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Magnetization of clusters is often simulated using atomistic spin dynamics for a fixed lattice. Coupled spin-
lattice dynamics simulations of the magnetization of nanoparticles have up to now neglected the change in
the size of the atomic magnetic moments near surfaces. We show that the introduction of variable magnetic
moments leads to a better description of experimental data for the magnetization of small Fe nanoparticles.
To this end we divide atoms into a surface-near shell and a core with bulk properties. It is demonstrated
that both the magnitude of the shell magnetic moment and the exchange interactions need to be modified to
obtain a fair representation of the experimental data. This allows for a reasonable description of the average
magnetic moment versus cluster size, and also the cluster magnetization versus temperature.
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Magnetic nanoparticles (NPs) are fundamental com-
ponents for applications such as catalysts or biomed-
ical materials.1–3 Developing numerical atomistic tools
allowing for accurate predictions of the temperature de-
pendence of the NPs’ magnetization dynamics, as well
as other relevant quantities of interest such as heat ca-
pacity, is of practical design interest.4 Such tools could
bring insight into the fundamental processes at stake,
and help tailoring NPs by locating optimum properties,
including size and shape, for technological5 and biomed-
ical applications.6

Our numerical effort is based on the classical spin-
lattice dynamics (SLD) approach.7 SLD is an atom-
istic method assigning classical spins to the magnetic
atoms in the simulated system.8–10 The potential energy
is computed by combining a purely mechanical poten-
tial with a Heisenberg exchange interaction. Through
the interatomic dependence of the exchange interaction,
the magnetic spins are coupled to the atomic poten-
tial energy. Thus, the corresponding molecular dynam-
ics simulation of such a system allows to calculate si-
multaneously the influence of (spin-derived) forces on
the atoms’ positions and the changes in the preces-
sion of the spins by the magnetic field set up by the
surrounding atoms. Such spin-lattice simulations have
been used up to now to describe the temperature de-
pendence of magneto-mechanical properties, phase tran-
sitions, phonon dispersion, demagnetization experiments
and other phenomena.11–15

Dos Santos et al. showed that SLD could be used
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to compute the temperature dependence of the magne-
tization for iron NPs.16 In this former study, the in-
fluence of thermal fluctuations on the total magnetiza-
tion was accounted for through both, the lattice and the
spin systems, since their coupling is evaluated in a time-
dependent way by the SLD simulations. However, this
work used fixed size for the atomic moments,16 thus ig-
noring their norm fluctuations due to surface effects.17

Those results yielded good qualitative agreement for
the NPs’ magnetization versus temperature trends, but
quantitative agreement with experiments was obtained
only if the magnetization was re-normalized. Since the
total magnetization of NPs is a strong function of the NP
diameter for small sizes, this situation is unsatisfactory.

In this work, we present an approach allowing to ac-
count for surface effects on the magnetic moments. We
explore its effects on the magnetization of iron NPs, and
display good quantitative agreement with experimental
measurements. We also show that our approach can be
straightforwardly used to compute the heat-capacity of
magnetic NPs, accounting for both lattice and magnetic
contributions.

We investigate spherical NPs with a diameter d be-
tween 1 and 8 nm. Considered NP diameters are small
compared to typical domain-wall thickness measured in
iron,18 allowing us to treat them as single-domain mag-
nets. The spheres are cut out from bcc Fe crystals, and
relaxed for 10 ps. In our SLD implementation, this means
that the atoms’ positions are allowed to thermally expand
and keep pressure to zero, while the spins respond to the
changed environment. The atoms interact through forces
computed from the spin Hamiltonian and the Chamati
et al. potential19 (see Supplementary Material for more
details). This potential was designed to accurately com-
pute surface energies, and former studies leveraged it to
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FIG. 1. Electron density (a) and local magnetic moment (b)
dependence on the atomic volume. Data computed for a ho-
mogeneously expanded / contracted bcc structure. Ab-initio
data obtained by Moruzzi et al.22 and Herper et al.23 (taken
from Ref. 24). The cross marks the equilibrium magnetic mo-
ment, µequ = 2.154µB , at the equilibrium atomic volume of

bcc Fe, 11.78 Å3.

investigate finite size systems.20,21

Initially, each classical spin vector si (of unit length)
points in [001] direction. The total spin S of a NP is given
by the magnitude of the vectorial sum over all atomic
spins si as

S =
1

N

∣∣∣∣∣∑
i

si

∣∣∣∣∣ . (1)

Thus, at temperature T = 0, S = 1.
Each atom i carries a local magnetic moment (whose

magnitude is determined by the atom’s environment) of
size µi and direction si. The average magnetic moment
per atom in the NP is then given by

〈µ〉 =
1

N

∣∣∣∣∣∑
i

µisi

∣∣∣∣∣ , (2)

which gives us the magnetization of the considered NP.
The interaction between the atomic spins may change

the spin direction and also influence the atomic motion.

It is dominated by the exchange interaction, −J(rij)sisj .
The space dependence of the exchange interaction is de-
scribed by a Bethe-Slater function, fit to the results by
Pajda et al.25, since it was proven to describe well the
magnetism of Fe NPs.16 J(r) is the only position depen-
dent term in this interaction, and is responsible for en-
ergy exchange between the spin and the atomic systems.
Cubic magneto-crystalline anisotropy is also included as
in Ref. 26, and details are given in the Supplementary
Material (see eqs. S.2 and S.3).

Our time step is set to 1 fs. We use Langevin ther-
mostats to equilibrate our NPs at the desired tempera-
tures for a time of 0.5 ns. After this time, the magnetic
properties are measured as an average over 0.3 ns. Fur-
ther details on our SLD approach are provided in Ref. 16.

We assign a magnetic moment to each iron atom de-
pending on its local environment. Fig. 1a displays the
magnetic moment of Fe atoms in compressed or expanded
bcc lattices, and how magnetism vanishes at high atom
densities and increases towards the free atom value (4µB)
for expanded lattices.27 In a zero-pressure bcc lattice,
µequ ≈ 2.154µB . We thus use the local atomic volume in
order to assign local magnetic moments to Fe atoms.28

Our work only uses the local volume, but more detailed
information about the local atomic coordination might be
needed for a more precise assignment of local moments.29

We also note that thermal expansion is more pronounced
in NPs than in the bulk, and the average atomic volume
increases strongly with decreasing diameter (see Fig. S1
in Supplementary Material).

The local electronic density – as obtained from the
EAM-type potential – carries information about the lo-
cal atomic volume, see Fig. 1b. We thus have an al-
gorithmic mapping between the local electronic density
(readily available at each step of the SLD simulation),
and the size of the local moments. We fit our data to a
function of the form24,28

µi = C

(
1−

√
ρi
ρc

)γ
. (3)

For the Chamati et al. potential,19 we obtain C =
(3.457± 0.259)µB and γ = 0.414± 0.073; ρc denotes the
critical electron density, at which ferromagnetism van-
ishes.

Fig. 2 exemplifies our results on the radial dependence
of magnetic moments µ(r) for a NP of diameter 2.3 nm.
The data can be divided in two categories,

(i) a core region extending up to r ≈ 9 Å, in which the
magnetic moment is close to the bulk value,

(ii) a shell of width ∆r ≈ 2.5 Å, in which the moments
increase linearly with r up to values of 2.6–2.65 µB .

This feature holds also at elevated temperature: at 600
K, the atomic moments calculated through Eq. 3 are
only slightly higher (but within the uncertainty limits),
since thermal expansion increases the atomic volume, as
seen in Figs. S1 and S3 in the Supplementary Material.
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FIG. 2. Atomic magnetic moment dependence on the distance
from NP center. Data are for a 2.3 nm Fe NP, at two different
temperatures. Dashed lines indicate the approximate shell
region

We note that this separation into core and shell regions
was found for all NP sizes investigated here; in partic-
ular, the shell width is always equal to 2.5 Å. This is
plausible, since it corresponds to a roughly monatomic
shell. The second outer atomic shell feels an environ-
ment which resembles bulk Fe, and hence the magnetic
moments take values close to bulk atoms.30–32 All SLD
calculations are performed leveraging the SPIN package
of LAMMPS.26,33 This SLD implementation considers
normalized spin vectors when computing the exchange
interaction. Therefore, in order to take into account
the influence of the atomic moments distribution, which
varies with respect to atomic volume and neighboring
spin configuration,17,34 atoms were divided into two sep-
arate groups: (i) the core with moment µcore, and (ii) the
shell with moment µshell, where the thickness of the shell
has been fixed to 2.5 Å. As can be seen on Fig. 2, this
only allows us to approximate the continuous magnetic
moment fluctuations. We choose µcore = 2.15µB and
µshell = 2.45µB as the average over the core and shell
atoms respectively, in agreement with Fig. 2. Both shell
width and average shell magnetic moments proved valid
for all cluster sizes (≤ 8 nm) and temperatures (T ≤ 900
K) (see Figures S2 and S3 in the Supplementary Ma-
terial). NPs larger than 8 nm are expected to behave
similarly, see Fig. S3.

This grouping influences the spin-lattice dynamics only
via the exchange interaction. While core spins inter-
act via J(rij)sisj , the factor J is scaled by µshell/µcore

for core-shell spin interactions, and by (µshell/µcore)
2 for

shell-shell interactions. Former studies have been report-
ing bulk exchange interaction calculations for iron,35,36

but we are not aware of similar computations for cluster
shells.

Experimental data are available by Billas et al.37 for
Fe NPs at 120 K with a number of atoms below N = 800,
corresponding to diameters below 2.6 nm. Fig. 3 shows
that our SLD simulation results – denoted by µshell =
2.45 – underestimates the experimental values by up to
approximately 25%. While the magnetic moment in-
creases with decreasing NP size, it only leads to magnetic
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FIG. 3. Average magnetic moment and experimental data
by Billas et al.37 as a function of the number of atoms in
the NP. Theoretical results obtained by our SLD approaches,
compared to the data published by dos Santos et al.16 The
experimental point by Margeat et al.38 is also included.

moments of around 2.25µB , even though the number of
core atoms is smaller than the number of shell atoms
for these small clusters, N < 100. An analysis of our
data shows that this is caused by the misorientation of
the atom spin for these small clusters: while the core
spin assumes values of S = 0.94, the shell spin is be-
low 0.92, and hence the total magnetization of NPs does
not increase much at T = 120 K. Note that a simulation
with all magnetic moments fixed to their bulk value µequ

shows a size independent magnetic moment of around
2.0µB ' 0.92µequ

16 (open circles in Fig. 3).
Experimental data reaches moments up to 3µB for

small NPs (N . 100), whereas our larger magnetic mo-
ment values are approximately 2.8µB , obtained for atoms
in edge positions on the NP surface. This demonstrates
that our model underestimates the magnetic moment
of shell atoms. Even deviations from spherical shapes
(which may occur in experiments), would not produce
larger magnetic moments in our approach. Those high
moments in small clusters have been investigated using
tight-binding calculations,39 and have been assigned to
structural changes in small NPs favoring fcc-like and
icosahedral coordinations connected to a re-ordering of
atomic orbitals and associated spin changes. Such struc-
tural changes are beyond the scope of this work (where
a bcc bulk-like structure is always assumed).

We therefore tested a second model, in which µshell =
3.0µB . Fig. 3 shows that this calculation gives better
agreement with the experimental data (reducing the er-
ror to approximately 10 % for the smaller NPs). Fig. 3
also shows reasonable agreement between our simulations
and other experimental result for 1.6 nm clusters.38 How-
ever, even for the smallest clusters, the magnetization re-
mains below 3.0µB for the reasons discussed above: the
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FIG. 4. Temperature dependence of the (a) average mag-
netic moment and (b) heat capacity for a 2.3 nm diameter
NP. Experimental data by Billas et al.37 are compared to our
theoretical results.

core moments are only 2.1µB and thermal fluctuations
disorder the low-coordinated shell spins at 120 K.

A discussion of the temperature dependence of the
magnetization brings us further insight. Fig. 4a repro-
duces experimental data for 2.3 nm diameter clusters
(N = 533). Our core-shell simulations with µshell =
2.45µB are in fair agreement with the experiments, and
only slightly overestimate the magnetic moment for in-
termediate temperatures (T = 400 − 600 K). However,
the calculations with µshell = 3.0µB strongly overesti-
mate the magnetic moment for all temperatures, indi-
cating that the spin-spin coupling is too strong in this
model.

Motivated by the results of Billas et al.37 (large mag-
netic moment, relatively low magnetization), we set a
third model (denoted by J∗(r)) in which we retain the
high value of the shell moments, µshell = 3.0µB , but re-
duce the exchange coupling of shell atoms with other shell
or core atoms to half their value. Thus, the function J(r)
by Pajda et al.25 is scaled by 1

2µshell/µcore for core-shell

spin interactions, and by 1
2 (µshell/µcore)

2 for shell-shell
interactions.

When comparing to our simulation results, this in-
dicates that exchange between shell-shell and shell-core

spins is weaker than we assumed before. Here, we find
that the 1/2 re-scaling factor of the shell-shell and shell-
core J(r) couplings gives excellent agreement with ex-
periments. An alternative approach could tune the ex-
change coefficients, and advanced fitting methods could
be employed.40 Previous simulations use the same ex-
change for core and shell41,42 but, given the current lack
of theoretical or experimental guidance we take surface
exchange as a free parameter, as in previous studies.43,44

Fig. 4a demonstrates that this choice nicely reproduces
the experimental data for the temperature dependence of
the 2.3 nm diameter clusters. Compared to the calcula-
tions with unchanged J , the magnetic moments of NPs
at 120 K have been reduced for all NP sizes, thus dete-
riorating the comparison with experiments, see Fig. 3.
As discussed above, this disagreement is likely caused by
structural changes in the NPs, and therefore out of scope
of the present calculations.

Locating the Curie transition on magnetic nanoclus-
ters is challenging. Heat capacity (Cp) measurements
gives an indirect determination of this phase-transition
temperature.45,46 Cp is computed by taking the internal
energy’s derivative with respect to temperature (details
are provided in the Supplementary Material). Our sim-
ulation results for the 2.3-nm NPs, Fig. 4b, show Cp
peaks near 500 K (associated with the ferromagnetic-
paramagnetic phase-transition). This is a considerable
shift compared to the bulk value, consistent with our
magnetization versus temperature results. The Cp curve
for the NP with homogeneous values of µ and J(r) shows
a similar peak, but shifted to higher temperatures since
those shell spins require more energy to disorder than
the shell-core case with J∗. We note that frozen-lattice
spin dynamics simulations give a different position and
shape of the specific maximum, indicating that coupled
spin-lattice simulations are required to correlate Cp and
the Curie temperature. These results could be especially
relevant for biomedical applications, since a precise es-
timation of Cp is essential to evaluate heating of NPs
for applications like magnetic induction hyperthermia.47

This is particularly important as lattice-only simulations
do not account for magnetic degrees of freedom, and
thus cannot recover this intermediate temperature Cp
peak.48 Most “Atomistic Spin Dynamics” (ASD) simula-
tions use a fixed perfect lattice, ignoring thermal motion
of the atoms. Dos Santos et al.16 studied the impor-
tance of moving atoms for 3 nm NPs, and found that
frozen-lattice simulations lead to unphysical compressive
stresses of 0.2 GPa. Fig. S4 compares our magnetic-
moment results to those obtained by a frozen-lattice cal-
culation, and shows better agreement with the experi-
ment for the moving lattice case.

Fig. 5 displays how the NP spins become disordered
with temperature. The total spin S averaged throughout
the NP, and over the shell and core only are plotted for
2.3 nm diameter clusters. The distinction between core
and shell atoms and their different magnetic moments
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FIG. 5. Average spin per atom S temperature dependence in a 2.3 nm diameter NP, and its core and shell contributions. Data
obtained with a shell magnetic moment of (a) µshell = 2.45, (b) µshell = 3.0, and (c) a modified exchange coupling J∗(r).

and couplings have a strong influence on the spin disor-
dering. The model with µshell = 3.0µB shows a strong
coupling of the shell and core atoms, which is not un-
expected, since for this cluster size, more than 51 % of
all atoms are in the shell. In this model, the low co-
ordination of surface atoms is compensated with higher
magnetic exchange coupling amongst them. On the other
hand, spins show a clearer distinction between shell and
core values for the µshell = 2.45µB model and even more
for the J∗(r) model, demonstrating the decreased cou-
pling between the moments in these models.

Because of their higher coordination, the core atoms
remain magnetically stiffer to higher temperatures than
shell atoms. In previous work,16 it was shown that the
main influence of atomic thermal motion on the magne-
tization is felt at temperatures beyond 400 K and leads
to a substantial decline in magnetization; this influence
is included in our present calculations.

We used SLD to perform a core-shell investigation of
magnetic NPs. Calculations of the influence of the atomic
volume on the magnetic moment based on a local bcc-
like coordination show that the surface shell in which
atomic moments deviate from their bulk value is only 2.5
Å thick, and atomic moments there assume an average
value of µshell = 2.45µB . We greatly improved agreement
with available experimental data37 by increasing the shell
moment to µshell = 3.0µB , but decreasing the exchange
interaction among shell atoms and between shell and core
atoms by 50 %. We showed that a core-shell model
has sufficient flexibility to represent the magnetization
of Fe NPs with SLD, and to accurately compute quanti-
ties of practical design interests, such as the temperature
and NP size dependence of the magnetization or heat-
capacity.

We believe a major approximation of our classical
model consisted in treating the exchange coupling J(r)
as temperature independent; including this dependence

might lead to more precise predictions36,49,50, improv-
ing agreement in Fig. 3, while retaining the excellent
agreement in Fig. 4a. In addition, we have considered
the magnetic cubic anisotropy identical for all spins,16

although it should vary near the surface due to coor-
dination reduction.51,52 Different values for NPs having
different core/shell fractions should be considered (with
an expected reduction of about 10% when halving the
cluster size53). Former studies also leveraged the Néel
pair interaction to reproduce magneto-elastic and surface
anisotropic effects,15,54 but using it for SLD simulations
of NPs remains to be investigated.

In future work, the possibility of assigning arbitrary
magnetic moment values for individual atoms during the
calculation of exchange interaction will be investigated.
This would allow us reproduce the moment fluctuations
displayed on Fig.2, and should improve our agreement
with experimental predictions. Complementary ab-initio
computations of finite size effects on both the size of
moments and the effective exchange interaction between
atoms for small clusters could also be designed.

SUPPLEMENTARY MATERIAL

See supplementary material for additional information
on the dependence of the average atomic volume of NPs
on their size, the cubic magneto-crystalline anisotropy, a
comparison of our calculations to frozen lattice simula-
tions, the Hamiltonian used and heat capacity calculation
details.
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