bext =
0.75

0.0
0.0

 , (165b)

and the initial condition for the vector potential is given by

A =
 0.0

0.0
|x −0.5|

 . (165c)

Each test is run using the same configuration that was used for the two-fluid Sod problem (time integration, ex-
tended domain size, etc.) using mass ratios of ε= 10−2 and ε= 10−3, respectively, with τ= 10−2 and

δ ∈ {10−2,10−3,10−4}. (166)

Since the evolution of the magnetic field is an important component of this problem, the electrostatic model is
not used, and comparisons are made to a single-fluid ideal MHD model with matching temporal and spatial dis-
cretizations, based on the implicit stabilization approach in [58].

Determining an effective value for the parabolic divergence cleaning parameter cp proved to be more challenging
for this problem than for the two-fluid Sod problem. Initially, we ran both problems using the value cp =p

0.18c
recommended in [30]. We found that this value generally worked reasonably well for the two-fluid Sod problem
and for most of the cases considered for the two-fluid Brio-Wu problem. However, for the case of ε= 10−3, τ= 10−2,
δ= 10−4 applied to the two-fluid Brio-Wu problem, we found this value for cp to work sufficiently well on coarser
meshes, but the solutions became increasingly unstable as the mesh was refined. As a result, we ran a parameter
sweep for the value of cp using these scaling parameters on a range of meshes: The norm of the divergence error
in the electric field as a function of time for a range of mesh sizes and values for cp with these parameter settings
is shown in fig. 7.15. The results suggest that the maximum effective value for cp is roughly proportional to the

mesh size h. Our subsequent choice of cp =p
hc was motivated by this parameter sweep and the dimensional
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FIGURE 7.16. Divergence errors in the electric field for the two-fluid Brio-Wu problem with δ= 10−2, δ= 10−3, and
δ= 10−4. All simulations use τ= 10−2.

arguments in [27, 66]. All remaining results for the two-fluid Brio-Wu problem use this choice for cp , which has
thus far proven to be effective for all of the two-fluid Sod and Brio-Wu simulations we have considered.

Comparisons of solutions for the two-fluid Brio-Wu problem using various electromagnetics formulations are
shown in figs. 7.17 and 7.18. In most instances, the results behave as expected. Dispersive waves propagating
from the shock are present, with the frequency of the waves scaling as δ (and hence the cyclotron radii) varies. The
structure of the solutions compares favorably with results published elsewhere, eg. [9, 36, 56], and the two-fluid
solutions approach that of the ideal MHD model as δ decreases.

We note that the purely hyperbolic formulation of Maxwell’s equations again became unstable in certain cases:
specifically for ε= 10−2, τ= 10−2, δ= 10−2 on finer meshes. These results are therefore not included in the first row
of fig. 7.17b. This instability can be observed in the divergence errors plotted for each formulation in fig. 7.16. The
divergence errors in other cases are generally satisfactory, though the increase in the divergence error later in time
for the parabolic cleaning formulation in the case of ε= 10−3, δ= 10−4 with 20,000 mesh cells is cause for some
concern on the general applicability of the choice of cp =p

hc.
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FIGURE 7.17. Solutions of the two-fluid Brio-Wu problem for δ= 10−2, δ= 10−3, and δ= 10−4. All simulations use
ε= 10−2 and τ= 10−2. Solutions are shown for two mesh resolutions (coarse and fine).
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FIGURE 7.18. Solutions of the two-fluid Brio-Wu problem for δ= 10−2, δ= 10−3, and δ= 10−4. All simulations use
ε= 10−3 and τ= 10−2. Solutions are shown for two mesh resolutions (coarse and fine).

61



-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

FIGURE 7.19. Diagram of the top surface of the initial coarse mesh for the cylindrical diocotron instability problem.

7.5. Two-dimensional diocotron instability

Diocotron instabilities [28], which are driven by velocity shear in non-neutral electron columns, have been studied
experimentally and computationally in beam [44, 51] and cylindrical geometries [44, 73, 74]. We consider a con-
figuration consisting of a cylindrical electron beam inside a uniform axial magnetic field. In this case, a rotational
velocity is produced in the plasma column due to E×B forces exerted on the electron fluid. A sufficiently strong
shear in this rotational velocity drives the development of the cylindrical diocotron instability. Because the devel-
opment of the instability is dominated by E×B forces, the electric drift approximation is often used to reduce the
particle velocity equation to that of a guiding center model, which removes the cyclotron motion of the particles.
In the present context, such reductions to the momentum equation (5b) for the electron fluid are not considered,
so that the cyclotron motion is retained in the model.

The problem is defined on a two-dimensional circular domain of radius rw = 16 using the polar coordinates

(r,θ) ∈ [0,rw ]× [0,2π]. (167)

The nominal initial electron number density is given by

n0
e (r ) =


n0∆, r < r−

b ,

n0, r−
b < r < r+

b ,

n0∆b , r+
b < r < rw ,

(168)

where n0 = 1 is the peak nominal electron number density, ∆= 0.1 determines the jump in density between the
outer shell and the inner core, and ∆b = 10−4 determines the jump in density between the outer shell and the low-
density background. The outer radius is taken to be r+

b = 8 and the inner radius of the shell is determined based on
theoretical considerations which depend on the particular configuration that is used. A background of immobile
ions with constant number density ni = n0∆b is used to ensure the initial charge density is zero for r > r+

b .

The same non-dimensional scaling is used here as was used for the two-fluid Sod and Brio-Wu problems in the
preceding sections. In this case, we fix ε= 10−2, τ= 10−1, and δ= 1. The initial electron density is seeded with a
perturbation with azimuthal mode `= 5:

ρe = me n0
e

(
1+βcos(`θ)

)
, (169)

where the magnitude of the perturbation is β= 10−3. A constant axial magnetic field Bz = 5 orthogonal to the
computational plane is assumed, and an electrostatic model is used to compute the evolution of the electric field.
Since the diocotron instability is most commonly discussed in the context of a low-density regime, we assume a
low-temperature, low-density limit in which the electron pressure is zero (pe = 0). Accordingly, it is assumed that
the sound speed used in the AFC stabilization is zero everywhere.
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FIGURE 7.20. Comparison of numerically computed growth rates in mode 5 for the cylindrical diocotron instability
problem at different levels of mesh refinement. Mesh resolution is compared by counting the total number of
nodes in the mesh at each level of refinement. All node counts are given as approximate values rounded to either
thousands (K suffix) or millions of nodes (M suffix). Fit values for the growth rate are computed using a least-
squares fit to an exponential function over the time interval t ∈ [π/8,3π/8].

The two-dimensional problem is solved using a three-dimensional tetrahedral mesh with one element of thickness
in the z dimension. A diagram depicting the triangular mesh that lies on the circular faces of the computational
domain is shown in fig. 7.19 for the coarsest mesh considered. Refined meshes are generated by recursively subdi-
viding each triangle of the coarse mesh into three smaller triangles with vertices corresponding to the centroid of
the coarse triangle and the midpoints of each edge. Periodic boundary conditions are used on the mesh faces or-
thogonal to the z axis, and the boundary conditions on the outer cylindrical boundary are taken to be φ= 0 for the
electrostatic potential and ue = 0 for the electron fluid. The electron fluid is initially at rest, but due to the relatively
small mass of the electrons, the fluid quickly accelerates to a velocity profile determined by electromagnetic forces,
regardless of the initial velocity profile that is used. For this problem, the limiter used for the AFC stabilization is
computed based on the electron kinetic energy (ρe u2

e /2), with a value of q = 2.

The shape of the initial electron number density profile is chosen in accordance with the theoretical analysis
in [29]. For the intended step-function density profile with rw = 2r+

b = 16, the azimuthal mode 5 is unstable when
r−

b = 6 with a theoretical growth rate of ω≈ 2.2218. The theoretical rate is compared to the amplitude of the az-
imuthal mode 5 in the numerical solution, which is computed by taking a discrete Fourier transform of the nodal
values of the electrostatic potential at the radius r = r−

b and taking the norm of the coefficient corresponding to
mode 5.

A comparison between numerically computed rates of growth in the solution and the theoretical rate is shown
in fig. 7.20 for various levels of mesh refinement. Approximate values for the growth rate of the instability are
computed as the exponent obtained from fitting an exponential function to the computed amplitude for azimuthal
mode 5 over the time interval t ∈ [π/8,3π/8]. The computed magnitudes qualitatively show convergence of the
solutions to the rate predicted by the theoretical analysis in [29], though there is some low-frequency oscillation in
the computed magnitudes (most apparent at later times) that causes the computed growth rates to deviate slightly
from the theoretical rate. The exact cause of these deviations is unknown, but could be associated with nonlinear
dynamics, the inclusion of the cyclotron motion in the electron fluid model (which is absent in the theoretical
analysis in [29]), the use of a non-stationary electron fluid background in the outer region, the approach used to
estimate the magnitude of the computed azimuthal mode, or simply due to the fact that the numerical solutions
are not fully converged. The agreement between the computed growth rate and the theoretical value at fine mesh
resolutions is nevertheless quite good, particularly at earlier times.

A selection of solution quantities at three simulation times are shown in fig. 7.21 for the most highly refined simu-
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FIGURE 7.21. Profiles of mass density and the polar components of momentum for the electron fluid at three times
for the cylindrical diocotron instability problem. Each frame is taken from a simulation using a highly-refined
tetrahedral mesh containing approximately 4 million nodes.

lation considered, which used a mesh containing approximately 4 million nodes. At each time, the electron mass
density and the polar components of the electron momentum are shown. The polar components of the electron
momentum are computed by projecting the momentum vector onto the unit vectors r̂ and θ̂:(

ρe ue
)

r = ρe ue · r̂,
(
ρe ue

)
θ = ρe ue · θ̂, (170)

where

r̂ =
( x

r
,

x

r
,0

)
, θ̂ = (− sin(θ),cos(θ),0

)
, (171)

are the unit vectors specifying the positive radial and azimuthal directions at each position, respectively. At time
1E−3, the shear in the azimuthal velocity that drives the instability is evident. As the simulation progresses, the
electron density begins to break up into a collection of vortices associated with the azimuthal pattern of the initial
density perturbation.
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7.6. Two-fluid GEM challenge

The GEM challenge problem [18] is a common example of a configuration in which electron dynamics play a
crucial role in the evolution of the solution. In this problem, models beyond ideal or resistive MHD are required to
adequately reproduce the rate of magnetic reconnection predicted by fully-kinetic multispecies models.

The problem is defined as follows. The species masses are given by mi = 25me = 1, and the unit charge and mag-
netic permeability are both set to 1 (|qe | =µ0 = 1). The speed of light is given a specified value, from which the
permittivity is determined: ε−1

0 =µ0c2. The problem is defined over the domain[
−Lx

2
,

Lx

2

]
×

[
−Ly

2
,

Ly

2

]
(172)

with Lx = 25.6 and Ly = 12.8. The initial number density of each species is given by

ni = ne = n0
(
n1 + sech2 (

y/λ
))

, (173)

where n0 = 5n1 = 1 and λ determines the thickness of the current sheet. Each species uses an ideal gas equation of
state with γ= 5/3 and kB = 1, and the fluids are initialized with uniform temperatures of

Ti = 5Te =
5B 2

0

12µ0n0kB
(174)

where we take B0 = 1. The ions are initially at rest, and the initial current is carried entirely by the electron species,
with the initial electron momentum given by

(
ρe ue

)
z =

me

|qe |
B0

µ0λ
sech2

( y

λ

)
(175)

in the z direction, and zero in the x and y directions.

The electric field is initially zero, and the initial conditions for the components of the magnetic field are given by

Bx = B0 tanh
( y

λ

)
− B0δπ

Ly
cos

(
2πx

Lx

)
sin

(
πy

Ly

)
, (176a)

By = B0δ2π

Lx
sin

(
2πx

Lx

)
cos

(
πy

Ly

)
, (176b)

Bz = 0, (176c)

where δ= 0.1 is the magnitude of the perturbation with respect to the current sheet equilibrium. The initial
conditions for the potential formulations of electromagnetics are φ= 0, ψ= 0 for the scalar potential, and C = 0,
Ax = Ay = 0, and

Az =λB0 ln
(
cosh

( y

λ

))
+B0δcos

(
2πx

Lx

)
cos

(
πy

Ly

)
(177)

for the vector potential.

The boundary conditions at x =±Lx /2 are periodic. The boundary conditions at y =±Ly /2 are set such that fluid
flow across the boundary and charge at the boundary are zero

ui ·n = ue ·n = 0 q = 0, (178)

and the electromagnetic boundary conditions are set such that

B ·n = 0, E×n = 0, (179a)

φ=ψ= 0, Ax =Cx =Cz = 0, Az =λB0 ln
(
cosh

( y

λ

))
, (179b)

depending on the formulation.
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FIGURE 7.22. Magnetic reconnection measured by (180) as a function of time for simulations of the GEM chal-
lenge problem using different mesh resolutions (rows), and speed of light values (columns), and electromagnetics
formulations (solid/dashed/dotted lines).

The standard approach for comparing results for this problem is by measuring the reconnected magnetic flux
across the line y = 0

ΦB = 1

2B0

∫ Lx /2

−Lx /2

∣∣By (x, y = 0)
∣∣ d x (180)

as a function of simulation time. We consider two cases: the first case takes the more common value of λ= 1/2,
and the second uses λ= 1, which results in a thicker current sheet. The rate of magnetic reconnection is compared
to the kinetic PIC results from Pritchett [76] and Birn [18], the continuum kinetic results from Reddell [77], the
two-fluid and Hall MHD results from Srinivasan and Shumlak using the WARPX code [85], the two-fluid results
from Alvarez Laguna [9] and Loverich [57], and the quasi-neutral two-fluid results from Amano [10]. For the case
of λ= 1, the time values for data taken from external sources are scaled by a factor of 2 to account for the expected
difference in the reconnection rate associated with the thicker current sheet. It should be noted that the results in
[57] used a physical mass ratio between the electrons and ions instead of the more common value of mi /me = 25
for this problem. Based on the results in [39, 82], this change in the mass ratio may be expected to delay the onset
of reconnection by some amount.

A comparison of the reconnected flux for simulations using different mesh resolutions, speed of light values, and
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FIGURE 7.23. Divergence errors in the electric field for the GEM challenge problem as a function of simulation time.

electromagnetics formulations is shown in fig. 7.22. The number of mesh cells given in each case indicates the
number of cells along the y dimension, with twice as many cells used along the x dimension to produce square
cells. The size of each timestep in all simulations is selected based on the characteristic speed of the ion fluid only.
We consider three electromagnetics formulations for this problem: The potential form of Maxwell’s equations in
both the purely hyperbolic form (Pot) or using the elliptic form equation for the scalar potential (E Pot), and the curl
form of Maxwell’s equations using the eliminated parabolic divergence cleaning approach with cp =p

hc (Par). We
were unable to run simulations of this problem using the implicit projection method for the curl form of Maxwell’s
equations, which we believe is due to the use of periodic boundary conditions at x =±Lx /2.

At early times, our results fall firmly within the range of values observed in published results. In some cases, we
observe larger variations later in time depending on how the structure of the solution evolves. The formation of ad-
ditional magnetic islands (plasmoids) near the central reconnection region tends to increase the peak magnitude
of magnetic flux that is measured in the solution. It has been noted previously that the GEM challenge problem is
subject to bifurcation [39, 56], and that increasing the thickness of the current sheet stabilizes the system and pre-
vents the formation of additional magnetic islands. Our results clearly demonstrate this effect. For the case of the
thinner current sheet (λ= 1/2) the existence, shape, and evolution of any additional magnetic islands in the solu-
tions changes depending on the problem configuration (eg., mesh resolution, speed of light, etc.). In contrast, no
additional magnetic islands form in any of the solutions computed for the thicker current sheet case (λ= 1), and
the resulting magnetic reconnection rates are very consistent regardless of the specific problem configuration.

Many of our simulations using the finer mesh resolution (480×960 cells) form a larger, relatively stable magnetic
island in the center of the computational domain that slowly drifts to either side. This behavior (and the formation
of additional magnetic islands in general) has been a matter of some discussion in the literature. Many codes report
an absence of magnetic islands in their solutions [11, 15, 37, 67, 77, 79, 94], and some codes report that their results
contain a large central magnetic island [93]. Others report that the formation of a large central magnetic island
varies from case to case, depending on the fluid model that is used (eg., five- versus ten-moment fluid model [57]),
the inclusion of resistivity [10], the use of different numerical limiters [9], divergence correction techniques [85],
mesh resolutions [69], or methods of different orders [56]. Mesh refinement studies conducted in [69] using a ten-
moment multifluid model found that a larger, relatively stable magnetic island was observed in simulations above
a certain mesh resolution, but not in simulations using coarser meshes. Since most references within the literature
restrict their discussion of this problem to only one or a few computational configurations that may or may not be
well converged, questions remain about the structure and formation of magnetic islands in this problem.

An additional observation is that the formation of a large central magnetic island in our results seems to be corre-
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FIGURE 7.24. Plots of the z component of current, simulated Schlieren images of ion density, and electron pres-
sure for the two-dimensional GEM challenge problem using different configurations at different points in time.
Each simulation was conducted using a spatial mesh of 960×480 cells, and the elliptic potential formulation of
Maxwell’s equations.
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lated with whether or not the timestep size is small enough to resolve the electron plasma frequency. The config-
uration used for this problem is such that the electron plasma frequency scales proportionally to the value that is
used for the speed of light. Thus, smaller timestep sizes are required to resolve the electron plasma oscillation as
the the speed of light increases. In general, the simulations in which we observe the formation of a large central
magnetic island correspond to cases where the electron plasma frequency is better resolved by the timestep size
that is used. This behavior appears similar to that observed in the mesh refinement studies of [69], in the sense
that the formation of a large central magnetic island is associated with finer mesh resolutions that better resolve
smaller-scale behavior.

As stated previously, the formation of a large magnetic island at the center of the computational domain is as-
sociated with an increase in the peak magnitude of the magnetic flux that is measured in the solution, which is
expected based on the results reported for other codes. Our results show that this behavior also tends to be associ-
ated with the reconnection process occurring at an earlier time than is reported by other codes. It is not fully clear
why this is the case. However, given the bifurcation behavior present in the thin current sheet case (λ= 1/2) and
the wide range of results reported in the literature, we believe these results are nevertheless reasonable.

Divergence errors in the electric field are shown in fig. 7.23 for different configurations. The divergence errors for
the results shown are adequately controlled regardless of the electromagnetics formulation that is used. However,
we have run additional simulations (results not shown) in which the size of each timestep is selected based on the
characteristic speeds of both the electron and ion fluids. This approach typically results in timesteps that are ap-
proximately five times smaller than would be the case if only the ion fluid is considered, due to the faster electron
sound speed. Some simulations did develop moderate instabilities when the purely hyperbolic potential formu-
lation was used with these smaller timesteps. These moderate instabilities tended to produce more oscillatory
solutions than would otherwise be expected, but did not blow up or cause the simulation to crash before the final
simulation time was reached.

A selection of plots showing the structure of the solutions of two simulations are shown in fig. 7.24. In fig. 7.24a,
a large magnetic island forms in the center of the computational domain, and remains stationary throughout the
duration of the simulation. For the case in fig. 7.24b, a very small magnetic island forms towards the left of the
domain and merges with the larger island towards the left, producing some small asymmetrical structures in the
solution. In the thicker current sheet case shown in fig. 7.24c, no additional magnetic islands form in the solution,
and very good symmetry is maintained.

8. EXEMPLAR PROBLEMS

8.1. Gas Puff

A one-dimensional simplified prototype of a gas puff configuration from Sandia’s Z-machine is used as a demon-
stration to exercise the full range of capabilities associated with the general multifluid model. This is done on a
quasi-one-dimensional Cartesian domain for x ∈ [−0.25,0.25] (in units of meters) using a mesh with one cell in
the y and z dimensions and periodic boundary conditions along those axes. The geometric configuration is based
primarily on the description in [40], though we consider an argon gas puff in this case.

The shape of the initial mass density of the argon gas was determined by visually fitting two Gaussian profiles to
[40, Figure 1(b)]. The result is

ρ0(x) = n0a1 exp

(
− (x −b1)2

2c2
1

)
+n0a2 exp

(
− (x −b2)2

2c2
2

)
, (181a)

given in units of kg/m3, where n0 = 1024 and

a1 = 1.1, b1 = 0.011, c1 = 0.006, (181b)

a2 = 0.35, b2 = 0.034, c2 = 0.004. (181c)

Although gas puff experiments on Sandia’s Z-machine have not at this point applied a pre-ionization stage to the
gas, we assume an initial ionized fraction of 10−5 in the first charge state to enable the generation of axial current
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Ref. Shot Type Gap (m) Volt. (V) Load (MA) MITL (MA) trise (ns) Emax

[91] Z1590 Ar puff 3.2E-2 5.5E+6 13.5 18 100 1.7E+8
[91] AASC 22:30:250 Ar puff 2.5E-2 8.0E+6 18 23.5 100 3.2E+8
[90] Z2381 (AASC) Ar puff 2.5E-2 13 107
[90, 92] Z2559-61 (AASC) Ar puff 2.5E-2 9.0E+6 16 26 120 3.6E+8
[89] Z2603 Ar, Xe, Kr puff 14 25 120
[89] Z2605 Ar, Kr puff 16 25 120

[41] Z1098 W Wire 1.0E-2 1.25E+6 17 21 100 1.3E+8

TABLE 8.1. Summary of electromagnetic quantities (measured or simulated) for pinches on Sandia’s Z-Machine.

and initiation of further ionization in the simulation.3 The initial mass densities of Ar0 and Ar+ are therefore given
by

ρ(Ar,0)(x) = (
1−10−5)ρ0(x) and ρ(Ar,1)(x) = 10−5ρ0(x), (182)

respectively. All other charge states are set to a density floor 10 orders of magnitude below the peak mass density;
that is, n(Ar,k)(x) = 1014 for k ≥ 2. The initial number density of electrons is set such that the system exists in a quasi-
neutral state at the initial time. All fluids are initially at rest with a temperature of 8,000 degrees Kelvin, which is the
temperature at which the steady state ionization equilibrium of our ionization and recombination models yields a
value of Z ≈ 10−5. An ideal gas equation of state with γ= 5/3 is used for each fluid.

The problem is driven by specifying a time-dependent Dirichlet condition for Ez at both the left and right bound-
aries:

Ez (t ) = Emax sin2
(
π

2

t

trise

)
, (183)

where Emax is the maximum electric field value and trise is the time at which the peak electric field value is attained.
Given a gap size hgap and maximum voltage Vmax, the maximum electric field magnitude is computed as

Emax = Vmax

hgap
. (184)

Measurements of the voltage generated in the post-hole convolute of Sandia’s Z-machine show peak values in
the range of 2.5 to 3 MV [98]. For a gap size of 2.5 cm (as informed by [40]), this result suggests Emax values in
the range of 1E+8 to 1.2E+8. Additional references are shown in table 8.1 for comparison, which generally imply
similar values. Since we consider a one-dimensional Cartesian geometry (instead of a one-dimensional cylindrical
geometry) the geometric effect on the compressive field strength is absent. We therefore artificially increase the
magnitude of the electric field condition at the boundary to a value of Emax = 5E+9 to ensure that reasonably strong
compression occurs, and set the rise time to trise = 2.24E−7.

The simulation is run using the purely hyperbolic potential form of Maxwell’s equations. In this case, the corre-
sponding conditions on the vector potential and it’s derivative are

Az =−Emax

2

(
t + 1

πtrise
sin(−πtriset )

)
, (185a)

Cz =−Emax

c
sin

(
−π

2

t

trise

)
. (185b)

The computational mesh consists of 10,000 uniform elements along the x dimension, and a maximum charge
state of 8 is used to limit computational cost. The AFC stabilization is applied with limiters computed using the
density ρs and pressure ps of each fluid, as well as ‖J‖ and ‖B‖. The size of each timestep is selected based on the
characteristic speeds of the atomic species only (excluding electrons), and the simulation was run to a final time
of 1.38E−7 seconds.

3Our ionization models rely on the presence of electrons within the gas for collisional ionization to occur. We have not at this point performed
any detailed study of the effect of the initial ionized fraction on the progression of ionization in the simulation. If necessary, alternative
strategies such as an electrode emission model for electrons could be explored in the future as a means of introducing sufficient seed
electrons into the simulation to carry the initial current that is developed and to begin the collisional ionization process.
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FIGURE 8.1. Solution quantities for a mock-up simulation of an argon gas puff experiment. Times are given in
seconds, and the x-axis of each plot shows the radial position within the experiment in units of meters.

The evolution of various solution quantities is shown in fig. 8.1. While the simulation is not intended to be fully re-
alistic at this point, the overall behavior seems qualitatively reasonable. Since the initial condition for the gas is not
a hydrodynamic equilibrium, there is some initial momentum that develops early in time simply from the dynam-
ics of the fluid expansion. As the electromagnetic fields reach the edge of the gas, the combination of Lorenz forces
and elastic scattering yields resistive heating effects, and the gas progressively heats, ionizes, and compresses.

9. CONCLUSION

We have provided detailed descriptions of a general multifluid model framework for partially-ionized multispecies
plasmas. The models are composed of a standard set of five-moment fluid equations for each species plus a de-
scription of electromagnetics. The most general model considered utilizes a full set of fluid equations for each
charge state of each atomic species, plus a set of fluid equations for electrons. The fluid equations are coupled
through source terms describing electromagnetic interactions, ionization, recombination, charge exchange, and
elastic scattering collisions in the low-density coronal limit. The form of each of these source terms has been de-
scribed in detail, and references for required rate coefficients have been identified for a diverse range of atomic
species. Initial efforts have been made to extend these models to incorporate some higher-density collisional ef-
fects, including ionization potential depression and three-body recombination.

Some reductions of the general multifluid model have been considered. First, a reduced multifluid model was
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derived which averages over all of the charge states (including neutrals) of each atomic species in the general mul-
tifluid model. The resulting model maintains full consistency with the general multifluid model from which it was
derived by leveraging a quasi-steady-state collisional ionization equilibrium assumption to recover the ionization
fractions required to make use of the general collision models. Further reductions were briefly considered to de-
rive certain components of a single-fluid magnetohydrodynamics (MHD) model. In this case, a generalized Ohm’s
law was obtained, and the standard MHD resistivity was expressed in terms of the collisional models used in the
general multifluid model. These consistently-derived material parameters may be used in future efforts to develop
comparisons between various fluid models in this hierarchy.

A number of numerical considerations required to obtain robust implementations of these multifluid models were
discussed. First, an AFC stabilization approach for a continuous Galerkin finite element discretization of the mul-
tifluid system was described in which the characteristic speeds used in the stabilization of the fluid systems are
synchronized across all species in the model. It was demonstrated that this synchronization is crucial in order to
obtain a robust discretization of the multifluid system.

Additionally, several different formulations were considered for describing the electromagnetics portion of the
multifluid system using nodal continuous Galerkin finite element discretizations. While our original intent for this
work did not include a detailed exploration of this issue, it quickly became apparent that careful treatment of the
electromagnetics portion of the multifluid system (to ensure that the divergence involutions in Maxwell’s equa-
tions are adequately satisfied) was required in order to obtain sufficient robustness in our numerical implemen-
tation. The formulations considered include a parabolic divergence cleaning method and an implicit projection
method for the traditional curl formulation of Maxwell’s equations, a purely-hyperbolic potential-based formula-
tion of Maxwell’s equations, and a mixed hyperbolic-elliptic potential-based formulation of Maxwell’s equations.
Some advantages and disadvantages of each formulation were explored to compare solution robustness and the
ease of use of each formulation:

(i) Since it is based on the traditional curl form of Maxwell’s equations, the parabolic divergence cleaning for-
mulation was relatively easy to work with, in the sense that the imposition of various boundary conditions
is well understood. Although this formulation worked reasonably well on the problems that we tested, the
need to choose a penalty parameter that may vary from problem to problem raises some questions about
the robustness of the formulation, unless progress can be made to establish a reliable approach for how this
penalty parameter should be chosen.

(ii) The implicit projection formulation was shown to maintain robustness in all cases where it was used (in
the sense that the divergence involutions in the electromagnetic fields were maintained to acceptable lev-
els) without introducing any additional parameters to the model. However, the imposition of boundary
conditions was found to be particularly difficult for this formulation. The most significant issues were en-
countered when attempting to use this formulation with periodic boundary conditions along an axis of the
mesh in which the solution was not constant as a function of position. This often resulted in a failure to solve
the resulting implicit system, and termination of the simulation. One hypothesis on how this issue could be
resolved is that perhaps periodicity should only be applied to the physical variables, and not enforced on the
correction potentials that are introduced by this formulation. We have not tried this approach due to limi-
tations in our implementation, and we expect that such an approach would require special consideration in
most codes, increasing the level of development effort required to make use of this formulation.

(iii) The hyperbolic structure of the purely-hyperbolic potential-based formulation of Maxwell’s equations gen-
erally results in linear systems obtained from implicit discretization of the multifluid system that are some-
what easier to solve with standard preconditioning techniques compared to the other formulations. The im-
position of appropriate boundary conditions can be moderately more involved for potential formulations,
but was generally manageable with some additional effort. The most significant issue that was encountered
when using this formulation was that solutions were observed to become unstable in a limited number of
cases, implying that additional work would needed to reduce the gauge error produced by the discretization
in order to ensure the robustness of this formulation.

(iv) The mixed hyperbolic-elliptic potential-based formulation of Maxwell’s equations was one of the more ro-
bust and effective formulations that was considered. No instabilities were observed when this formulation
was used in numerical simulations, and while the imposition of boundary conditions was moderately more
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involved due to the use of potentials, this was generally manageable with some additional effort. The pri-
mary disadvantage of this formulation is the presence of an elliptic-form equation in the model, which can in
practice make the resulting linear systems somewhat more difficult to solve using standard preconditioning
techniques. While we did not specifically consider an in-depth investigation of solver efficiency in this work,
we did not observe any significant issues with the solver requirements of this formulation for the problems
considered.

A variety of numerical test problems were considered to evaluate the robustness and accuracy of our implemen-
tation. This included a range of spatially-homogeneous problems to examine the electromagnetic coupling of the
fluids, the elastic collision source terms, and the ionization and recombination source terms. Analytic solutions
were derived where applicable, and convergence studies were performed in these cases to demonstrate that the
expected orders of convergence are obtained for a selection of implicit time discretizations. One-dimensional two-
fluid electrostatic and electromagnetic shock-tube problems were used to demonstrate the robustness of the dis-
cretization methods in the two-fluid limit as well as the ideal shock-MHD limit. In particular, it was demonstrated
that the implicit two-fluid simulations were able to reproduce single-fluid solutions near the ideal shock-MHD
limit while resolving only the fluid stability criteria of the heavier ion species.

Two-dimensional test problems were then considered to further demonstrate the capabilities of the proposed
methods. The first was a cylindrical diocotron instability using a tetrahedral mesh for a circular slab. The growth
rates obtained for the initial perturbation were shown to closely match those available from theoretical analysis as
the computational mesh was refined. The final test problem considered was the GEM challenge magnetic recon-
nection problem, using two thicknesses for the initial current sheet. The resulting rates of magnetic reconnection
were shown to be in reasonable agreement with published values for kinetic, Hall MHD, and other two-fluid codes.

A one-dimensional simplified prototype of an argon gas puff configuration as deployed on Sandia’s Z-machine
was used as a demonstration to exercise the full range of capabilities associated with the general multifluid model.
This simulation was not intended to be fully realistic, but did show qualitatively reasonable behavior for the sys-
tem. Future work will focus on (i) additional verification of the general multifluid model in increasingly complex
configurations incorporating the effects of elastic collisions, ionization, recombination, and charge-exchange; (ii)
the implementation and verification of the fully-averaged multifluid model and the generalized Ohm’s law MHD
model; and (iii) detailed comparisons of the different models within this hierarchy on a selection of exemplar
problems of interest.
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[70] D. NIKOLIĆ, T. W. GORCZYCA, K. T. KORISTA, M. CHATZIKOS, G. J. FERLAND, F. GUZMÁN, P. A. M. VAN HOOF,
R. J. R. WILLIAMS, AND N. R. BADNELL, Suppression of dielectronic recombination due to finite density effects.
II. Analytical refinement and application to density-dependent ionization balances and AGN broad-line emis-
sion, The Astrophysical Journal Supplement Series, 237 (2018), p. 41, doi:10.3847/1538-4365/aad3c5.
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APPENDIX A. TIME SCALES

The calculation of timescales associated with various physical processes included in a given multifluid model is of
general interest. In the context of numerical simulations, it is often useful to be able to compute these timescales
at each point in time during a simulation to either (i) determine if the time integration scheme is able to resolve
the dynamics associated that process, if the timestep size is selected based on other criteria not dependent on the
timescales of that process; or (ii) ensure that the time integration scheme is able to resolve the dynamics associated
with that process through appropriate choice of timestep size. The purpose of this section is to describe a selection
of timescales associated with the multifluid models that have implementations available within Drekar. It should
be noted that this list is not meant to be an exhaustive description of timescales relevant to the multifluid models:
It is simply intended to serve as documentation of the timescale implementation in Drekar.

A.1. Plasma frequency

The standard definition of (electron) plasma frequency gives us a measure of the timescale of the high-frequency
oscillations present in the plasma due to separation between electron and ion dynamics:

τ f =
2πme

qe

√
ε0

ρe
. (186)

A.2. Collision timescale

The analysis in section 7.1.1 gives us some crucial insight into the dynamics of collisional relaxation processes
in the general multifluid model. Using the exact solutions generated in section 7.1.1, we define the timecales for
collisional relaxation of velocity and temperature by

τ−1
s;t (u) =αs;t

(
ρs +ρt

)
, (187a)

τ−1
s;t (T ) = 3

(
γ−1

)
αs;t

ms mt

ms +mt
(ns +nt ) , (187b)

respectively. It should be noted that in the case of two species with comparable number densities but drastically
different masses, the magnitude of (ρs +ρt ) is roughly that of the mass density of the heavier species, but the
magnitude of

ms mt

ms +mt
(ns +nt ) (188)

is closer to the mass density of the lighter species. Thus the relaxation timescales for velocity and temperature
often differ by a factor of approximately the mass ratio between the species, with the timescale for temperature
relaxation being much longer than that of the velocity relaxation.
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