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ABSTRACT 

Time-resolved particle image velocimetry (PIV) is applied 
to the flow field at the immediate exit of a rotating detonation 
combustor (RDC) operating on methane fuel and oxygen-
enriched air. The detailed experimental results, which allow for 
the quantification of the periodic flow field, are believed to be 
the first such measurements acquired for a RDC. A thorough 
understanding of the velocity flow field exiting the combustor is 
important to develop future rotating detonation engine (RDE) 
design, as well as to successfully implement the flow 
conditioning devices to power generating turbine hardware 
located downstream. In this study, multiple PIV tests were 
conducted and a test case with over 16,000 consecutive image 
pairs acquired at a PIV framing rate of 30 kHz is analyzed in 
detail, and is supplemented with another test case to verify the 
repeatability of the measurements. Results are discretized into a 
two-dimensional flow field to reveal the significant insights to 
characterize the cyclical velocity fluctuations. While the flow 
field is primarily axial, a significant circumferential velocity 
component is also present. Key attributes of the velocity flow 
field are observed to be repeated from cycle-to-cycle. The 
codependency of the fluctuations in axial and circumferential 
velocity components are investigated, as is the relationship 
between velocity magnitude and flow orientation. At discrete 
measurement locations, the Fourier analysis of PIV data is 
used to reconstruct the cyclical variation of velocity 
components with respect to the phase angle.  

 
 
 

 
 

 
 

 
INTRODUCTION 
 In recent years, pressure gain combustion (PGC) has 
received considerable attention in the scientific community 
because of its potential to increase the fuel efficiency [1-3]. 
One of the methods to utilize PGC is to replace deflagration 
with detonation in continuous flow, constant pressure systems 
such as gas turbines for power generation [4]. In this regard, 
pulse detonation combustion (PDC) has been studied 
extensively [5]. However, challenges such as intermittent 
operation requiring fast response inlet valves, inconsistent fuel-
air mixing, low cycling frequency, etc., make it difficult to 
implement PDC in practical systems [6]. Rotating detonation 
combustion (RDC) is an alternative approach whereby 
detonation occurs in the circumferential rather than the linear 
direction used for PGC. Thus, RDC yields a continuous 
combustion process, and although first conceived by 
Voitsekhovskii [7] and Nicholls [8] in 1960’s, the concept has 
been vigorously investigated in recent years because of its 
potential to increase the fuel efficiency. Hardware 
implementing RDC is referred to as the rotating detonation 
engine (RDE), and the two terms, RDC and RDE, are often 
used interchangeably. Studies of RDC employ axial flow 
between circular channels such as an annulus, radial flow 
between circular disks or even flow in a circular pipe to achieve 
continuous rotating detonation [9-11]. Figure 1 illustrates the 
important physical processes in RDC representing the annular 
hardware employed for the present study. 
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evidence of significant circumferential velocity fluctuations at 
the RDE exit, an observation not yet quantified in experimental 
literature, though documented in computational studies [31-32].  

While the measurements displayed in Fig. 9 correspond to 
the primary experiment, they agreed the secondary experiment, 
as well as other PIV data acquired at this flow condition. 
Another study conducted by the research group at UA using a 
different laser system presents results from additional tests, one 
conducted at the present flow condition and another at a higher 
flow rate of reactants [35]. That study shows similar 
quantitative results proving reliably of the present PIV 
diagnostics. 

Figure 10 presents measurements at various points 
organized into histogram plots. Here, the primary and 
secondary experiments are compared to observe the similarities 
in the distribution of velocity measurement values. For all three 
points inspected in Fig. 10, both experiments showed strong 
agreement with each other, again indicating that the PIV data 
are repeatable. For point 1 in the primary experiment, the 
histogram in Fig. 10(a) reveals that the most densely populated 
axial velocity range is between 657 and 766 m/s, comprising 
15% of all data points. Over 60% of the axial velocity 
measurements are between 329 m/s and 875 m/s, and nearly 
2/3rd of the data points exceed 438 m/s. Meanwhile, Fig. 10(a) 
reveals an asymmetric distribution of axial velocity with 
minimum threshold of about 0 m/s.  

Several interesting observations are made from the 
histogram of the circumferential velocity at point 1 in Fig. 
10(b) for the primary experiment. Nearly 17% of measurements 
from the primary experiment are between -26.8 m/s and 54.6 
m/s, when the flow is primarily axial. However, 44% of the 
measurements have circumferential velocity greater than 54.6 
m/s (CW), and about 40% of data indicate negative 
circumferential velocity of less than -26.8 m/s (CCW). The data 
distribution suggests that near the RDE exit at point 1, the flow 
oscillates axially and circumferentially in and counter to the 
direction of rotation for the detonation and oblique shock waves 
within the RDE annulus.  

Figure 10(c)-(d) show respectively the histograms of axial 
and circumferential velocity measurements at point 2, i.e., x = 
14.53 mm and y = 9.0 mm. At this downstream location, the 
overall trends agree with those upstream at point 1. The 
asymmetric nature of the axial velocity histogram is similar to 
that at point 1. However, 10.7% of axial velocity measurements 
of the primary experiment at point 2 are between -37.8 m/s and 
30.9 m/s. At point 2, the circumferential velocity component is 
more densely distributed at the mean value of about 0 m/s. 
Figure 10(e)-(f) show that the axial velocity histogram at point 
3 is similar to those at points 1 and 2 for values greater than 
200 m/s. Likewise, the asymmetric distribution of the axial 
velocity at the downstream location is similar to that at the two 
upstream points. 

Increasing occurrence of low axial velocity regions at 
downstream locations can be attributed to multiple reasons. 

One cause could be the existence of localized flow recirculation 
regions with vortical structures caused by the rarefaction events 
following shock events. Second, portions of the PIV 
measurements might be compromised by insufficient seed in 
these low velocity regions, yielding greater inaccuracies in the 
PIV analysis. Lower circumferential velocity at the downstream 
location indicates diminishing rotation as the flow expands into 
the ambient.  
 
Analysis of Flow Periodicity  
 Next, measurements were scrutinized for a brief test 
duration of 1 ms, representing about six oscillations cycles, to 
discern the relationship between the two velocity components. 
Figure 11 presents these measurements for the four selected 
points. Measurements from both the primary and secondary 
experiments are shown for comparison. The points correlated to 
test segment about 0.217 sec after ignition for the primary 
experiment and 0.312 sec after ignition for the secondary 
experiment. Note that although the data points in the plots are 
connected by lines for aide in visualization, these points 
separated by 33.3 μs time interval are sequential measurements, 
and should not be interpreted as perfectly replicating the 
periodic flow field. Yet, interesting trends of flow periodicity 
can be observed; the axial velocity undergoes a steep velocity 
increase within each cycle, and at the same time, the 
circumferential velocity reaches a local minimum indicating a 
clockwise flow orientation. Maximum velocity magnitudes are 
observed both along the finite oblique shock front, as well as in 
the expansion region immediately following it. These instances 
are represented by images 1 and 6 in Fig. 7, and frames (a) and 
(f) in Fig. 8. While maximum CW oriented circumferential 
velocities are associated with measurements acquired at the 
oblique shock front, those in the expansion regime have low 
circumferential velocities, indicating primarily axial flow. This 
non-axial component of the flow then trends positive (CCW), 
indicating “tilt” of the flow in the direction opposite to the 
detonation wave propagation as the axial velocity decreases. 
Immediately preceding the arrival of the next shock wave, both 
the axial and circumferential velocity components are observed 
at the lowest values. Upon arrival of the shock front, the axial 
velocity increases, and the circumferential velocity again “tilts” 
in the direction of the propagating shock (CW). 
 These results further confirm observations made from the 
interpretation of PIV images: the flow field is highly period and 
heavily influenced by the oblique shock wave passing the field 
of view at all four selected nodal locations. These trends are 
consistent in both the primary and secondary experiments. Note 
deviations in velocity peaks are caused by minor differences in 
the acquisition time for the two case, and the rapid changes in 
flow velocity occurring during the period cycle. Results 
demonstrate the switching of the flow orientation and are 
consistent with computational studies to characterize the 
circumferential flow field at the RDC exit [32]. 
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spectrogram.  
 The corresponding data was used to reconstruct the phase-
averaged cycle presented in Figure 15 for two different time 
segments. The dominant frequencies used to reconstruct Fig. 
15(a)-(b) were 6,400 Hz and 6,421 Hz, respectively. Though 
the cycles do not align perfectly because of the arbitrary phase 
angle assignment, the overall trends and magnitudes of axial 
and circumferential velocity are similar in both time segments. 
The scatter in the plots is attributed to still unresolved cycle-to-
cycle variations, and to fluctuations inherently present in a 
turbulent flow. The axial velocity measurements show a steep 
positive slope as the oblique shock wave crosses the field of 
view and the velocity values rise quickly. At this time, the 
circumferential velocity has negative values corresponding to 
the clockwise orientation of the detonation wave propagation. 
In the expansion regime following the passing of the shock 
wave, the axial velocity maximum is reached. In this regime, 
low circumferential velocity values indicate that the flow is 
primarily axial. Then, the circumferential velocity undergoes 
“tilt” in a direction opposite to that of the detonation wave 
while axial velocity reaches a minimum. More precise phase-
resolved velocity measurements are expected at high reactant 
flow rates, when the cycle-to-cycle variations are significantly 
smaller as demonstrated by Welch et al. [33], but Fig. 15 helps 
establish the phase relationship between the two velocity 
components.  

 
CONCLUSIONS 

In this study, time-resolved particle image velocimetry at 
an image pair acquisition rate of 30 kHz was used to 
characterize the flow field, oscillating at a frequency of greater 
than 6 kHz, immediately at the exit a rotating detonation engine 
operating with methane fuel and oxygen enriched oxidizer and 
configured with a back-pressure plate to simulate power 
generating gas turbines. For the primary experiment, the 
diagnostic was successful in acquiring over 16,000 consecutive 
PIV image pairs, corresponding to over 0.53 sec of test data. 
Measurements were acquired on a 2D plane along the cord 
length where the PIV data could be approximately discretized 
into axial and circumferential velocity components. Analysis of 
the PIV data resulted in the following conclusions: 
• Inspection of PIV images led to the observation of an 

oblique shock structure propagating in the same direction 
as the detonation wave and oblique shock wave inside the 
annulus. The vectors plots indicated that the instantaneous 
flow field varied significantly with time in a periodic 
manner.  

• The histograms at four nodal points along the flow 
direction revealed an asymmetric distribution for the axial 
velocity and a nearly symmetric distribution for the 
circumferential velocity with mean value for the latter of 
about 0 m/s.  

• The phase relationship between velocity oscillations 
revealed that an increase in the axial velocity coincided 
with the passing of oblique shock structure. Behind the 
oblique shock structure, the axial flow velocity decreased 
as the flow in the circumferential direction reversed away 
from the oblique shock structure. The circumferential 
velocity in the counter clockwise orientation was largest 
when the axial velocity was minimum. These results are 

consistent with computational studies of RDC exhaust flow 
field, such as those conducted by Nordeen et al. [32]. 

 
• The primary experiment was compared with a secondary 

experiment conducted at the same operational conditions. 
The results of the two experiments yielded similar 
quantitative trends in the oscillatory flow behavior 
indicating that the PIV data are repeatable. 

• FFT analysis was performed to reveal that the flow field 
oscillated at nearly the same frequency as the detonation 
wave and oblique shock wave within the RDE, proving 
direct evidence that the detonation wave motion indeed 
affects the downstream flow field.  

• Spectrogram from velocity measurements was utilized to 
isolate test segments with minimum cycle-to-cycle 
variations and thus, to reconstruct the phase-resolved axial 
and circumferential velocity profiles for an oscillation 
cycle. Results show trends observed in other plots, but also 
indicate that cycle-to-cycle variations can be difficult to 
account for accurately.  
 
Several improvements to the PIV diagnostic can be made 

for future studies. For example, experimental uncertainties 
related to spatial and temporal non-uniformities in seed 
distribution must be quantified and minimized, although this is 
a difficult task to realize in practice because of the high 
temperature, and large temporal and spatial variations in the 
flow velocities. Temporal incongruities in seed distribution can 
contribute to portions of the flow being unresolved, which 
affects the validation of neighboring cells. Additionally, smaller 
seed particles should be used to reduce the relaxation time [40-
41], but it will require pulse lasers with higher power. 
Additionally, the effect of laser light intensity, time between 
laser pulses, laser sheet thickness, laser pulse duration, and 
laser frequency are important issues, and should be addressed 
in future studies. For example, it was determined that while the 
intensities delivered from two separate laser diode heads for 
pulse “A” and pulse “B” could be manipulated to an extent, 
there were still disparities in intensity between the two laser 
sheet. These disparities should be minimized further to the 
extent possible within the hardware limitations in future 
studies. 

While this study confirmed that TR-PIV is feasible in the 
periodic, supersonic, high temperature environment 
immediately outside the RDE, future studies should aim to 
acquire flow measurements within the RDE at multiple 
operating conditions, without and with flow conditioning de 
vices integrated into the RDE hardware, to not only quantify 
the pressure gain but also to minimize the overall pressure loss 
while meeting the flow requirements at the turbine inlet. 
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