
A Massively Parallel Implementation of the CCSD(T) Method Using
the Resolution-of-the-Identity Approximation and a Hybrid
Distributed/Shared Memory Parallelization Model
Dipayan Datta and Mark S. Gordon*

Cite This: https://doi.org/10.1021/acs.jctc.1c00389 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: A parallel algorithm is described for the coupled-cluster singles and doubles method augmented with a perturbative
correction for triple excitations [CCSD(T)] using the resolution-of-the-identity (RI) approximation for two-electron repulsion
integrals (ERIs). The algorithm bypasses the storage of four-center ERIs by adopting an integral-direct strategy. The CCSD
amplitude equations are given in a compact quasi-linear form by factorizing them in terms of amplitude-dressed three-center
intermediates. A hybrid MPI/OpenMP parallelization scheme is employed, which uses the OpenMP-based shared memory model
for intranode parallelization and the MPI-based distributed memory model for internode parallelization. Parallel efficiency has been
optimized for all terms in the CCSD amplitude equations. Two different algorithms have been implemented for the rate-limiting
terms in the CCSD amplitude equations that entail N N( )O V

2 4 and N N( )O V
3 3 -scaling computational costs, where NO and NV denote

the number of correlated occupied and virtual orbitals, respectively. One of the algorithms assembles the four-center ERIs requiring
NV

4 and NO
2NV

2-scaling memory costs in a distributed manner on a number of MPI ranks, while the other algorithm completely
bypasses the assembling of quartic memory-scaling ERIs and thus largely reduces the memory demand. It is demonstrated that the
former memory-expensive algorithm is faster on a few hundred cores, while the latter memory-economic algorithm shows a better
strong scaling in the limit of a few thousand cores. The program is shown to exhibit a near-linear scaling, in particular for the
compute-intensive triples correction step, on up to 8000 cores. The performance of the program is demonstrated via calculations
involving molecules with 24−51 atoms and up to 1624 atomic basis functions. As the first application, the complete basis set (CBS)
limit for the interaction energy of the π-stacked uracil dimer from the S66 data set has been investigated. This work reports the first
calculation of the interaction energy at the CCSD(T)/aug-cc-pVQZ level without local orbital approximation. The CBS limit for the
CCSD correlation contribution to the interaction energy was found to be −8.01 kcal/mol, which agrees very well with the value
−7.99 kcal/mol reported by Schmitz, Haẗtig, and Tew [Phys. Chem. Chem. Phys. 2014, 16, 22167−22178]. The CBS limit for the
total interaction energy was estimated to be −9.64 kcal/mol.

1. INTRODUCTION

The quest for accurate, reliable, and computationally affordable
electronic structure methods is a primary research focus in
chemistry and related fields. Although density functional
theory (DFT) has long been a method of choice for the
computational modeling of chemical problems of practical
interest because of its favorable computational costs, the
semiempirical nature of the DFT functionals has hindered their

Received: April 17, 2021

Articlepubs.acs.org/JCTC

© XXXX American Chemical Society
A

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

IO
W

A
 S

T
A

T
E

 U
N

IV
 o

n 
Ju

ly
 3

0,
 2

02
1 

at
 1

9:
25

:2
9 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dipayan+Datta"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mark+S.+Gordon"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.1c00389&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=tgr1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf


persistent success due to the lack of systematic improvability.
Wave function based quantum-chemical methods, which aim
at approximately solving the many-electron Schrödinger
equation from first-principles, offer a powerful alternative to
DFT. Coupled-cluster (CC) theory1−3 has emerged as a
broadly successful member of this family, especially in its
CCSD(T)4,5 variant with single and double excitations
augmented with a noniterative correction for triple excitations.
The pre-eminent success of CCSD(T) in achieving quantita-
tive accuracy in the calculation of energies, geometric
parameters, and spectroscopic properties of broad interest, in
cases where the target electronic state can be adequately
described by a single-determinant wave function, has
established this method as a “gold standard” of quantum
chemistry. Unfortunately, the steep N( )7 scaling of the
computational cost of CCSD(T), where N is a measure of the
system size, has confined its applicability to molecules
consisting of only 15−20 atoms when using traditional
sequential algorithms. Empowered by the advancements in
massively parallel computer architectures, as well as by the
recent developments in various cost-reducing approaches;
however, the CC method has risen to prominence in
computational chemistry during the past two decades.
Adapting a standard CCSD(T) implementation to modern

parallel computer architectures is a viable strategy for
expanding its applicability to large systems. Massively parallel
CC implementations are available in several quantum
chemistry programs, including NWChem,6,7 GAMESS,8

PQS,9,10 ACESIII,11 and Aquarius.12 A parallel implementation
of CCSD(T) not only speeds up the computation by
distributing the steep-scaling floating point operations
(FLOPs) over a number of parallel compute processes, but
in addition makes use of the aggregate storage capacity of all
nodes in a computer cluster for storing the requisite four-
center two-electron repulsion integrals (ERIs), the N4 scaling
storage cost of which presents a memory bottleneck. The
implementation in PQS employs distributed disk storage
through the Array Files middleware,13 while the implementa-
tions in NWChem and GAMESS employ the Global Arrays
(GA) toolkit14 and the Distributed Data Interface (DDI),15,16

respectively, for storing large data arrays in the distributed
random access memory (RAM) of a computer cluster. These
parallel implementations have successfully expanded the
applicability of the CCSD(T) method to calculations involving
∼1000−1500 atomic basis functions.7,9,17 However, the use of
the standard four-center ERIs imposes a performance limit to
these parallel CCSD(T) codes. The implementations that
employ a distributed memory model (GA or DDI) require a
large number of compute nodes for storing the large four-
center ERI matrix in order to make a large-scale CCSD(T)
computation feasible. Since the network communication
overhead associated with accessing data from the distributed
memory increases rapidly with the number of nodes, the
scalability of these codes is less than optimal when the number
of nodes becomes very large.
The large memory demands and the communication

bottlenecks of a standard CC program can be effectively
reduced by employing approximate tensor factorization
schemes.18−24 The most widely used tensor factorization in
the context of wave function based electron correlation
methods concerns applying the density fitting (DF)/
resolution-of-the-identity (RI) approximation25−29 or alter-
natively the Cholesky decomposition (CD)30−33 to the

standard four-center ERI matrix. In both DF/RI and CD
factorization schemes, the four-center ERIs are decomposed
into products of three-index tensors, the memory requirement
for which scales as N3. Unlike the four-center ERIs, these
three-index tensors can be stored in a replicated manner on the
RAM of each compute node. Use of the aggregate disk storage
or the distributed RAM of a large computer cluster then
becomes unimportant. A suitable integral-direct algorithm can
be designed that assembles the requisite four-center ERIs on
the fly. Fully or partially integral-direct RI/CD-CC algorithms
are becoming increasingly common,34−41 as they offer an
effective way to achieve improved parallel efficiency compared
to standard CCSD(T) algorithms using four-center ERIs
without compromising the accuracy. It is important to note
that the DF/RI or the CD approximation does not reduce the
computational scaling of the CC method, for example, the

N( )6 scaling of CCSD. However, they offer a better
factorization of the CCSD amplitude equations than do the
standard four-center ERIs. This factorization can be utilized to
arrive at a compact set of working equations, e.g., by
introducing a t1-transformed Hamiltonian,37,41 thereby reduc-
ing the overall computational task.
Achieving true reduced scaling for the CC methods requires

exploiting the short-range nature of dynamic electron
correlation and employing localized orbitals to represent the
ERIs as well as the cluster amplitudes. These localized orbitals
substitute the traditionally used canonical Hartree−Fock (HF)
orbitals that are spread over an entire molecule. A local CC
method is thus capable of treating a large molecule as a whole
at the expense of some accuracy (usually minor) and can in
practice achieve linear scaling with respect to memory and
computational costs. Following the pioneering work of Pulay
and Saebø,42−44 several local CC methods45−55 have been put
forth. The recently developed linear scaling domain-based local
pair-natural orbital CC (DLPNO−CC) approach advocated
by Neese and co-workers56−58 has emerged as one of the most
powerful local CC approaches because of its several extensions
beyond ground state energy calculations. It is important to
mention that the high efficiency of local CC approaches
derives mainly from the compact description of the correlated
wave function rather than from a massively parallel
implementation, even though most local CC programs take
advantage of parallel computer architectures.
While the present work is aimed at enabling applications to

macromolecular systems consisting of a few thousand atoms
described by a few hundred thousand basis functions, treating
the entire system at the CC level of theory is not intended.
Rather, the goal is to design a multilevel approach by
combining the CCSD(T) method with the well-known
fragment molecular orbital (FMO) approach.59−64 Such a
multilevel approach will facilitate the exploration of extended
systems, while retaining the high accuracy of the CCSD(T)
method. Li and Piecuch proposed an alternative multilevel
approach,65 which uses the local orbital framework of the
cluster-in-molecule (CIM) scheme51 and combines high-level
methods, such as the completely renormalized CC [CR-
CC(2,3)] theory66,67 with the second-order Møller−Plesset
perturbation theory (MP2) for treating the reactive and
nonreactive parts of large molecular systems. One bottleneck
of local orbital approaches like the CIM method is the need to
localize the orbitals of the entire system. Findlater et al.68

circumvented this problem by combining the CIM and FMO

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

B

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


methods so that one only needs to localize the orbitals of
smaller fragments, rather than those of the entire molecule.
An attractive feature of the FMO approach is that its design

is ideally suited for taking advantage of massively parallel
computers. A molecular system is divided into fragments, each
of whose energy can be computed independently of the
energies of the other fragments. The individual fragment
calculations can then be distributed among separate groups of
compute nodes. One has the option of treating all pairs of
fragments (i.e., dimers) explicitly, resulting in the FMO2
method. Similarly, one can include trimers (FMO3) to capture
explicit three-body effects. For a multilevel scheme based on
the CCSD(T) method, maximum advantage of the coarse-
grained parallelism of the FMO approach can be taken if a
massively parallel CCSD(T) algorithm is designed, which not
only distributes the computational task among the compute
nodes in a group but also exploits the fine-grained parallelism
that is feasible with modern multiprocessor CPUs. The goal of
the present work is to develop such a massively parallel
CCSD(T) algorithm for closed-shell molecules within the
GAMESS (General Atomic and Molecular Electronic Structure
System) program suite.69,70 The DF/RI approximation for the
ERIs is employed in the present implementation to gain
parallel efficiency and reduce memory demands. However, the
cluster amplitudes are treated in the conventional way without
any tensor factorization. A combined FMO/RI-CCSD(T)
method will be reported in the future.
The FMO implementation within GAMESS uses the

Generalized Distributed Data Interface (GDDI)71 paralleliza-
tion model that partitions a number of nodes into groups, with
each group processing one fragment (usually a monomer or a
dimer). Within each group of nodes, one can implement fine-
grained parallelism for a chosen electronic structure method,
thereby enabling dual level parallelism. The GDDI model is
based solely on the Message Passing Interface (MPI) library. A
recent implementation of the MP2 method using the RI
approximation combined with the FMO approach (FMO/RI-
MP2)72 has shown that the communication overhead between
the intranode compute processes can be greatly reduced by
adopting a shared-memory thread-based parallelization model
using, e.g., OpenMP instead of MPI. The hybrid MPI/
OpenMP model of FMO/RI-MP2 has been shown to achieve
a 10× speedup in calculations involving medium to large water
clusters compared to the pure MPI-driven GDDI model.72

This hybrid MPI/OpenMP model is adopted also in the
present work for the implementation of RI-CCSD(T).
The algorithmic considerations employed here are guided by

two primary goals: to achieve good parallel scaling and to make
large-scale applications of the RI-CCSD(T) method feasible
even when computational resources are limited. An important
consideration is to make the developed programs usable for the
general computational chemistry community, while also taking
advantage of the most powerful computers available. To
accomplish these goals, a number of alternative algorithms
have been implemented for the RI-CCSD part. In general, this
work has focused on (i) reducing memory footprints at the
expense of slightly increasing the number of operations, (ii)
minimizing network communications and disk input/output
(I/O) operations, and (iii) maintaining vectorization of the
tensor contractions pertaining to the numerical evaluation of
various terms. The reported implementations use a fully
integral-direct algorithm and employ a set of amplitude-
dressed three-index intermediates.36,37,41 The (T) correction

algorithm developed in this work completely bypasses the
poorly scaling index permutation and vector addition
operations following a recent suggestion by Nagy and
Kaĺlay.41,54 Note that several alternative algorithms are possible
for the implementation of RI-CCSD(T), each of which has its
advantages and disadvantages. This work reports and tests only
a few of them. Section 2 presents the new factorized RI-CCSD
amplitude equations and the equations pertinent to the (T)
correction. Section 3 describes the details of the proposed
algorithm. Section 4 reports on the assessment of the parallel
efficiency of the new code. Section 5 presents an accurate
calculation of the basis set extrapolated interaction energy of
the π-stacked uracil dimer, as well as a model application to
study the energetics of a rhodium-catalyzed C−H bond
activation reaction.

2. THEORETICAL BACKGROUND
The closed-shell coupled-cluster wave function is given by

|Ψ ⟩ = ̂ |Φ ⟩Texp( )CC 0 (1)

where Φ0 denotes a single-determinant reference state, usually
a restricted HF (RHF) wave function, and the cluster operator
T̂ is defined as the sum of various n-electron excitation
components given by

∑̂ =
!

̂
···
···

···
···

···
···T

n
t E

1
n

i j k
a b c

abc
ijk

ijk
abc

, , ,
, , , (2)

In eq 2, tabc...
ijk... denote spatial orbital-based cluster amplitudes

corresponding to excitations from the occupied orbitals i,j,k,...
in Φ0 to the virtual or unoccupied orbitals a,b,c,... and Êijk...

abc...

denote spin-summed second-quantized excitation operators.73

The cluster amplitudes are determined via an iterative solution
of the nonlinear CC amplitude equations, which are derived by
substituting the ansatz of eq 1 into the electronic Schrödinger
equation, followed by projecting the similarity transformed
Hamiltonian operator exp(−T̂)Ĥexp(T̂) onto various n-
electron excited determinants. For the CCSD(T) method
considered in the present work, one needs to solve the CCSD
amplitude equations given by

= ⟨Φ | ̂ |Φ ⟩ =

= ⟨Φ | ̂ |Φ ⟩ =

− ̂+ ̂ ̂+ ̂

− ̂+ ̂ ̂+ ̂

R e He

R e He

0

0

i
a

i
a T T T T

ij
ab

ij
ab T T T T

( ) ( )
0

( ) ( )
0

1 2 1 2

1 2 1 2
(3)

which determine the amplitudes ta
i and tab

ij , respectively. In eq 3,
{Φi

a} and {Φij
ab} indicate singly and doubly excited

determinants.
The residuals Ri

a and Rij
ab are expressed in terms of the cluster

amplitudes ta
i and tab

ij , the Fock matrix elements f pq, and the
four-center ERIs (pq|rs) with p,q,r,..., etc., denoting general
(occupied or virtual) spatial orbital indices. The detailed
expressions for the residuals are well-known in the
literature.2,73 A number of factorization schemes have been
put forth for an efficient evaluation of the CCSD residuals by
identifying common intermediates.74−76

In the DF/RI approximation,25−29 the one-electron densities
ρpq(r) = ϕp(r)ϕq(r) in the standard four-center ERIs

∫ ∫ ϕ ϕ ϕ ϕ| =
| − |

pq rs d dr r r r
r r

r r( ) ( ) ( )
1

( ) ( )p q r s1 2 1 1
1 2

2 2
(4)

are substituted with fitted densities ρ̅pq(r) that are expanded in
a preoptimized auxiliary basis set {χP(r)} as

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

C

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


∑ρ χ̅ = Cr r( ) ( )pq
P

N

pq
P

P

aux

(5)

with Naux denoting the dimension of the auxiliary basis set. The
fitting or expansion coefficients Cpq

P are in turn determined by
minimizing the error between the actual and the fitted densities
with a weight factor of 1/|r1 − r2|. This leads to

∑= | [ ]−C pq Q J( )pq
P

Q
QP

1

(6)

where the sum goes over the auxiliary basis functions. The
elements of the Coulomb metric matrix J are defined as

∫ ∫ χ χ=
| − |

J d dr r r
r r

r( )
1

( )PQ P Q1 2 1
1 2

2
(7)

and the three-center ERIs (pq|P) as

∫ ∫ ϕ ϕ χ| =
| − |

pq P d dr r r r
r r

r( ) ( ) ( )
1

( )p q P1 2 1 1
1 2

2
(8)

Substituting eqs 5 and 6 into eq 4 and using eq 8 one obtains

∑| = | [ ] |−pq rs pq P Q rsJ( ) ( ) ( )
P Q

PQ
,

1

(9)

The four-center ERIs (pq|rs) can be expressed as products of
three-center two-electron integrals, henceforth referred to as
“RI integrals”, as

∑| =pq rs B B( )
P

N

pq
P

rs
P

aux

(10)

by factorizing the Coulomb metric matrix J via the Cholesky
decomposition J = LLT, where L is a lower triangular matrix,
and by defining the RI integrals as

∑= | [ ]−B pq Q L( )pq
P

Q
QP

1

(11)

The accuracy of the RI approximation given by eq 10 depends
on the quality of the auxiliary basis set and its dimension Naux.
The commonly used auxiliary basis sets have been optimized
for individual atoms, atomic orbital (AO) bases, and for
different levels of theory. Although auxiliary bases optimized
for CC calculations are not available, it has been shown that
the auxiliary bases optimized for MP2 calculations can be used
also in CC calculations.37 These basis sets, which are indicated
with the “RI” extension to the AO basis name,77−79 have been
employed in this work.
A straightforward strategy to implement the CCSD

amplitude residuals given by eq 3 using the RI integrals
would be to preassemble and store the four-center ERIs and
substitute them in standard CCSD equations. This would
allow one to reuse an already available implementation.
However, the full advantage of the memory savings and an
improved parallel efficiency offered by the RI integrals can only
be exploited if the four-center ERIs are assembled on the fly.
Note that the computational cost associated with the integral
assembling according to eq 10 scales as N( )5 , which is an
additional cost in comparison to a CCSD implementation
using standard four-center ERIs. Hence, care should be
exercised to minimize the number of integral assembling
steps. This can be effectively done by devising a new
factorization scheme for the CCSD amplitude residuals that
groups together the terms in eq 3, which require a given class

of four-center ERIs, for example, (ij|kl), (ij|ab), (ia|jb), ..., etc.;
that is, (OO|OO), (OO|VV), (OV|OV), ..., where O and V
stand for occupied and virtual orbitals, respectively. Further
efficiency in the numerical evaluation of the CCSD residuals
can be achieved by defining a set of amplitude-dressed RI
integrals, the storage costs of which are identical with those of
the bare RI integrals. The following dressed RI integrals and
intermediates are used in this work

̃ = −t t t2ab
ij

ab
ij

ba
ij

(12)

∑= B t2P

m e
me
P

e
m

0
, (13)

∑= B tij
P T

e
je
P

e
i, 1

(14)

∑= B tia
P T

e
ae
P

e
i, 1

(15)

∑= ̃B tia
P T

m e
me
P

ae
im,

,

2

(16)

= +Bij
P

ij
P

ij
P T, 1

(17)

∑= + + −B tia
P

ia
P

ia
P T

ia
P T

m
im
P

a
m, ,1 2

(18)

∑= −B B tab
P

ab
P

m
mb
P

a
m

(19)

The use of t1-dressed intermediates was recently proposed by
DePrince and Sherrill37 and was subsequently adopted by
Gyevi-Nagy et al.41 Epifanovsky et al.36 also employed similar
intermediates with an additional t2-dressed intermediate as
defined in eq 16. The use of these intermediates makes the
CCSD amplitude residuals highly compact by folding onto
themselves a large number of terms in the expression of Rij

ab,
which correspond to couplings between t1 and t2 amplitudes.
One specific advantage of using these intermediates is that the
(VV|VO)-type ERIs or intermediates labeled with three virtual
and one occupied indices do not appear in the RI-CCSD
residuals. These ERIs present a memory bottleneck in standard
CCSD implementations employing four-index ERIs. Note that
the proposed algorithm uses only molecular orbital (MO)-
based RI integrals and intermediates and that the AO-to-MO
transformation of the RI integrals is performed only once prior
to the beginning of the RI-CC step. The RI-CCSD amplitude
residuals used in this implementation are given in terms of the
intermediates defined in eqs 12−19 as

= ∑ ⊗

+∑ ∑

+∑ + ∑

+ ̂ −∑ + ∑

+∑ − ∑

−∑ − + ∑

−∑ − + ∑

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ( )

( )

( )

R ia jb

t

I t

t t

t t

I I t N N

I t

( ) ( ) group

PPL group

HHL group

( ) Fock matrix terms

( )

( ) group

ij
ab

P ia
P

jb
P

e f P ae
P

bf
P

ef
ij

m n mn
ij

P im
P

jn
P

ab
mn

ij
ab

m im e me e
i

ab
mj

e ae m me a
m

eb
ij

m e bm
je

mb
je

P jm
P

be
P

ae
im

O V

m e ma
je

P jm
P

ae
P

eb
im

,

,

,
3 3

,
1
2

(20)

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

D

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

= − +

+ − + ̃

+ − +

+

i

k
jjjjjj

y

{
zzzzzz

i

k
jjjjjj

y

{
zzzzzz

R f t t

t t t

B B

B

1
2

1
2

( )

i
a

ia
m

im
e

me e
i

a
m

e
ae

m
me a

m
e
i

m e
me ae

im

P
ia
P P

m P
im
P

ma
P T

ma
P T

e P
ae
P

ie
P T

,

0
, ,

,

1 2

2

(21)

and the CCSD energy is given by

∑ ∑ ∑= + − +E f t B B B B t t t2 (2 )( )
i a

ia a
i

i j
a b

P
ia
P

jb
P

ib
P

ja
P

ab
ij

a
i

b
j

CCSD
, , ,

,

(22)

The terms in eq 20 have been labeled as “groups” since each of
them includes multiple terms through the pq

P intermediates.
The construction of the first term in eq 20 is analogous to
assembling the (ia|jb)-type ERIs from the corresponding RI
integrals. These terms have been labeled as the (ia) ⊗ (ib)
group because of this analogy. The second and the third terms
in eq 20 have been labeled according to the classes of the four-
center intermediates involved in them, namely, the “particle−
particle ladder” (PPL) group involves (VV|VV)-type inter-
mediates and the “hole−hole ladder” (HHL) group involves
the (OO|OO)-type intermediates. The last two terms in eq 20
have been labeled as the “ N N( )O V

3 3 group” according to the
scaling of the computational cost associated with the tensor
contractions involved in their evaluation.
The dressed Fock matrices appearing in eqs 20 and 21 are

defined as

∑ ∑ ∑= + −f B Bia ia
P

ia
P P

m P
ma
P

mi
P T

0
, 1

(23)

∑ ∑ ∑

∑ ∑

δ= − + −

+

f B B

B

(1 )ij ij ij
P

ij
P P

m P
mi
P

mj
P T

e P
ie
P

je
P T

0
,

,

1

2

(24)

∑

∑ ∑

δ= − +

− +

f B

B

(1 )

( )

ab ab ab
P

ab
P P

m P
ma
P

mb
P T

mb
P T

0

, ,1 2

(25)

and the four-index I intermediates are defined as

∑ ∑=I B B tmn
ij

e f P
me
P

nf
P

ef
ij

, (26)

∑ ∑=I B B tbm
je

n f P
ne
P

mf
P

bf
jn

, (27)

∑ ∑=I B B tmb
je

n f P
ne
P

mf
P

fb
jn

, (28)

The permutation operator appearing in eq 20 is defined as

̂ = +X X Xij
ab

ij
ab

ij
ab

ji
ba

(29)

where Xij
ab is a generic notation for any two-body contribution

to Rij
ab.

In this implementation, the evaluation of the noniterative
triples corrections to the CCSD energy follows the widely used
the “ijkabc” algorithm proposed by Rendell et al.80,81 For an
elaborate discussion on alternative algorithms for the (T)
correction, the reader is referred to ref 81. The algorithm in
this work utilizes the 6-fold permutational symmetry of the
spatial orbital-based triples amplitudes and the associated
intermediates

= = = = =X X X X X Xabc
ijk

bac
jik

acb
ikj

bca
jki

cab
kij

cba
kji

(30)

by constructing all six-index tensors within restricted loops
over occupied indices i ≥ j ≥ k. This allows one to store them
as Xijk (abc), which reduces the storage cost for a six-index
tensor from 8NO

3NV
3 to 8NV

3 bytes (where NO and NV denote
the number of correlated occupied and virtual orbitals,
respectively). Throughout the paper, the tensor notation
Apqr···(stu...) is used to indicate that the superscript indices p, q,
r, ... are fixed inside a loop, while the tensor is stored in terms
of the full set of indices s, t, u, ... shown within the parentheses.
The second-order triples amplitudes t[2]abc

ijk are defined via

∑ ∑ ∑ ∑

≡

= ̂ − +

[ ]

i

k
jjjjjj

y

{
zzzzzz

W abc D t

B B t B B t

( )ijk
abc
ijk

abc
ijk

ijk
abc

m P
ia
P

jm
P

bc
mk

e P
ia
P

be
P

ec
jk

2

(31)

where the denominator Dabc
ijk is given by

= + + − − −D f f f f f fabc
ijk

ii jj kk aa bb cc (32)

and the permutation operator ̂
ijk
abc

generates the sum of all six
permutations given in eq 30 by its action on any one of them.
Within the ijkabc algorithm, the (T) correction to the energy is
given by80

∑ ∑

δ δ δ δ

= ′ [ −

× + +

+ − ×

+ + + ]

[ + + + + ]

≥ ≥ ≥ ≥
E Y abc Z abc

W abc W bca W cab

Z abc Y abc W bac

W acb W cba X abc

D

2 ( ( ) 2 ( ))

( ( ) ( ) ( ))

( ( ) 2 ( )) ( ( )

( ) ( )) 3 ( )

/ (1 )(1 )

T
i j k a b c

ijk ijk

ijk ijk ijk

ijk ijk ijk

ijk ijk ijk

abc
ijk

ij jk ab bc

( )

(33)

In eq 33, the summation over occupied indices excludes the
case i = j = k, which is indicated by the notation Σ′. The
various intermediates are defined as

= +

+ +

+ +

X abc W abc V abc W bca V bca

W cab V cab W bac V bac

W acb V acb W cba V cba

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ijk ijk ijk ijk ijk

ijk ijk ijk ijk

ijk ijk ijk ijk

(34)

= + +Y abc V abc V bca V cab( ) ( ) ( ) ( )ijk ijk ijk ijk (35)

= + +Z abc V bac V acb V cba( ) ( ) ( ) ( )ijk ijk ijk ijk (36)

where the intermediate V is given by

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

E

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


= + + +V abc W abc B B t B B t B B t( ) ( )ijk ijk
ia
P

jb
P

c
k

ia
P

kc
P

b
j

jb
P

kc
P

a
i

(37)

It is important to note that a restricted inner loop over virtual
indices a, b, c is used when computing the final energy
contribution80 via eq 33, even though the various six-index
intermediates defined above are stored for the full set of virtual
indices. The use of restricted loops a ≥ b ≥ c reduces the
computational task associated with the evaluation of E(T).

3. ALGORITHM
The detailed algorithms for the individual terms in the RI-
CCSD residuals and for the (T) correction are presented in
sections 3.1 and 3.2, while certain general features are outlined
below. All of the new features have been implemented into the
GAMESS program suite.69,70

In order to reduce storage costs for the t2 amplitudes and the
Rij
ab residuals, the permutational symmetry of these spatial

orbital-based tensors, e.g., tab
ij = tba

ji is exploited by storing them
with the index restriction i ≥ j. This not only reduces the
memory cost from 16NV

2NO
2 to 8NV

2NO(NO + 1) bytes, but also
reduces the hard disk storage for the t2 amplitudes. The only
disk I/O operations in the new implementation involve reading
and writing the amplitude vectors for a number of iterations,
which is essential for ensuring fast convergence of the CCSD
iterations via the direct inversion of the iterative subspace
(DIIS) procedure. The t2 amplitudes and the Rij

ab residuals are
the only four-index quantities that are stored in a replicated
manner on each MPI rank. Therefore, the applicability limit of
the code in terms of the system size is mostly determined by
the size of the corresponding doubles amplitude (T2) and the
residual matrices (R2). The evaluation of the various terms in
the CCSD residuals requires a repeated symmetry unfolding of
these two matrices. However, these are lower operation-count
tasks compared to tensor contractions and the additional
expenses are expected to be compensated for via OpenMP
parallelization.
As noted above, the RI integrals and the amplitude-dressed

intermediates defined in eqs 17−19 entail a cubic-scaling
memory cost. The options of storing the bare RI integrals
either in a replicated manner on each MPI rank or in the
distributed memory of all MPI ranks using the DDI
framework15,16 of GAMESS have been implemented. The
intermediates of eqs 17−19 are always stored in the replicated
memory, as they need to be iteratively updated. A distributed
storage of the four-center ERIs was an important algorithmic
strategy for the massively parallel CCSD(T) implementation
by Olson et al.,8 while this is optional for the current RI-
CCSD(T) code. Although the cubic-scaling RI integrals do not
generally present a memory bottleneck, storing them in the
distributed memory might be helpful when the available
memory per node is small. This distributed storage entails an
additional network communication cost associated with
fetching the RI integrals repeatedly.
To reduce communication among the MPI ranks, the

intermediates of eqs 12−19, the singles residual given in eq 21,
and the dressed Fock matrices defined in eqs 23−25 are all
constructed in a replicated manner on every MPI rank. The
storage costs for the associated quantities are at most cubic
scaling and they are constructed in OpenMP parallel batches
with each batch requiring computational costs scaling as N( )3

. Only the contributions to the doubles residual Rij
ab given in eq

20 are constructed in a distributed manner, which requires a

global reduction of the blocks of the R2 matrix constructed on
various MPI ranks. In the GAMESS implementation, this
reduction operation is performed only once per CCSD
iteration after all contributions in eq 20 have been added to
Rij
ab. The remaining communication-bound steps include the

global reduction of the RI-MP2 guess t2 amplitudes prior to
CCSD iterations, and the broadcasting of the updated
amplitudes from the master MPI rank to all others in every
iteration. The disk I/O bound DIIS extrapolation is performed
in serial only on the master, which necessitates the broad-
casting step.

3.1. Integral-Direct Parallel Implementation of the
CCSD Amplitude Equations. It is well-known that the
particle−particle ladder (PPL) term in the CCSD doubles
residual is the most expensive contribution.6−8 This term
presents both a memory bottleneck by requiring the (ae|bf)
class of ERIs [i.e., the (VV|VV) ERIs] and is also the time
determining step in a CCSD iteration. The common approach
to reduce the high memory demand is to employ four-center
ERIs partially labeled with AO indices.6,8,9,45 The computa-
tional time can be effectively reduced by employing symmetric
and antisymmetric combinations of the t2 amplitudes and the
ERIs,6,73,37,41 which reduces the number of FLOPs from NO

2NV
4

to ∼NO
2NV

4/4 by invoking the index restrictions a ≥ b, e ≥ f, i ≥
j. This strategy is adopted in the new implementation.
However, an AO-driven algorithm is not implemented since
the PPL group of eq 20 is constructed from the dressed ab

P

intermediates in lieu of bare RI integrals. These intermediates
subsume contributions from terms that require the (VV|VO)-
type ERIs (see, e.g., ref 40.). The current algorithm avoids an
explicit assembling of these ERIs in the RI-CCSD step as they
present additional memory bottlenecks.
Within the RI approximation, the PPL group is constructed

via37,41

∑=≥a b
ef

P
ae
P

bf
P

(38)

= ±±
≥
≥

≥ ≥a b
e f

a b
ef

a b
fe

(39)

δ= + − = −+
≥
≥ ≥ ≥ −

≥
≥ ≥ ≥t t t t t t(1 );e f

i j
ef
i j

fe
i j

ef e f
i j

ef
i j

fe
i j

(40)

∑σ =±
≥
≥

≥

±
≥
≥ ±

≥
≥t

1
2i j

a b

e f
a b
e f

e f
i j

(41)

σ σ= +≥
+

≥
≥ −

≥
≥Ri j

ab
i j
a b

i j
a b

(42)

σ σ= − ≠≥
+

≥
≥ −

≥
≥R b aifi j

ba
i j
a b

i j
a b

(43)

where the quantities ± and t± indicate symmetric and
antisymmetric combinations of the ERIs and the t2 amplitudes,
respectively, and σ± denote the intermediate contributions to
the doubles residuals. The index restrictions applicable to each
tensor are indicated explicitly in eqs 38-43.
The integral-direct algorithm described here requires

integral assembling according to eq 38. In principle, a single
integral assembling step should suffice to construct both ±

contributions of eq 39, and this would in turn reduce the
integral assembling cost by a factor of 2 compared to the naıv̈e
algorithm that employs unrestricted loops over a and b.
However, each of the ± matrices entails a storage cost scaling
as NV

2 (NV + 1)2/4. Even if these matrices are constructed in

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

F

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


blocks over a number of MPI ranks as described below, the
memory requirement per MPI rank for storing both ±

matrices simultaneously would be very high, and this would
become a limiting factor for the system size that can be
handled with the code. To keep the memory demand
moderate, the ± matrices are constructed one at a time. In
effect, the algorithm constructs all symmetric contributions in
eqs 39−41 first, digests them via eqs 42 and 43, and then
constructs all antisymmetric combinations in the same memory
space. In addition to memory savings for the ± matrices, this
strategy allows one to save quartic-scaling memory associated
with two sets of the t± and σ± matrices as well. The downside
is that the algorithm does not take advantage of the
aforementioned 2-fold savings in the number of FLOPs
associated with integral assembling. However, there is no need
to compromise on the reduced number of FLOPs, NO

2NV
4/4,

associated with the main contraction step of eq 41. Eq 41
entails two different contractions, which need to be evaluated
separately anyway.
Scheme 1 depicts the hybrid MPI/OpenMP parallel

algorithm for the PPL group, where the two contributions

involving the ±, t±, and σ± matrices have been combined for
brevity. This algorithm distributes the restricted outer loops
over a and b among MPI ranks. The four-index intermediates
of eq 39 are assembled in blocks on various MPI ranks, which
in turn permits scaling down the memory cost for storing (one
of) the ± matrices as NV

2(NV + 1)2/4nMPI, where nMPI
denotes the number of MPI ranks. On each MPI rank, the
computational tasks are further parallelized via OpenMP. As
shown in Scheme 1, each OpenMP thread assembles subblocks
of the ± matrices (line 4) at a computational cost scaling as

N N( )V
2

aux . The tensor contractions of eq 41 are performed via
matrix−matrix multiplications using the basic linear algebra
subprogram (BLAS) DGEMM, which contributes to the
efficiency of this algorithm.
Despite the high efficiency of the above algorithm, the NV

2

(NV + 1)2/4 scaling memory requirement associated with the
storage of the ± matrices may become overwhelming in
large-scale applications. As discussed above, the applicability of
this algorithm depends on the number of MPI ranks that can
be assigned to a calculation. For calculations involving NV ≥

1000, a large number of MPI ranks will be needed to effectively
scale down the high memory demand. On a typical small
computer cluster that does not have a very large number of
compute nodes or has a small to moderate amount of main
memory (RAM) per node (e.g., up to 125 GB), the use of the
above algorithm will impose a limit to large-scale applications.
Since an important focus of the current RI-CCSD(T)

development is to make the program usable for the broad
computational chemistry community, a second algorithm for
constructing the PPL group has been implemented, which is
shown in Scheme 2. In the remainder of this Article, the

algorithm outlined in Scheme 1 is referred to as algorithm A
and the one outlined in Scheme 2 is called algorithm B.
Algorithm B uses an identical loop structure and computa-
tional work distribution among MPI ranks and OpenMP
threads as algorithm A. The primary difference lies in
assembling the intermediates of eq 39 and performing the
contractions for a f ixed pair of outer indices a and b. In other
words, each OpenMP thread assembles single columns of the

± matrices, contracts them with t±, and finally updates a
single row of the residual matrix R2 at a time. The contractions
of eq 41 are thus evaluated via matrix-vector multiplication
using the level-2 BLAS procedure DGEMV. This algorithm
entails only NV(NV + 1)/2 scaling memory cost for storing
single columns of each of the ± matrices and is thus much
more memory-economic than algorithm A. The reduced
memory demand is utilized for storing both of the ±

matrices simultaneously unlike in algorithm A. The reduced
vectorization of the contraction steps makes this algorithm
intrinsically slower than algorithm A. However, algorithm B
should scale as well as algorithm A in the parallel sense, as the
distribution of the computational task is similar in both cases.
Section 4 compares the parallel scaling of these two algorithms
and also their relative memory requirements in a fairly large
application.
Apart from the PPL group, the last two terms in eq 20 also

present computational bottlenecks in calculations involving
large systems. The PPL group dominates the computational
time for CCSD iterations when large AO basis sets are
employed for small to moderate-sized molecules. However, as
the number of correlated electrons (hence also NO) increases,
the N N( )O V

3 3 scaling terms become nearly as expensive as the
PPL group. Furthermore, these terms entail four-index
intermediates as defined in eqs 27 and 28. Even within the

Scheme 1. Algorithm A for the Evaluation of the PPL Group
in Eq 20

Scheme 2. Algorithm B for the Evaluation of the PPL Group
in Eq 20

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=sch2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


RI approximation, these intermediates cannot be reduced to

three-index quantities36,37,41 similar to the ones used for the

PPL group. Therefore, a careful optimization of the algorithm

is needed for an efficient parallel implementation of these

terms that bypasses the actual storage of four-index

intermediates or assembles them in a distributed manner.

Scheme 3 represents the algorithm for the N N( )O V
3 3 group.

In this algorithm, the four-index intermediates given in eqs 27
and 28 are constructed in blocks by splitting the loops over the
contracted index pair (m, e) among a number of MPI ranks,
nMPI. Hence, the memory required for storing them scales as
NO

2NV
2/nMPI. The computational costs associated with the

assembling of integrals (or the intermediates) shown in
lines 3,5 of Scheme 3 scale as N N N( )O V aux . Importantly, the I
intermediates are directly constructed with the correct index
permutations that are necessary for contracting them with t2
amplitudes. This is an advantage of an integral-direct RI-CCSD
algorithm. If standard four-center ERIs were employed or if
they were assembled prior to CCSD iterations, index
permutations would be necessary before each contraction.
These index permutations would have to be performed
repeatedly in each iteration. Alternatively, the same class of
four-center ERIs can be stored with multiple index
permutations as in the parallel CCSD(T) code of Olson et
al.8 This program stores 7 permuted arrays of size 8NO

2NV
2 bytes

in the distributed memory. The costs incurred in both choices
are completely avoided in the present algorithm. All
contractions shown in lines 9,10 and 13,14 of Scheme 3 are
performed via matrix−matrix multiplications within OpenMP
parallel loops over occupied indices i or j requiring an

N N( )O V
2 3 scaling of the computational cost. The symmetry

unfolding of the T2 matrix is also performed within the same
loops. All tensors or their blocks required in this algorithm are
either fully available or assembled on each MPI rank, which
eliminates network communication altogether.

The above algorithm for the N N( )O V
3 3 group involves the

distributed assembling of two quartic memory-scaling I
intermediates. If algorithm A is employed for the PPL group,
the memory required for storing one of the ± matrices
dominates the memory need for the full RI-CCSD(T)
calculation. It is then trivial to store both I intermediates.
For the memory-economic algorithm B for the PPL group, on
the other hand, a complementary low memory demanding
algorithm is needed for the N N( )O V

3 3 group. This is the
purpose for the development of a second algorithm for these
terms, which is shown in Scheme 4. The GAMESS RI-

CCSD(T) program combines the efficient but memory-
expensive algorithms described in Schemes 1 and 3 into
“algorithm A”, and the memory-economic but slower
algorithms shown in Schemes 2 and 4 into “algorithm B” in
actual calculations depending upon the input options. Because
of its higher computational efficiency, algorithm A has been
chosen as the default option.
The algorithm shown in Scheme 4 bypasses the storage of

any quartic memory-scaling tensor by performing all integral
assembling and contraction steps within a loop over the
contracted virtual index e. This loop is parallelized via the
hybrid MPI/OpenMP scheme. The I intermediates of eqs 27
and 28 are stored as cubic memory-scaling arrays. The
remaining tensors used in this algorithm also require at most
cubic-scaling memory. Note that the inner loops in Scheme 4
are not parallel. Within such an algorithm, reducing the
computational scaling of the contraction steps (lines 10,11 and
14,15) as much as possible was found to be beneficial for the
efficiency. This is done by performing these contractions
within loops over combined indices (j, n) or (i, j) (lines 8,13 of
Scheme 4), which results in an N N( )O V

2 scaling of the
computational cost for each contraction. It is important to note
that vectorization of the tensor contractions is not lost in this
algorithm compared to the algorithm of Scheme 3. All
contractions are performed via matrix−matrix multiplications

Scheme 3. Algorithm A for the Evaluation of the N N( )O V
3 3

Group in Eq 20

Scheme 4. Algorithm B for the Evaluation of the N N( )O V
3 3

Group in Eq 20

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

H

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=sch4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=sch4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


in both algorithms. However, each OpenMP thread has to
perform more work in the algorithm of Scheme 4.
The remaining terms in eqs 20 and 21 are computationally

less expensive and do not require an extensive optimization.
Both algorithms A and B use the same implementation for
these terms. The HHL group of eq 20 is constructed within an
MPI/OpenMP parallel loop over a contracted occupied index
m. This allows one to store all tensors with at most cubic-
scaling memory. The algorithm imposes the index restriction i
≥ j for storing the I intermediate defined in eq 26, since this
restriction is compatible with the storage of the Rij

ab residual.
This reduces the memory need for storing this I intermediate
by a factor of 2. Furthermore, this loop restriction allows the
construction of the I intermediate without a symmetry
unpacking of the T2 matrix. The pertinent contractions are
performed with a computational cost scaling as N( )5 .
In every CCSD iteration, the first step is to construct the

intermediates of eqs 13−16 one at a time and digest them
immediately by evaluating all quantities to which they
contribute, namely, the dressed Fock matrices of eqs 23−25,
the singles residual Ri

a defined in eq 21, and the ij
P and ia

P

intermediates of eqs 17 and 18. The ab
P intermediate does

not depend on the intermediates of eqs 13-16, and therefore,
no memory is allocated for ab

P until the other intermediates
have been consumed and discarded. Once all terms in eqs
23−25 are constructed, the dressed Fock matrices are digested
into both Ri

a and Rab
ij residuals and discarded. Following this

order of operations allows the construction of the full singles
residual alongside the construction of the intermediates of eqs
13−16 and the dressed Fock matrices. The next step is to

compute the (ia) ⊗ (jb) group of eq 20 and discard the ia
P

intermediate. The only remaining intermediate at this stage is

ij
P, which is needed for both HHL and the N N( )O V

3 3 groups

of eq 20. On the other hand, the ab
P intermediate is required

for the PPL and N N( )O V
3 3 groups. Hence, one needs to store

both ij
P and ab

P intermediates simultaneously. The PPL

and the N N( )O V
3 3 groups are first constructed and the ab

P

intermediate is discarded. The final step in the construction of
the CCSD residuals is to add the HHL group, followed by a
global reduction of the Rab

ij residuals from all MPI ranks.
3.2. Parallel Implementation of the Perturbative

Triples Correction. The perturbative triples correction is
the most compute-intensive step in an RI-CCSD(T)
calculation with the numerical evaluation of the Wijk(abc)
intermediate defined in eq 31 being the major computational
task. Within the restricted loop structure of the ijkabc
algorithm, one needs to account for the 6-fold permutational
symmetry of the triples amplitudes explicitly. This leads to a
total of 12 tensor contractions through eq 31.
A common approach to implement the ijkabc algorithm is to

store the Wijk(abc) intermediate as a vector of length NV
3 . The

terms on the right-hand side of eq 31 are evaluated via matrix−
matrix multiplications. One specific drawback of this algorithm
is the difficulty of adding the results of matrix multiplications
under different permutations of eq 30 to correct locations of
the Wijk(abc) array. This is illustrated with the first three
permutations of eq 30 and only the first term on the right-hand
side of eq 31.

Scheme 5. Algorithm for the (T) Correction

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=sch5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=sch5&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


ω = −
i
k
jjjjj

y
{
zzzzz

ijk

abc
abc ab m m cT Vpermutation : ( ) ( , ) ( , )i jk

2

(44)

ω = −
i
k
jjjjj

y
{
zzzzz

jik

bac
bac ba m m cT Vpermutation : ( ) ( , ) ( , )j ik

2
(45)

ω = −
i
k
jjjjj

y
{
zzzzz

ikj

acb
acb ac m m bT Vpermutation : ( ) ( , ) ( , )i kj

2

(46)

where the V matrix stores the four-center ERIs (jm|kc). Unlike
the ω(abc) intermediate of eq 44, the ω(bac) and ω(acb)
intermediates of eqs 45 and 46 cannot be directly added to
Wijk(abc) without permuting the compound vector indices bac
or acb to the correct order abc. A simple way to add the
contributions of eqs 44−46 is to accumulate the initial results
of matrix multiplications into an auxiliary array ω of length NV

3

as shown above, followed by an index permutation operation
on ω and a vector addition (via DAXPY) to the Wijk(abc)
array. This strategy is suitable for a parallel implementation,
since it is possible to define 12 independent parallelizable tasks,
each consisting of a matrix multiplication, an index
permutation, and a vector addition. Alternatively, the vector
addition step may be skipped and the results of matrix
multiplications may be directly added8 to Wijk(abc) after index
permutations. However, the various permutations then become
mutually dependent, thereby making parallelization difficult.
The index permutation and vector addition operations

involved in both of the above cases are much less efficient than
the matrix multiplications.10 In a compute-intensive process,
such as the (T) correction, these tasks might become
competitive with the more efficient matrix multiplications
and are likely to obviate much of the parallel efficiency.
Recently, Nagy and Kaĺlay41,54 proposed an algorithm that
partially or completely eliminates these poorly scaling tasks by
exploiting the intrinsic permutational symmetries of the spatial
orbital-based ERI and T2 tensors. A similar strategy is
employed in the implementation described here.
The key idea is to store the Wijk(abc) intermediate as a

three-index array Wijk(a,b,c) of the same length NV
3 as the

corresponding vector, and to evaluate the various contributions
of eq 31 within a loop over a virtual index, for example, b. Since
this index is fixed within the loop, Wijk(a,b,c) can be practically
treated as a two-index array. While explicit permutations of the
compound vector indices are necessary when adding the
results of matrix multiplications to the vector Wijk(abc), these
results can be directly added to a two-index array via simple
matrix transpositions. In fact, no separate matrix transposition
is necessary and the results of the matrix multiplications can be
directly brought into the correct index order, for example,
Wijk,b(a,c) simply by controlling the first two arguments of the
DGEMM routine (that are related to matrix transposition) and
by altering the order of the ERI and T2 matrices in the
DGEMM call. This strategy can be applied to all 12
contributions, thereby eliminating all index permutations and
vector additions. Scheme 5 illustrates the implemented
algorithm for the (T) correction schematically, where the
inner loops over virtual indices are OpenMP parallel. A
minimum of two inner loops is required for accumulating all 12
contributions of eq 31 within the OpenMP parallel algorithm
in order to avoid race conditions.

The first term on the right-hand side of eq 31 involves a
summation over the occupied index m, which in turn requires
the full symmetry unpacked T2 matrix. Since repeated
symmetry unpacking within the i ≥ j ≥ k loops would further
increase the already large computational load, the symmetry
unpacking is performed prior to the i ≥ j ≥ k loops. The
symmetry unpacked t2 amplitudes are stored into a single T2′
matrix that requires 8NO

2NV
2 bytes of memory. Both the original

symmetry packed T2 matrix and the residual matrix R2 are
discarded, as they are no longer needed. Moreover, the T2′
matrix is stored as a four-index array T2′ (a, b, i, j). This allows
the algorithm to access both tij

ab and tij
ba amplitudes for the fixed

indices j and b (within loops) as the submatrices T2′ (:,b,:,j)
and T2′ (b,:,:,j) without any index permutation. The ERIs
needed for evaluating the right-hand side of eq 31 are also
stored in a similar way.
Repeated integral assembling operations within the i ≥ j ≥ k

loops are likely to slow down the computation even with MPI/
OpenMP parallelization. Therefore, the best strategy is to
assemble the integrals outside the i ≥ j ≥ k loops. Two classes
of four-center ERIs are needed for computing the contribu-
tions of eq 31, namely, (ij|ka) and (ab|ci) [i.e., the (OO|OV)
and the (VV|VO) classes]. The storage cost for the (OO|OV)
ERIs scales as NO

3NV. These ERIs are fully preassembled and
stored in the algorithm described here. The storage cost for the
(VV|VO) ERIs scales as NONV

3 . For large-scale applications,
storing the full (VV|VO) ERI matrix on each MPI rank would
be tremendously memory-expensive. For this reason, they are
preassembled for a limited number of occupied orbitals ilen ≤
NO as long as memory is available (lines 2−6 of Scheme 5). As
stated above, the large quartic memory-scaling residual matrix
R2, as well as all intermediates required for the CCSD
iterations, are discarded once the iterations have converged.
The memory thus released is used for storing a fraction of the
preassembled (VV|VO) ERIs, while the remaining ERIs need
to be assembled within the i ≥ j ≥ k loops. Reducing the
integral assembling task partly in this way, or fully in the case
of small to moderate-sized applications, is highly beneficial for
reducing the wall time for the triples correction step.
Note that the memory demand for the full RI-CCSD(T)

calculation is determined by the RI-CCSD step. No additional
memory is allocated for triples corrections. If algorithm A is
employed for RI-CCSD, the memory required for the
evaluation of the PPL group is large enough to allow the
storage of the preassembled (VV|VO) ERIs for about 40−60%
of the occupied orbitals even in fairly large applications (e.g.,
for calculations involving 1066 AO basis functions reported in
section 5.2, these ERIs could be stored for up to 49% of the
occupied orbitals). For the memory-economic algorithm B, on
the other hand, the memory demand for the RI-CCSD step is
small, and therefore, a smaller number of (VV|VO) ERIs can
be preassembled. Thus, the choice of the algorithm for RI-
CCSD influences the efficiency (wall time) of the (T)
correction by controlling the fraction of the preassembled
(VV|VO) ERIs.
The minimum memory requirement for the perturbative

triples correction amounts to the sum of (a) 8(NO
2 + NV

2 +
NONV)Naux bytes for storing the RI integrals, (b) 8(NO + NV)
bytes for storing the orbital energies, (c) 8(NO

2NV
2 + NONV)

bytes for storing the symmetry unpacked T2′ and T1 amplitude
matrices, (d) 8NO

3NV bytes for storing the full set of
preassembled (OO|OV) ERIs, and (e) four three-index arrays
each of size 8NV

3 bytes. In this minimal memory route, all (VV|

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

J

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


VO) ERIs are assembled within the i ≥ j ≥ k loops. Three
arrays of size 8NV

3 bytes are used for storing these ERIs for the
indices i, j, and k, while the fourth one is used for storing the
Wijk(a,b,c) matrix. The construction of the Vijk(a,b,c)
intermediate of eq 37 requires the (OV|OV) class of ERIs.
However, these ERIs are needed only for specific occupied
index pairs (i, j), (j, k), and (k, i) unlike the full set of (OO|
OV) or (VV|VO) ERIs. In the new algorithm, the (OV|OV)
ERIs are assembled within the i ≥ j ≥ k loops after all
contributions to eq 31 have been added. This facilitates the
reuse of the three arrays of size 8NV

3 bytes for storing the
assembled (OV|OV) ERIs, which were initially used for storing
the (VV|VO) ERIs. For example, the Vij (a, b) ERI matrix of
size 8NV

2 bytes is stored as Vij(a, b, 1) in a three-index array.

4. PERFORMANCE ANALYSIS
In this section, the parallel efficiency of the RI-CCSD(T)
program in GAMESS is analyzed and the relative memory
requirements for algorithms A and B for the RI-CCSD
iteration are compared. All calculations were performed on two
local computer clusters, namely, “cj” at Ames Laboratory and
“Nova” at the high-performance computing facility of the Iowa
State University. Each compute node of cj consists of two 12-
core Intel Xeon E5-2695 v2 processors and has 126 GB of
RAM, while the compute nodes of Nova are equipped with
two 18-core Intel Skylake 6140 Xeon processors and have
either 192 or 384 GB RAM capacities. The compute nodes of
cj and Nova are interconnected through the InfiniBand FDR
(56 Gbps bandwidth) and EDR (100 Gbps bandwidth)
networks, respectively. Most calculations related to perform-
ance and accuracy benchmarks were performed on cj, while the
large-scale calculations reported in sections 4.3 and 5 were
performed on Nova. In addition, the multinode performance of
the program was tested on the US supercomputer “Theta” at
the Argonne Leadership Computing Facility (ALCF). Theta is
a Cray XC40 supercomputer comprised of 64-core Intel KNL
7230 compute nodes and has 192 GB of memory per node.
The GAMESS program suite was compiled with the Intel
compiler version 18.3, the Intel MPI library, and the serial
version of the MKL. The implemented RI-CCSD(T) program
has been made available through the September 2020 public

release of GAMESS (https://www.msg.chem.iastate.edu/
gamess/index.html).
The RI-CCSD(T) program uses the DDI framework15,16 of

GAMESS and avoids explicit use of MPI directives. The DDI
model is general and can be compiled with any standard MPI
library. The DDI runs an equal number of compute processes
and data servers on each node.15 The former execute the actual
computation, while the latter are involved in communicating
data stored in the distributed memory. The numbers of MPI
ranks per node mentioned in the following sections refer only
to the compute processes. For all calculations, the OpenMP
threads were bound either to physical cores (on Nova) or to
hardware threads (two and four per physical core on cj and
Theta, respectively) with OMP_PROC_BIND = close. The
MPI processes were pinned onto the domains of OpenMP
threads via I_MPI_PIN_DOMAIN = omp, with the domain
size specified via OMP_NUM_THREADS.
The correlation-consistent cc-pVXZ82 and aug-cc-pVXZ83

(X = D, T, Q) basis sets were employed in all benchmark
calculations used for testing the accuracy and the parallel
performance of the RI-CCSD(T) program along with the
matching cc-pVXZ-RI and aug-cc-pVXZ-RI auxiliary basis
sets.78 For the large-scale calculations reported in sections 4.3
and 5.2, the triple-ζ valence basis set with polarization
functions, def2-TZVPP,84 was used along with the def2-
TZVPP-RI77 auxiliary basis set. All calculations employed the
frozen core approximation.

4.1. Multithreaded Performance. The multithreaded
performance of the RI-CCSD(T) program was tested with a
(H2O)10 cluster using the cc-pVDZ/cc-pVDZ-RI basis sets.
Although this is a very small system for testing the parallel
efficiency, it was chosen here for comparison with certain other
parallel RI-CCSD(T) implementations reported recently,40,41

namely, those in the FHI-aims85 and the MRCC program
suites.86 The MRCC program suite was compiled on cj with
the same compiler and libraries as was used for GAMESS to
ensure that the results from both programs are obtained with
identical hardware settings. The wall times for the RI-CCSD
iteration and the speedup values relative to the single-thread
computation obtained with the GAMESS and MRCC
implementations are compared in Figure 1. In addition, Figure

Figure 1.Multithreaded performance of the RI-CCSD iteration for different implementations tested with a (H2O)10 cluster using the cc-pVDZ/cc-
pVDZ-RI basis sets. (a) Wall times and (b) speedup values relative to the wall time for the single thread computation. Two different settings were
employed in the calculations using MRCC, namely, (i) using the sequential BLAS and avoiding nested OpenMP parallelism (denoted as ccsdth =
n, mkl = seq) and (ii) using the threaded BLAS and assigning two OpenMP threads to the outer parallel regions (denoted as ccsdth = 2, mkl = thr).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

K

https://www.msg.chem.iastate.edu/gamess/index.html
https://www.msg.chem.iastate.edu/gamess/index.html
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


1 compares the speedup values obtained with the FHI-aims
code. The wall times for the FHI-aims code were taken from
ref 40. Hence, they are not directly comparable. However, the
speedup values can be expected to be independent of hardware
settings used for compiling the program.
It is important to note that the MRCC implementation uses

nested OpenMP parallelism and threaded BLAS, none of
which are used in the GAMESS implementation. Therefore, a
fair comparison would require using sequential BLAS for the
MRCC implementation and associating all OpenMP threads
only with the outer parallel regions. In Figure 1, these results
are indicated as “MRCC (ccsdth=n,mkl=seq)” with n = 1−16,
where “ccsdth” (or “ccsdthreads”) is the number of OpenMP
threads associated with the outer parallel regions. As Figure 1
indicates, this setting does not lead to the best performance for
the MRCC implementation. Hence, a second set of results was
obtained with threaded BLAS and by assigning two OpenMP
threads to the outer parallel regions (except for the single
thread calculation). These results are indicated as “MRCC
(ccsdth=2,mkl=thr)” in Figure 1.
The wall times for the RI-CCSD iteration using the

GAMESS algorithm B are 3−4 times larger than those for
the algorithm A. Figure 1a indicates that the wall times for
these two algorithms do not become closer as the number of

OpenMP threads increases. However, as hypothesized in
section 3.1, both algorithms are found to exhibit a similar
strong scaling with 10.5× and 9× speedups on 16 threads for
algorithms A and B, respectively (see Figure 1b). Figure 1a
shows that the MRCC implementation takes nearly half as
much wall time per RI-CCSD iteration as does the GAMESS
algorithm A when the former is invoked with threaded BLAS
and nested OpenMP parallelism. This may be attributed to the
fact that the GAMESS algorithm A constructs the symmetric
and antisymmetric combinations defined in eqs 39−41 in two
steps in order to save memory. Figure 1b indicates that both
GAMESS algorithms for the RI-CCSD iteration show good
speedups that are comparable to the implementations in other
program suites, namely, between 9× and 11× with 16 threads.
Figure 2 shows the speedups for the two most expensive

steps involved in the RI-CCSD iteration, namely, the
construction of the PPL and the N N( )O V

3 3 groups. The
algorithm A for the PPL group shows an excellent strong
scaling with a 13× speedup on 16 threads. For algorithm B, the
speedup for the PPL group with 16 threads is relatively small
(8×). For the N N( )O V

3 3 group, both algorithms show similar
speedups with values between 10 and 12.8 on 16 threads.
The multithreaded performance of the (T) correction for

different implementations is shown in Figure 3. The wall times

Figure 2. Multithreaded performance of the two most expensive steps in the RI-CCSD iteration in the GAMESS implementation: (a) the PPL
group and (b) the N N( )O V

3 3 groups tested with a (H2O)10 cluster and the cc-pVDZ/cc-pVDZ-RI basis sets.

Figure 3. Multithreaded performance of the (T) correction for different implementations tested with a (H2O)10 cluster using the cc-pVDZ/cc-
pVDZ-RI basis sets. (a) Wall times and (b) speedup values relative to the wall time for the single thread computation. Two different settings were
employed in the calculations using MRCC, namely, (i) using the sequential BLAS and avoiding nested OpenMP parallelism (denoted as ptth =
n,mkl = seq), and (ii) using the threaded BLAS and assigning two OpenMP threads to the outer parallel regions (denoted as ptth = 2,mkl = thr).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

L

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


for the MRCC implementation were obtained with (i)
sequential BLAS and associating all OpenMP threads (1−
16) with the outer parallel region, and with (ii) threaded BLAS
and assigning two OpenMP threads to the outer parallel
region. In Figure 3, these results are indicated as “MRCC
(ptth=n,mkl=seq)” and “MRCC (ptth=2,mkl=thr)”, respec-
tively, with “ptth” (or “ptthreads”) indicating the number of
OpenMP threads associated with the outer parallel region.
The GAMESS algorithm for the (T) correction relies on the

MPI-based parallelism for distributing the major bulk of the
computational load, viz., the parallelization of the outer loops i
≥ j ≥ k. Only the inner loops over virtual indices are
parallelized via OpenMP (see Scheme 5). Therefore, it is
unlikely that the (T) correction step of the GAMESS
implementation can be greatly expedited solely by invoking
OpenMP parallelism while using a single MPI rank. For the
MRCC implementation of the (T) correction, a part of the
outer loops i ≥ j ≥ k is parallelized via OpenMP in addition to
parallelizing the inner virtual loops. This is possible due to the
use of nested OpenMP. Hence, the wall times for the MRCC
implementation invoked with nested OpenMP are expected to
be shorter than those for the GAMESS implementation. Figure
3a reflects this trend. However, both algorithms show a similar
strong scaling for the (T) correction (see Figure 3b).
Figures 1 and 3 indicate that the MRCC implementation41 is

faster than the GAMESS implementation on a single core. The
sequential algorithms for the two programs have been designed
to be consistent with different parallelization strategies. The
MRCC implementation has been designed to achieve
maximum efficiency through nested OpenMP parallelism and
threaded BLAS, which contribute both to reducing wall times
and to improving the strong scaling. This becomes clear when
one compares the performances of the MRCC algorithm with
and without nested OpenMP and threaded BLAS. The design
goal of the GAMESS algorithm is to achieve an excellent
strong scaling of the most compute-intensive steps on a few
hundred up to a few thousand cores. While nested OpenMP
and threaded BLAS expedite the computation on a given
number of cores, achieving an optimum strong scaling on such
a wide range of cores is likely to require careful adjustments of
the thread distribution between the outer and the inner parallel

regions depending upon the number of cores employed. Since
optimizing the thread distribution is a nontrivial task, in
particular for a nonexpert user, the nested OpenMP parallelism
was not employed in the GAMESS implementation.
It is evident from the present results that both the RI-CCSD

iteration and the (T) correction steps of the GAMESS
implementation show a strong scaling that is comparable to the
MRCC implementation. The results reported in the following
sections indicate that the GAMESS implementation, which is
built upon a somewhat slower sequential algorithm than the
MRCC implementation, is successful in achieving a very good
strong scaling for the most demanding PPL and N N( )O V

3 3

groups and the (T) correction both on ∼100 and on ∼8000
cores. For enhancing the efficiency further, adapting the
current RI-CCSD(T) program to a heterogeneous architecture
based on CPUs and graphics processing units (GPUs) will be
explored in the future. This is ideal for both accelerating the
computation and achieving high scalability. Having a logically
simple code without runtime adjustable parameters is also
beneficial for this purpose.

4.2. Multinode Performance. The multinode perform-
ance of the RI-CCSD(T) program was tested with the
coronene (C24H12) molecule using the cc-pVDZ/cc-pVDZ-
RI basis sets. Unless explicitly mentioned, algorithm A was
used for the RI-CCSD iteration. The first set of results shown
in Figure 4 was obtained with cj using up to eight compute
nodes and one MPI rank per node. The number of OpenMP
threads was chosen to be 24 per MPI rank in all calculations.
The speedup values relative to the wall time for the single node
computation are shown in Figure 4. An excellent near-linear
speedup is observed for the (T) correction with a parallel
efficiency (speedup/number of nodes) of 94.3% on eight
nodes (i.e., on 192 cores). The parallel efficiency of the RI-
CCSD iteration is 67.6% on eight nodes. Figure 4(b) indicates
that the PPL and the N N( )O V

3 3 groups show excellent
speedups, while the HHL group exhibits somewhat poor
strong scaling.
While the performance of the RI-CCSD(T) program in

GAMESS is satisfactory on a small number of nodes, for large-
scale applications it is important to analyze the strong scaling
in the limit of a large number of compute nodes. This test was

Figure 4. Multinode performance of the RI-CCSD(T) program tested on cj for the coronene molecule using the cc-pVDZ/cc-pVDZ-RI basis sets.
(a) Speedups for the full RI-CCSD(T) calculation relative to the single node computation are shown along with the RI-CCSD iteration and the
(T) correction. (b) Speedups for three representative steps in RI-CCSD iteration, namely, the evaluation of the PPL, N N( )O V

3 3 (denoted as O3V3
in the plot), and the HHL groups are shown separately.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

M

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


performed on the supercomputer Theta using the same
molecule (coronene) and basis sets as in the above benchmark.
In this case, up to 128 nodes were employed with one MPI
rank per node and 64 threads per MPI rank. Sufficient memory
was allocated for all of these calculations, such that the full set
of (VV|VO) ERIs could be preassembled outside the i ≥ j ≥ k
loops (see Scheme 5) irrespective of the number of nodes
employed. This is important for treating the calculations
performed with different numbers of nodes on an equal
footing. The speedup values relative to the single node
computation and the wall times are shown in Figure 5.
Figure 5a indicates that the (T) correction shows an

excellent near-linear speedup with a parallel efficiency of 80.4%
on 128 nodes (i.e., on 8192 cores). It may be concluded from
Figures 4a and 5a that the (T) correction algorithm in the
GAMESS implementation shows an excellent strong scaling
both on a few hundred, as well as on a few thousand, cores.
Furthermore, Figure 5a shows that the strong scaling of the full
RI-CCSD(T) calculation is nearly identical with that of the
(T) correction step. Note that the strong scaling of the full RI-
CCSD(T) calculation was computed on the basis of the
average wall time for a single RI-CCSD iteration and the wall
time for the (T) correction. This is because the number of

iterations required to converge the cluster amplitudes to a
certain threshold is molecule-dependent and does not reflect
on the parallel efficiency of the code.
One finds from Figure 5a that the RI-CCSD iteration shows

a much poorer strong scaling than the (T) correction and that
there is practically no speedup beyond 32 nodes. This is
consistent with the fact, as shown by the orange curve in
Figure 5b, that the total time to converge the CCSD iterations
to the standard threshold of 10−7 (18 iterations were needed in
the present case) exceeds the wall time for the (T) correction
on 32 or a larger number of nodes. In this range, the wall time
for the full RI-CCSD(T) calculation is dominated by the RI-
CCSD part [the green curve in Figure 5b]. However, the wall
time per RI-CCSD iteration remains shorter than the (T)
correction throughout the entire range of nodes, as indicated
by the red curve in Figure 5b.
Since the system size is fixed in this benchmark, the

observed poor strong scaling might be an outcome of the lack
of enough parallelizable tasks when using a large number of
cores. It is thus interesting to study the weak scaling of the RI-
CCSD iteration. In a weak-scaling analysis, one increases both
the number of cores and the system size by the same factor,
such that the computational workload per processor remains

Figure 5.Multinode performance of the RI-CCSD(T) program tested on ALCF Theta for the coronene molecule using the cc-pVDZ/cc-pVDZ-RI
basis sets. (a) Speedups relative to the single node computation and (b) wall times for the full RI-CCSD(T) calculation are shown along with the
RI-CCSD iteration and the (T) correction.

Figure 6. Multinode performance of the RI-CCSD iteration tested on ALCF Theta for the coronene molecule using the cc-pVDZ/cc-pVDZ-RI
basis sets. (a) Speedups and (b) relative wall times for the various parallel and sequential steps.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

N

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


constant. Since the amounts of computational task associated
with various terms in the RI-CCSD equations are widely
different, increasing the system size would lead to different
increments in the computational workload for different terms.
This makes designing a weak scaling test complicated. To have
a clear idea, it is useful to analyze the strong scaling of the three
representative term groups, namely, PPL, N N( )O V

3 3 , and HHL.
Figure 6a indicates that the most steep-scaling and rate-

limiting PPL and also the N N( )O V
3 3 groups show much better

speedups compared to the overall RI-CCSD iteration, whereas
the HHL group practically does not show any speedup. Figure
6b further indicates that the much better strong scaling of the
PPL and N N( )O V

3 3 groups make them less time-consuming
when using a large number of cores and the poorly scaling
terms such as the HHL group as well as the sequential DIIS
extrapolation become dominant on the relative time scale.
The trend observed in Figure 6a can be explained by

comparing the number of iterations in the MPI/OpenMP
parallel do loops in the algorithms for the three representative
groups, namely, NO for the HHL group as compared to much
larger NV (NV + 1)/2 for the PPL group and NONV for the

N N( )O V
3 3 group (when using algorithm A of Scheme 3). Table

1 shows the number of loop iterations for the system under
consideration along with the number of active cores (MPI
ranks and OpenMP threads). It is evident that all cores remain
active in the computation of the PPL and the N N( )O V

3 3

groups. For the HHL group, on the other hand, the number of
active threads decreases from 54 to 1 as the number of active
MPI ranks increases from 1 to 54, since the total number of
active cores cannot exceed the number of parallelized loop
iterations, NO = 54. Thus, a large number of cores remain idle
during the computation of the HHL group, and this explains
its poor strong scaling. Note that a similar situation would arise
also for the N N( )O V

3 3 group if algorithm B of Scheme 4 is
employed, since NV = 318 is much smaller than NONV.
However, for small-scale applications such as the present one,
the more efficient algorithm A would always be viable because
of its low memory demand and its use is recommended.
The present results indicate that even for a small molecule

and basis set as considered in this strong scaling analysis, the
amounts of computational workload for the PPL and the

N N( )O V
3 3 groups are large enough to engage up to ∼8000

cores. The poor strong scaling of the RI-CCSD iteration is thus

caused by the low-cost terms, for example, the HHL group.
Therefore, it is reasonable to design a weak scaling test that
would ensure that all compute cores are active during the
computation of the HHL group. This is possible if a set of
molecules with an increasing number of atoms is chosen for
the benchmark, while using the same basis set for each
molecule. This would lead to an increment in NO (also in NV)
and the number of cores must be increased proportionately.
The weak scaling benchmark test considered in this work

consisted of water clusters, (H2O)n with n = 6−30, all of which
were described by the cc-pVDZ/cc-pVDZ-RI basis sets. Table
2 shows the values of NO and the number of cores used for

different water clusters. Figure 7a shows the plot of the scaled
speedup SP = P + (1 − P)α according to Gustafson’s law,87

where α is the serial fraction, as a function of the number of
cores P. The only sequential step in the RI-CCSD iteration is
the DIIS extrapolation. The serial fraction α was computed as
the ratio of the wall time for the DIIS extrapolation to the wall
time for the full RI-CCSD iteration. A 90× speedup is
observed for (H2O)30 on 120 cores, which is much better than
the strong scaling observed in Figure 5. Note, however, that
the weak scaling is not linear. This is not surprising, as the DIIS
extrapolation involves disk I/O operations. As shown in Figure
7b, the data size involved in these operations increases with the
system size, and the serial fraction α increases proportionately.
The strong scaling of the algorithms A and B for the PPL

group were compared in the limit of a large number of
compute cores using the coronene molecule and the cc-pVDZ/
cc-pVDZ-RI basis sets as described before. The results are
shown in Figure 8. It is evident from Figure 8a that the wall

Table 1. Number of Active Cores Involved in the Computation of the PPL, N N( )O V
3 3 , and the HHL Groups versus the Actual

Numbers of Compute Cores Employeda

PPL group N N( )O V
3 3 group HHL group

number of loop iterations NV (NV + 1)/2 = 50721 NONV = 17172 NO = 54

number of MPI
ranks employed

number of threads
employed

number of active
MPI ranks

number of
active threads

number of active
MPI ranks

number of
active threads

number of active
MPI ranks

number of
active threads

1 64 1 64 1 64 1 54
2 64 2 64 2 64 2 27
4 64 4 64 4 64 4 14/13
8 64 8 64 8 64 8 7/6
16 64 16 64 16 64 16 4/3
32 64 32 64 32 64 32 2/1
64 64 64 64 64 64 54 1
128 64 128 64 128 64 54 1

aThe estimates are given for the coronene molecule using the cc-pVDZ/cc-pVDZ-RI basis sets, for which NO = 54 and NV = 318.

Table 2. Weak Scaling Benchmark for the RI-CCSD
Iteration Using (H2O)n Clusters Described by cc-pVDZ/cc-
pVDZ-RI Basis Setsa

(H2O)n NO number of cores

(H2O)6 24 24
(H2O)12 48 48
(H2O)18 72 72
(H2O)24 96 96
(H2O)30 120 120

aThe lengths of the MPI/OpenMP parallelized do loops in the
algorithm for the HHL group (NO) are shown along with the number
of compute cores employed.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

O

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


times for the two algorithms become comparable when using
128 nodes, and algorithm B indeed becomes faster if the
number of nodes is further increased to 256 or 512.
Furthermore, Figure 8b indicates that algorithm B shows a
better speedup than algorithm A in the limit of 256 or 512
nodes even though its strong scaling is slightly inferior when a
small number of nodes are used. Hence, there is a crossover
point that occurs for the present calculation at 16 nodes. These
results imply that the intrinsic inefficiency of algorithm B due
to reduced vectorization of the tensor contraction (eq 41) may
be well compensated for by employing a large number of cores.
The rationale for this observation is obtained from a close look
at the steps involved in the construction of the PPL group.
Both algorithms A and B include memory bandwidth-bound

symmetrization and antisymmetrization operations (eqs 39, 40,
42, and 43) that cannot be vectorized, although they have been
parallelized via OpenMP. In the case of algorithm A, these less
efficient operations become dominant over the more efficient
vectorized tensor contraction when a large number of cores are
employed, and this leads to a poor speedup in this limit. The
less vectorized tensor contraction used in algorithm B (via
DGEMV), on the other hand, is more comparable in efficiency
with the memory bandwidth-bound operations. This uniform
efficiency of all steps involved in algorithm B results in a better
combined parallel efficiency, which becomes apparent
particularly in the limit of a large number of cores.

4.3. Memory Requirements for the RI-CCSD Algo-
rithms A and B. The relative memory requirements and the

Figure 7.Weak scaling of the RI-CCSD iteration tested with water clusters, (H2O)n with n = 6−30, using the cc-pVDZ/cc-pVDZ-RI basis sets. (a)
Plot of the scaled speedup as a function of the number of cores. The quantity α indicates the serial fraction in % (see text). (b) Data size involved in
the disk I/O operations in the DIIS extrapolation for different water clusters.

Figure 8. Relative performances of the algorithms A and B for the PPL group tested on ALCF Theta for the coronene molecule using the cc-
pVDZ/cc-pVDZ-RI basis sets. (a) Wall times and (b) speedups relative to the single-node computation.

Table 3. Memory Requirements and Wall Times for the RI-CCSD Algorithms A and B for the Retinol Molecule Using the
def2-TZVPP/def2-TZVPP-RI Basis Setsa

memory requirement per MPI rank wall time per RI-CCSD iteration

algorithm A algorithm B algorithm A algorithm B

number of basis functions 1071
NO 58 288 GB 91 GB 46 m 3 h
NV 992
Naux 2496

aAll calculations employed nine compute nodes, one MPI rank per node, and 18 OpenMP threads per MPI rank.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

P

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig8&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


wall times for the RI-CCSD algorithms A and B were assessed
using the retinol molecule and the def2-TZVPP/def2-TZVPP-
RI basis sets as a test case. Table 3 gives an estimate of the size
of the calculation. Algorithm A requires 1814 GB of total
memory for storing one of the ± and one of the σ± matrices
defined in eqs 39 and 41. It is then necessary to adjust the
number of MPI ranks in such a way that the size of the blocks
of these matrices to be stored on each MPI rank fits into the
RAM capacity of a node. The use of one MPI rank per
compute node is recommended for large-scale applications,
such that the entire node memory is available for storing large
matrices and in addition, all logical cores on a node can be
assigned to OpenMP threads. The reported calculations were
performed on the “wide” nodes of Nova that have a RAM
capacity of 384 GB, and nine compute nodes were employed.
This led to 288 GB of memory requirement per MPI rank. For
these calculations, 18 OpenMP threads per node were
employed. On a total of 162 cores, each RI-CCSD iteration
took an average wall time of 46 min with algorithm A.
Assigning a larger number of MPI ranks would further reduce
both the memory requirement and the wall time for the RI-
CCSD iteration.
With an identical number of cores, algorithm B required 3 h

of wall time per RI-CCSD iteration. The redeeming feature of
this algorithm is evident from Table 3. Algorithm B requires
only 91 GB of memory per MPI rank for the present
calculation. As already stated, algorithm B does not assemble
or store any four-index ERI matrix in a distributed manner.
Therefore, the memory required for this algorithm does not
need to be scaled down by assigning a certain number of nodes
unlike in the case of algorithm A. In principle, therefore, this
calculation can even be performed on a single multiprocessor
node using algorithm B. Assigning more than one node would
add to the efficiency of this algorithm, which is beneficial also
for the (T) correction. Thus, algorithm B makes fairly large
calculations, for example, those involving ∼1000 atomic basis
functions, feasible on a standard computer cluster consisting of
only 10−20 compute nodes and a moderate amount of node
memory, e.g., up to 125 GB. Such computer clusters are widely
available and used. Note that the major source of the difference
in the wall times for the two algorithms is the time required to
evaluate the PPL group, viz., 28 min with algorithm A and 2.3
h with algorithm B. The evaluation of the N N( )O V

3 3 group
took between 7 and 12 min using both algorithms.
On the basis of the results reported in sections 4.2 and 4.3, it

is relevant to point out a potential advantage of algorithm B.
The memory demand of an algorithm is a concern when
adapting a CPU-only program to the hybrid CPU/GPU
architecture, since the memory availability for the GPUs is
usually much smaller than for CPUs, for example, only 16−32
GB for the NVIDIA Tesla V100 GPUs. The low memory
demand of algorithm B makes it more amenable for GPU
adaptation than algorithm A. Of course, further modifications
are needed for a proper distribution of the associated big data.
Moreover, as Figure 8 demonstrates, algorithm B scales better
than algorithm A in the limit of a large number of cores.
Typically, a few thousand cores are needed to achieve this
improved scaling. While such a large number of cores is usually
not available unless one uses a supercomputer, adapting the
RI-CCSD(T) program to a hybrid CPU/GPU architecture can
effectively overcome this barrier. Thus, from the scaling
perspective as well, algorithm B may be anticipated to be more

suitable for taking advantage of the many-folded acceleration
provided by the GPUs. For the CPU-only implementation
reported in the present work, the use of algorithm A is
recommended when sufficient computational resources are
available. The applications reported in section 5 employed
algorithm A unless otherwise mentioned.

5. APPLICATIONS
5.1. Accuracy Benchmarks. The accuracy of the new RI-

CCSD(T) program was tested by computing errors relative to
CCSD(T) energies obtained with standard four-center ERIs.
For the latter, the available parallel CCSD(T) program8 in
GAMESS was employed. These accuracy benchmarks serve
two purposes, namely, they test the correctness of the new
implementation and also provide an assessment of the error
committed by employing the RI approximation. Two sets of
calculations were performed to benchmark the accuracy: (a)
using the CYCONF test set88 for the relative energies of 11
lowest-energy conformers of cysteine and (b) the ISOL22 test
set89 for the isomerization energies of 22 large organic
molecules (containing up to 51 atoms). The aug-cc-pVTZ/
aug-cc-pVQZ-RI basis sets were used for the CYCONF test
set, while the smaller cc-pVDZ/cc-pVTZ-RI basis sets were
employed in calculations involving the ISOL22 test set. Table
4 reports the mean absolute errors (MAEs) and standard

deviations of the RI-CCSD(T) energies relative to standard
CCSD(T) energies, which are on the order of 10−2−10−3 kcal/
mol for both test sets. It has been verified that the errors
diminish upon a systematic enlargement of the size of the
auxiliary basis set.
The accuracy of the new RI-CCSD(T) implementation was

further tested by computing the π−π interaction energy of two
uracil molecules, a test system from the S66 data set of Hobza
and co-workers.90,91 The availability of accurate benchmark
results for the S66 data set obtained with high-level methods
such as CC theory48,90−92 is important for assessing the
performance of other computational methods. The uracil
dimer is particularly a challenging system, as CC calculations
using large quadruple-ζ basis sets are usually intractable. Such
large basis results are required for estimating the complete
basis set (CBS) limit of the interaction energy. Although
explicitly correlated CC calculations38,48,92 can achieve the
CBS limit with triple-ζ quality basis sets, only the CCSD
method can benefit from the explicitly correlated treatment. It
has been shown that the triples correction should preferably be
obtained from conventional CCSD(T) calculations.93 Compo-
site approaches90−92 are commonly employed to alleviate the
problem due to high computational expenses of CC
calculations, where progressively smaller basis sets are used
for MP2, CCSD, and CCSD(T) levels of theory.
For the π-stacked uracil dimer, the CBS estimate of the

interaction energy is known to be quite sensitive to the choice
of the basis set used for CC calculations. For instance, the

Table 4. Mean Absolute Errors and Standard Deviations (in
kcal/mol) of the RI-CCSD(T) Energies Relative to
CCSD(T) Energies Obtained with Standard Four-Center
ERIs

test set MAE standard deviation

CYCONF 0.005 0.007
ISOL22 0.016 0.024

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

Q

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


value of −9.83 kcal/mol was obtained with the aug-cc-pVDZ
basis used for the CCSD(T) calculation,90 and the value of
−9.75 kcal/mol was obtained with a two-point extrapolation94

based on the CCSD(T) results computed with the heavy-
augmented (haug) cc-pVXZ (X = D,T) basis sets.91 The
present work reports benchmark results for the interaction
energy of the π-stacked uracil dimer obtained at the RI-CCSD
and RI-CCSD(T) levels using the aug-cc-pVXZ/aug-cc-pV(X
+1)Z-RI (X = T, Q) basis sets for all atoms. In view of the
small errors introduced by the RI approximation as seen from
Table 4, the current results can be considered reliable
estimates for those obtained in conventional CCSD(T)
calculations.
Table 5 reports the CBS estimate for the CCSD correlation

contribution to the interaction energy. It is interesting to

report this result separately, since several different values have
been suggested in the literature. A value of −8.50 kcal/mol was
estimated from the reported results of Hobza and co-
workers.91 In 2014, Schmitz et al. reported the value of
−7.99 kcal/mol48 based on the local explicitly correlated PNO-
CCSD[F12] method, which differs by 0.5 kcal/mol from the
previously reported result. Later, Peng et al. reported a value of
−8.30 kcal/mol38 based on explicitly correlated CCSD
calculations using aug-cc-pVQZ and cc-pVQZ-F12 basis sets.
Clearly, none of these results agree within 0.1 kcal/mol. It is,
thus, useful to obtain a CBS estimate for the CCSD correlation
contribution to the interaction energy using the conventional
CCSD method. The present work fulfills this need. The
counterpoise-corrected RI-CCSD/CBS estimate reported in
Table 5 was obtained via a two-point extrapolation94 from the
results obtained with aug-cc-pVXZ (X = T, Q) basis sets. The
latter two results were obtained directly from the dimer and
monomer energies computed at the RI-CCSD/aug-cc-pVXZ
level without using a composite approach. The reported RI-
CCSD/CBS estimate of −8.01 kcal/mol agrees to within 0.02
kcal/mol with the value reported by Schmitz et al.,48 while the
other two values differ by lager amounts.
To obtain the CBS estimate for the total interaction energy,

a composite approach similar to that of Hobza and co-
workers90,91 was employed. This approach can be described by
the following equation

Δ ‐ = Δ ‐ ‐

+ Δ ‐

+ Δ ‐

E E

E

E

(RI CC/CBS) (HF/aug cc pVQZ)

(RI MP2/CBS)

(RI CC/CBS)

corr

corr (47)

The notable difference of the present composite approach with
that of Hobza and co-workers is that the former employs

identical basis sets for the RI-MP2 and RI-CCSD(T)
calculations. The RI-MP2/CBS and RI-CC/CBS [where RI-
CC is either RI-CCSD or RI-CCSD(T)] estimates were
obtained via two-point extrapolation94 of the correlation
contributions calculated with the aug-cc-pVXZ (X = T,Q)
basis sets. The HF(aug-cc-pVQZ) contribution was computed
to be 0.378 kcal/mol. The total interaction energies are
reported in Table 6. The counterpoise-corrected RI-

CCSD(T)/CBS estimate for the interaction energy is −9.64
kcal/mol, which differs from the two reference values reported
by Hobza and co-workers, namely, −9.8390 and −9.7591 kcal/
mol by 0.2 and 0.1 kcal/mol, respectively. However, the
current RI-CCSD(T)/CBS estimate agrees very well with the
value of −9.67 kcal/mol reported by Martin and co-workers,92

which was obtained with a composite approach based on
explicitly correlated CCSD and conventional (T) calculations.
The current RI-CCSD/CBS value of −7.64 kcal/mol for the
total interaction energy agrees to within 0.07 kcal/mol with the
value reported by Schmitz et al.48

Coupled-cluster calculations on the uracil dimer using a
quadruple-ζ basis set are challenging. Even with a triple-ζ basis,
the CCSD(T) calculation can take up to 2 weeks.92 Peng et
al.38 recently reported the first explicitly correlated CCSD
results on this system using the aug-cc-pVQZ and cc-pVQZ-
F12 basis sets. To the best of our knowledge, the present work
reports the first benchmark CCSD(T) result on this system
using the aug-cc-pVQZ basis set. This is also the largest
computation considered in the present work, which involved
1624 AO basis functions and 3519 auxiliary basis functions.
The dimer calculation had NO = 42 and NV = 1566, while the
monomer calculation using the dimer basis had an even larger
number of virtual orbitals, namely, NV = 1595 (NO = 21). For
these calculations, it was necessary to employ the memory-
economic algorithm B for the RI-CCSD iterations. The dimer
calculation required 8 days on 288 cores (16 compute nodes,
one MPI rank per node, and 18 OpenMP threads per MPI
rank). The (T) correction took only ∼3.3 days and a larger
fraction of the time was consumed by the RI-CCSD step. This
is a special case for which the PPL group is much more
compute-intensive than the (T) correction, since the length of
the MPI/OpenMP parallel loop for the PPL group is about 93
times larger than the i ≥ j ≥ k loops for the (T) correction.
Considering the fact that no local orbital approximation was
employed in the RI-CC calculations, 8 days of runtime is
reasonable. The monomer calculation using the dimer basis
required only 1.5 days on 288 cores.

5.2. Model Application. The formation of C−C bonds by
functionalizing the otherwise inactive C−H bonds using

Table 5. CCSD Correlation Contribution to the Interaction
Energy (in kcal/mol) of the π-Stacked Uracil Dimer

aug-cc-pVTZ aug-cc-pVQZ CBS/best estimate source

−7.693a −7.878a −8.014b this work
−8.495 ref 91
−8.30 ± 0.02 ref 38
−7.985 ref 48

aObtained by directly computing the difference between the RI-
CCSD correlation contributions to the dimer and the monomer
energies for a given basis. All of the current RI-CCSD results include
counterpoise correction. bThe CBS estimate was obtained with two-
point extrapolation94 using the aug-cc-pVXZ (X = T,Q) values.

Table 6. Total Interaction Energy (in kcal/mol) of the π-
Stacked Uracil Dimer

high-level method CBS/best estimate source

CCSD −7.64a this work
CCSD −7.92 ± 0.02 ref 38
CCSD −7.57 ref 48
CCSD(T) −9.64a this work
CCSD(T) −9.83 ref 90
CCSD(T) −9.75 ref 91
CCSD(T) −9.67 ref 92

aObtained using the composite method described in eq 47. All of the
current RI-CC results include counterpoise corrections.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

R

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


transition metal catalysts95,96 is an important and widely used
synthetic route in organic chemistry. Accurate theoretical
calculations are important for elucidating the mechanisms of
the catalytic processes and characterizing various intermedi-
ates. Since the relative stabilities of various intermediates may
strongly vary depending on the choice of substrates, it is often
important to include reactants, catalysts, etc., used in the actual
synthetic cycle into the computational models (see, e.g., ref
97), thereby making them computationally expensive. Semi-
empirical and DFT methods have been the popular choices for
such computational studies, while computational models based

on coupled-cluster theory have been almost nonexistent until
recently.98

To assess the applicability of the reported RI-CCSD(T)
implementation in modeling organometallic reactions, single-
point energy calculations were performed on selected points
on the reaction profile for the C−H bond activation in 3-
phenylpyrazole (1) with acetylene catalyzed by CpRh(OAc)2
(see Figure 9). Algarra et al. reported a computational study97

on this reaction by employing the BP86 functional99 for
optimizing geometries of all species and also for computing
single-point energies. Table 7 reports the gas-phase single-
point energies obtained at the RI-CCSD(T)/def2-TZVPP/

Figure 9. Representative steps on the reaction profile for the Rhodium-catalyzed C−H bond activation of 3-phenylpyrazole (1) with acetylene to
form pyrazolo[5,1-a]isoquinoline (2).

Table 7. Gas-Phase Single-Point Energies on the Reaction Profile for the Rhodium-Catalyzed C−H Bond Activation in 3-
Phenylpyrazole (1) with Acetylene Computed at the RI-CCSD(T)/def2-TZVPP/def2-TZVPP-RI Level at Geometries
Optimized Using the BP86 Functional (from ref 97)

species
number of
atoms

number of AO basis
functions NO NV Naux

ΔERI‑CCSD(T)
(kcal/mol)

ΔEBP86a
(kcal/mol) wall time

number of
cores

A 44 1066 71 971 2524 0.0 0.0 4.5 days 144
INT(A-B) 44 1066 71 971 2524 −3.9 2.0 5 days 144
B 36 886 59 807 2100 13.7 19.6 38 h 144
TS(B-C)1 36 886 59 807 2100 28.0 33.1 52 h 144
INT(B−C) 36 886 59 807 2100 30.9 30.1 34 h 144
TS(B-C)2 36 886 59 807 2100 31.6 30.1 36 h 144
C1 36 886 59 807 2100 14.5 20.7 36 h 144
TS(C1-C2) 36 886 59 807 2100 13.9 21.8 35 h 144
C2 36 886 59 807 2100 3.6 9.6 38 h 144
D 32 796 52 726 1888 11.6 14.6 26 h 108
E 32 796 52 726 1888 −0.6 −6.0 25 h 108
F 32 796 52 726 1888 −30.6 −26.3 25 h 108
aBP86 energies are from ref 97.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

S

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?fig=fig9&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


def2-TZVPP-RI level of theory computed at the BP86
optimized geometries reported in ref 97 along with the wall
times required for full RI-CCSD(T) calculations. The
Stuttgart/Dresden effective core potential SD(28, MWB)100

was used for Rh. The primary focus of this study is to test the
viability of the RI-CCSD(T) calculation in combination with a
fairly large polarized triple-ζ valence basis set to model this
reaction profile.
As outlined in ref 97, the reaction proceeds through the

hydrogen-bonded adduct A. The first step is N−H activation,
which involves Rh−N bond formation leading to INT(A-B)
and the subsequent N−H bond cleavage induced by a leaving
acetate group from the CpRh(OAc)2 catalyst. N−H activation
leads to the intermediate B, which serves as the primary
substrate for C−H activation. C−H activation occurs through
the intermediate INT(B−C), which is formed via an agostic
interaction101 between Rh and the ortho-C−H bond of the
phenyl group in 3-phenylpyrazole (1). The product C1 of the
C−H activation step rearranges to the more stable form C2.
The subsequent ligand substitution (AcOH/C2H2) then forms
D, which undergoes migratory insertion leading to E. The
intermediate E then undergoes C−N reductive coupling and
leads to F, in which the final product, pyrazolo[5,1-
a]isoquinoline (2), is bound to the Rh center as a tetrahapto
ligand.
Table 7 indicates that despite the fairly large size of the

systems, these calculations can be accomplished within a
reasonable amount of time. The H-bonded adduct A and the
intermediate INT(A-B) have the largest size, namely, 44
atoms, and the calculations involve more than 1000 basis
functions. The RI-CCSD(T) calculations on these two systems
took ∼5 days, while for the other relatively smaller systems the
calculations took 1−2 days. Note that only a moderate number
of compute cores (less than 150) were employed in all
calculations. Table 7 shows that certain calculations involving
identical system size required different amounts of wall time.
This is caused by varying numbers of CCSD iterations
required for convergence. These results demonstrate that
applications involving reasonably large organometallic systems
can be performed with the reported GAMESS implementation
of RI-CCSD(T) and that the calculations can be done within a
reasonable amount of time even on small to moderate-sized
computer clusters. It is also apparent that the DFT/BP86
relative energies are in remarkably good agreement with the
much more reliable RI-CCSD(T) values except for a few
species.

6. CONCLUSIONS AND OUTLOOK
A massively parallel CCSD(T) algorithm has been described
and implemented within the GAMESS program suite using the
resolution-of-the-identity (RI) approximation for the ERIs.
The implementation uses the MPI-based distributed memory
model for internode parallelism and the OpenMP-based shared
memory model for intranode parallelism on multiprocessors
nodes. The primary features of the reported RI-CCSD(T)
algorithm include (a) the use of an integral-direct strategy to
reduce memory bottlenecks, (b) the use of a set of amplitude-
dressed three-center intermediates to cast the RI-CCSD
amplitude equations in a compact quasi-linear form, (c) the
use of permutational symmetry of the doubles amplitude and
residual matrices to reduce storage costs and disk I/O, and (d)
the use of permutational symmetries of the ERIs and the
doubles amplitudes to eliminate all memory bandwidth-bound

index permutations of triples amplitudes in the (T) correction
step. The distribution of the computational workload for
various terms in the RI-CCSD amplitude equations and the
(T) correction has been optimized in such a way as to
minimize network communications between MPI ranks.
Two different algorithms have been developed for the

computationally most expensive PPL and the N N( )O V
3 3

groups. The more memory-expensive algorithm A assembles
four-center ERIs requiring NV

4 and NO
2NV

2 -scaling memory
costs in blocks on a number of MPI ranks. The use of this
algorithm in large-scale applications requires employing an
appropriate number of MPI ranks or compute nodes to scale
down the associated quartic-scaling memory demand. The
alternative algorithm B follows the strategy of storing at most
cubic memory-scaling ERIs or intermediates and is, therefore,
highly memory-economic. The memory-economic feature of
this algorithm is achieved at the expense of reduced
vectorization of the tensor contraction involved in the
construction of the PPL group. It has been demonstrated
that algorithm B is capable of making large-scale computations
involving up to ∼1000 atomic basis functions feasible on
standard computer clusters within a reasonable amount of
time. Hence, algorithm B is expected to be more suitable for
use by the general computational chemistry community.
The reported RI-CCSD(T) algorithm shows an excellent

near-linear speedup, in particular for the (T) correction, in the
range of both a few hundred cores and a few thousand cores.
Although the overall RI-CCSD iteration does not scale as well
as the (T) correction, the rate-limiting PPL group and the

N N( )O V
3 3 group have been shown to scale reasonably well.

The algorithm B for the PPL group has been demonstrated to
show a better strong scaling than algorithm A in the limit of a
few thousand cores. The relatively poor strong scaling of the
RI-CCSD iteration arises from the fact that the low-cost terms
in the RI-CCSD equations, e.g., the HHL group, do not
effectively speed up as the number of cores is increased. This is
because several compute cores remain idle during their
computation. However, the parallel scaling of the RI-CCSD
iteration, as well as that of the HHL group, improves if the
molecular size is increased proportionately to the increase in
the number of cores, that is, the algorithm shows good weak
scaling.
Benchmark calculations have been reported to assess the

accuracy of the CC energies obtained with the RI-CCSD(T)
program vis-a-̀vis the CCSD(T) energies based on standard
four-center ERIs. Several large-scale applications have been
reported on molecules consisting of 24−51 atoms described by
500−1000 atomic basis functions. This work reports the first
calculation of the interaction energy of the π -stacked uracil
dimer from the S66 benchmark set at the CCSD(T) level using
the aug-cc-pVQZ/aug-cc-pV5Z-RI basis sets. Of particular
interest is the CCSD correlation contribution to the
interaction energy, for which varying values have been reported
in the literature.91,48,38 The CBS estimate calculated in this
work via two-point extrapolation of the results obtained with
aug-cc-pVXZ (X = T,Q) basis sets is −8.01 kcal/mol, which
agrees very well with the value of −7.99 kcal/mol reported by
Schmitz et al.48 This is the largest calculation considered in this
work, which employed 1624 atomic basis functions and took 8
days using algorithm B.
To extend the applicability of the reported RI-CCSD(T)

program in GAMESS and also to enhance its efficiency, two

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

T

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


different routes will be explored in the future. The first will be
to combine the RI-CCSD(T) algorithm with the fragment
molecular orbital (FMO) or the effective FMO (EFMO)
implementations available in GAMESS to develop a multilevel
approach for extended systems, wherein the actives sites will be
treated with the high-level RI-CCSD(T) method and the larger
environments will be treated either with the FMO approach or
with the RI-MP2 approach, all within the fragmentation
ansatz.72 Second, the current CPU-only RI-CCSD(T)
algorithm will be adapted to a hybrid CPU/GPU architecture.
Work is underway to adapt the more compute-intensive steps,
namely, the (T) correction and the evaluation of the PPL
group in the RI-CCSD iteration. The initial analysis provided
in this work indicates that algorithm B would be more suitable
for GPU adaptation, both because of its low memory demand
and also because of its superior strong scaling relative to
algorithm A in the limit of a large number of cores.

■ AUTHOR INFORMATION

Corresponding Author
Mark S. Gordon − Department of Chemistry and Ames
Laboratory, Iowa State University, Ames 50011-2416 Iowa,
United States of America; orcid.org/0000-0001-6893-
553X; Email: mark@si.msg.chem.iastate.edu

Author
Dipayan Datta − Department of Chemistry and Ames
Laboratory, Iowa State University, Ames 50011-2416 Iowa,
United States of America; orcid.org/0000-0003-0824-
0837

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.1c00389

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported in part by a Computational Chemical
Sciences grant from the US Department of Energy, Office of
Science, Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biological Sciences. The work was performed
at Ames Laboratory, which is operated by Iowa State
University under contract No. DE-AC02-07CH11338. The
computer cluster cj was provided by the Ames Laboratory. The
work was also supported in part by a National Science
Foundation software infrastructure SI2 grant, OCI-1047772.
The authors gratefully acknowledge the Argonne Leadership
Computing Facility at the Argonne National Laboratory for
providing CPU time and technical support. D.D. thanks Dr.
Robert J. Grandin of the department of IT services at Iowa
State University for his valuable assistance in preparing the
HPC cluster Nova to host large-scale coupled-cluster
calculations.

■ REFERENCES
(1) Čízěk, J. On the Correlation Problem in Atomic and Molecular
Systems. Calculation of Wavefunction Components in Ursell-Type
Expansion Using Quantum-Field Theoretical Methods. J. Chem. Phys.
1966, 45, 4256−4266.
(2) Bartlett, R. J.; Musiał, M. Coupled-Cluster Theory in Quantum
Chemistry. Rev. Mod. Phys. 2007, 79, 291−352.

(3) Crawford, T. D.; Schaefer III, H. F. An Introduction to Coupled
Cluster Theory for Computational Chemists. Rev. Comp. Chem. 2007,
14, 33−136.
(4) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M.
A Fifth-Order Perturbation Comparison of Electron Correlation
Theories. Chem. Phys. Lett. 1989, 157, 479−483.
(5) Bartlett, R. J.; Watts, J. D.; Kucharski, S. A.; Noga, J. Non-
Iterative Fifth-Order Triple and Quadruple Excitation Energy
Corrections in Correlated Methods. Chem. Phys. Lett. 1990, 165,
513−522.
(6) Kobayashi, R.; Rendell, A. P. A Direct Coupled Cluster
Algorithm for Massively Parallel Computers. Chem. Phys. Lett. 1997,
265, 1−11.
(7) Anisimov, V. M.; Bauer, G. H.; Chadalavada, K.; Olson, R. M.;
Glenski, J. W.; Kramer, W. T. C.; Apra,̀ A.; Kowalski, K. Optimization
of the Coupled Cluster Implementation in NWChem on Petascale
Parallel Architectures. J. Chem. Theory Comput. 2014, 10, 4307−4316.
(8) Olson, R. M.; Bentz, J. L.; Kendall, R. A.; Schmidt, M. W.;
Gordon, M. S. A Novel Approach to Parallel Coupled Cluster
Calculations: Combining Distributed and Shared Memory Techni-
ques for Modern Cluster Based Systems. J. Chem. Theory Comput.
2007, 3, 1312−1328.
(9) Janowski, T.; Ford, A. R.; Pulay, P. Parallel Calculation of
Coupled Cluster Singles and Doubles Wave Functions Using Array
Files. J. Chem. Theory Comput. 2007, 3, 1368−1377.
(10) Janowski, T.; Pulay, P. Efficient Parallel Implementation of the
CCSD External Exchange Operator and the Perturbative Triples (T)
Energy Calculation. J. Chem. Theory Comput. 2008, 4, 1585−1592.
(11) Deumens, E.; Lotrich, V. F.; Perera, A.; Ponton, M. J.; Sanders,
B. A.; Bartlett, R. J. Software Design of ACES III with the Super
Instruction Architecture. WIREs Comput. Mol. Sci. 2011, 1, 895−901.
(12) Solomonik, E.; Matthews, D.; Hammond, J. R.; Stanton, J. F.;
Demmel, J. A Massively Parallel Tensor Contraction Framework for
Coupled-Cluster Computations. J. Parallel Distrib. Comput. 2014, 74,
3176−3190.
(13) Ford, A. R.; Janowski, T.; Pulay, P. Array Files for
Computational Chemistry: MP2 Energies. J. Comput. Chem. 2007,
28, 1215−1220.
(14) Nieplocha, J.; Palmer, B.; Tipparaju, V.; Krishnan, M.; Trease,
H.; Apra,̀ E. Advances, Applications and Performance of the Global
Arrays Shared Memory Programming Toolkit. Int. J. High Perf.
Comput. Appl. 2006, 20, 203−231.
(15) Fletcher, G. D.; Schmidt, M. W.; Bode, B. M.; Gordon, M. S.
The Distributed Data Interface in GAMESS. Comput. Phys. Commun.
2000, 128, 190−200.
(16) Olson, R. M.; Schmidt, M. W.; Gordon, M. S.; Rendell, A. P.
Enabling the Efficient Use of SMP Clusters: The GAMESS/DDI
Approach. Proceedings of the 2003 ACM/IEEE Conference on
Supercomputing; Phoenix, AZ, 2003; p 41.
(17) Yoo, S.; Apra,̀ E.; Zeng, X. C.; Xantheas, S. S. High-Level Ab
Initio Electronic Structure Calculations of Water Clusters (H2O)16
and (H2O)17: A New Global Minimum for (H2O)16. J. Phys. Chem.
Lett. 2010, 1, 3122−3127.
(18) Benedikt, U.; Auer, A. A.; Espig, M.; Hackbusch, W. Tensor
Decomposition in Post-Hartree−Fock Methods. I. Two-Electron
Integrals and MP2. J. Chem. Phys. 2011, 134, 054118.
(19) Benedikt, U.; Böhm, K.-H.; Auer, A. A. Tensor Decomposition
in Post-Hartree−Fock Methods. II. CCD Implementation. J. Chem.
Phys. 2013, 139, 224101.
(20) Kinoshita, T.; Hino, O.; Bartlett, R. J. Singular Value
Decomposition Approach for the Approximate Coupled-Cluster
Method. J. Chem. Phys. 2003, 119, 7756−7762.
(21) Hohenstein, E. G.; Parrish, R. M.; Martínez, T. J. Tensor
Hypercontraction Density Fitting. I. Quartic Scaling Second-and
Third-Order Møller-Plesset Perturbation Theory. J. Chem. Phys. 2012,
137, 044103.
(22) Parrish, R. M.; Sherrill, C. D.; Hohenstein, E. G.; Kokkila, S. I.
L.; Martínez, T. J. Communication: Acceleration of Coupled Cluster

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

U

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mark+S.+Gordon"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6893-553X
https://orcid.org/0000-0001-6893-553X
mailto:mark@si.msg.chem.iastate.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dipayan+Datta"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0824-0837
https://orcid.org/0000-0003-0824-0837
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00389?ref=pdf
https://doi.org/10.1063/1.1727484
https://doi.org/10.1063/1.1727484
https://doi.org/10.1063/1.1727484
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1002/9780470125915.ch2
https://doi.org/10.1002/9780470125915.ch2
https://doi.org/10.1016/S0009-2614(89)87395-6
https://doi.org/10.1016/S0009-2614(89)87395-6
https://doi.org/10.1016/0009-2614(90)87031-L
https://doi.org/10.1016/0009-2614(90)87031-L
https://doi.org/10.1016/0009-2614(90)87031-L
https://doi.org/10.1016/S0009-2614(96)01387-5
https://doi.org/10.1016/S0009-2614(96)01387-5
https://doi.org/10.1021/ct500404c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct500404c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct500404c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct600366k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct600366k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct600366k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct700048u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct700048u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct700048u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct800142f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct800142f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct800142f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/wcms.77
https://doi.org/10.1002/wcms.77
https://doi.org/10.1016/j.jpdc.2014.06.002
https://doi.org/10.1016/j.jpdc.2014.06.002
https://doi.org/10.1002/jcc.20630
https://doi.org/10.1002/jcc.20630
https://doi.org/10.1177/1094342006064503
https://doi.org/10.1177/1094342006064503
https://doi.org/10.1016/S0010-4655(00)00073-4
https://doi.org/10.1021/jz101245s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz101245s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz101245s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.3514201
https://doi.org/10.1063/1.3514201
https://doi.org/10.1063/1.3514201
https://doi.org/10.1063/1.4833565
https://doi.org/10.1063/1.4833565
https://doi.org/10.1063/1.1609442
https://doi.org/10.1063/1.1609442
https://doi.org/10.1063/1.1609442
https://doi.org/10.1063/1.4732310
https://doi.org/10.1063/1.4732310
https://doi.org/10.1063/1.4732310
https://doi.org/10.1063/1.4876016
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Singles and Doubles via Orbital-Weighted Least-Squares Tensor
Hypercontraction. J. Chem. Phys. 2014, 140, 181102.
(23) Parrish, R. M.; Zhao, Y.; Hohenstein, E. G.; Martínez, T. J.
Rank Reduced Coupled Cluster Theory. I. Ground State Energies and
Wavefunctions. J. Chem. Phys. 2019, 150, 164118.
(24) Schutski, R.; Zhao, J.; Henderson, T. M.; Scuseria, G. E.
Tensor-Structured Coupled Cluster Theory. J. Chem. Phys. 2017, 147,
184113.
(25) Whitten, J. L. Coulombic Potential Energy Integrals and
Approximations. J. Chem. Phys. 1973, 58, 4496−4501.
(26) Feyereisen, M.; Fitzgerald, G.; Komornicki, A. Use of
Approximate Integrals in Ab Initio Theory. An Application in MP2
Energy Calculations. Chem. Phys. Lett. 1993, 208, 359−363.
(27) Vahtras, O.; Almlöf, J.; Feyereisen, M. W. Integral
Approximations for LCAO-SCF Calculations. Chem. Phys. Lett.
1993, 213, 514−518.
(28) Weigend, F. A Fully Direct RI-HF Algorithm: Implementation,
Optimised Auxiliary Basis Sets, Demonstration of Accuracy and
Efficiency. Phys. Chem. Chem. Phys. 2002, 4, 4285−4291.
(29) Sodt, A.; Subotnik, J. E.; Head-Gordon, M. Linear Scaling
Density Fitting. J. Chem. Phys. 2006, 125, 194109.
(30) Beebe, N. H. F.; Linderberg, J. Simplifications in the
Generation and Transformation of Two-Electron Integrals in
Molecular Calculations. Int. J. Quantum Chem. 1977, 12, 683−705.
(31) Koch, H.; Sánchez de Merás, A.; Pedersen, T. B. Reduced
Scaling in Electronic Structure Calculations using Cholesky
Decompositions. J. Chem. Phys. 2003, 118, 9481−9484.
(32) Aquilante, F.; Lindh, R.; Bondo Pedersen, T. Unbiased
Auxiliary Basis Sets for Accurate Two-Electron Integral Approx-
imations. J. Chem. Phys. 2007, 127, 114107.
(33) Pedersen, T. B.; Aquilante, F.; Lindh, R. Density Fitting with
Auxiliary Basis Sets from Cholesky Decompositions. Theor. Chem. Acc.
2009, 124, 1−10.
(34) Rendell, A. P.; Lee, T. J. Coupled-Cluster Theory Employing
Approximate Integrals: An Approach to Avoid the Input/Output and
Storage Bottlenecks. J. Chem. Phys. 1994, 101, 400−408.
(35) Hättig, C.; Weigend, F. CC2 Excitation Energy Calculations on
Large Molecules Using the Resolution of the Identity Approximation.
J. Chem. Phys. 2000, 113, 5154−5161.
(36) Epifanovsky, E.; Zuev, D.; Feng, X.; Khistyaev, K.; Shao, Y.;
Krylov, A. I. General Implementation of the Resolution-of-the-
Identity and Cholesky Representations of Electron Repulsion
Integrals Within Coupled-Cluster and Equation-of-Motion Methods:
Theory and Benchmarks. J. Chem. Phys. 2013, 139, 134105.
(37) DePrince, A. E., III; Sherrill, C. D. Accuracy and Efficiency of
Coupled-Cluster Theory Using Density Fitting/Cholesky Decom-
position, Frozen Natural Orbitals, and a t1-Transformed Hamiltonian.
J. Chem. Theory Comput. 2013, 9, 2687−2696.
(38) Peng, C.; Calvin, J. A.; Pavosěvic,́ F.; Zhang, J.; Valeev, E. F.
Massively Parallel Implementation of Explicitly Correlated Coupled
Cluster Singles and Doubles Using TiledArray Framework. J. Phys.
Chem. A 2016, 120, 10231−10244.
(39) Peng, C.; Calvin, J. A.; Valeev, E. F. Coupled-Cluster Singles,
Doubles and Perturbative Triples with Density Fitting Approximation
for Massively Parallel Heterogeneous Platforms. Int. J. Quantum Chem.
2019, 119, No. e25894.
(40) Shen, T.; Zhu, Z.; Zhang, I. Y.; Scheffler, M. Massive-parallel
Implementation of the Resolution-of-Identity Coupled-cluster Ap-
proaches in the Numeric Atom-centered Orbital Framework for
Molecular Systems. J. Chem. Theory Comput. 2019, 15, 4721−4734.
(41) Gyevi-Nagy, L.; Kállay, M.; Nagy, P. R. Integral-Direct and
Parallel Implementation of the CCSD(T) Method: Algorithmic
Developments and Large-Scale Applications. J. Chem. Theory Comput.
2020, 16, 366−384.
(42) Pulay, P. Localizability of Dynamic Electron Correlation. Chem.
Phys. Lett. 1983, 100, 151−154.
(43) Saebø, S.; Pulay, P. Local Configuration Interaction: An
Efficient Approach for Larger Molecules. Chem. Phys. Lett. 1985, 113,
13−18.

(44) Boughton, J. W.; Pulay, P. Comparison of the Boys and Pipek−
Mezey Localizations in the Local Correlation Approach and
Automatic Virtual Basis Selection. J. Comput. Chem. 1993, 14, 736−
740.
(45) Hampel, C.; Werner, H.-J. Local Treatment of Electron
Correlation in Coupled Cluster Theory. J. Chem. Phys. 1996, 104,
6286−6297.
(46) Schütz, M.; Werner, H.-J. Local Perturbative Triples Correction
(T) with Linear Cost Scaling. Chem. Phys. Lett. 2000, 318, 370−378.
(47) Schwilk, M.; Ma, Q.; Köppl, C.; Werner, H.-J. Scalable Electron
Correlation Methods. 3. Efficient and Accurate Parallel Local Coupled
Cluster with Pair Natural Orbitals (PNO-LCCSD). J. Chem. Theory
Comput. 2017, 13, 3650−3675.
(48) Schmitz, G.; Hättig, C.; Tew, D. P. Explicitly Correlated PNO-
MP2 and PNO-CCSD and Their Application to the S66 Set and
Large Molecular Systems. Phys. Chem. Chem. Phys. 2014, 16, 22167−
22178.
(49) Scuseria, G. E.; Ayala, P. Y. Linear Scaling Coupled Cluster and
Perturbation Theories in the Atomic Orbital Basis. J. Chem. Phys.
1999, 111, 8330−8343.
(50) Maslen, P. E.; Dutoi, A. D.; Lee, M. S.; Shao, Y.; Head-Gordon,
M. Accurate Local Approximations to the Triples Correlation Energy:
Formulation, Implementation and Tests of 5th-order Scaling Models.
Mol. Phys. 2005, 103, 425−437.
(51) Li, S.; Ma, J.; Jiang, Y. Linear Scaling Local Correlation
Approach for Solving the Coupled Cluster Equations of Large
Systems. J. Comput. Chem. 2002, 23, 237−244.
(52) Li, W.; Piecuch, P.; Gour, J. R.; Li, S. Local Correlation
Calculations Using Standard and Renormalized Coupled-Cluster
Approaches. J. Chem. Phys. 2009, 131, 114109.
(53) Yang, J.; Chan, G. K. L.; Manby, F. R.; Schütz, M.; Werner, H.-
J. The Orbital-Specific-Virtual Local Coupled Cluster Singles and
Doubles Method. J. Chem. Phys. 2012, 136, 144105.
(54) Nagy, P. R.; Kállay, M. Optimization of the Linear-Scaling
Local Natural Orbital CCSD(T) Method: Redundancy-Free Triples
Correction Using Laplace Transform. J. Chem. Phys. 2017, 146,
214106.
(55) Nagy, P. R.; Kállay, M. Approaching the Basis Set Limit of
CCSD(T) Energies for Large Molecules with Local Natural Orbital
Coupled-Cluster Methods. J. Chem. Theory Comput. 2019, 15, 5275−
5298.
(56) Riplinger, C.; Neese, F. An Efficient and Near Linear Scaling
Pair Natural Orbital Based Local Coupled Cluster Method. J. Chem.
Phys. 2013, 138, 034106.
(57) Riplinger, C.; Sandhöfer, B.; Hansen, A.; Neese, F. Natural
Triple Excitations in Local Coupled Cluster Calculations with Pair
Natural Orbitals. J. Chem. Phys. 2013, 139, 134101.
(58) Guo, Y.; Riplinger, C.; Becker, U.; Liakos, D. G.; Minenkov, Y.;
Cavallo, L.; Neese, F. Communication: An Improved Linear Scaling
Perturbative Triples Correction for the Domain Based Local Pair-
Natural Orbital Based Singles and Doubles Coupled Cluster Method
[DLPNO-CCSD(T)]. J. Chem. Phys. 2018, 148, 011101.
(59) Kitaura, K.; Sawai, T.; Asada, T.; Nakano, T.; Uebayasi, M. Pair
Interaction Molecular Orbital Method: An Approximate Computa-
tional Method for Molecular Interactions. Chem. Phys. Lett. 1999, 312,
319−324.
(60) Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M.
Fragment Molecular Orbital Method: An Approximate Computa-
tional Method for Large Molecules. Chem. Phys. Lett. 1999, 313, 701−
706.
(61) Nakano, T.; Kaminuma, T.; Sato, T.; Akiyama, Y.; Uebayasi,
M.; Kitaura, K. Chem. Phys. Lett. 2000, 318, 614−618.
(62) Nakano, T.; Kaminuma, T.; Sato, T.; Fukuzawa, K.; Akiyama,
Y.; Uebayasi, M.; Kitaura, K. Fragment Molecular Orbital Method:
Use of Approximate Electrostatic Potential. Chem. Phys. Lett. 2002,
351, 475−480.
(63) Fedorov, D. G. The Fragment Molecular Orbital Method:
Theoretical Development, Implementation in GAMESS, and

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

V

https://doi.org/10.1063/1.4876016
https://doi.org/10.1063/1.4876016
https://doi.org/10.1063/1.5092505
https://doi.org/10.1063/1.5092505
https://doi.org/10.1063/1.4996988
https://doi.org/10.1063/1.1679012
https://doi.org/10.1063/1.1679012
https://doi.org/10.1016/0009-2614(93)87156-W
https://doi.org/10.1016/0009-2614(93)87156-W
https://doi.org/10.1016/0009-2614(93)87156-W
https://doi.org/10.1016/0009-2614(93)89151-7
https://doi.org/10.1016/0009-2614(93)89151-7
https://doi.org/10.1039/b204199p
https://doi.org/10.1039/b204199p
https://doi.org/10.1039/b204199p
https://doi.org/10.1063/1.2370949
https://doi.org/10.1063/1.2370949
https://doi.org/10.1002/qua.560120408
https://doi.org/10.1002/qua.560120408
https://doi.org/10.1002/qua.560120408
https://doi.org/10.1063/1.1578621
https://doi.org/10.1063/1.1578621
https://doi.org/10.1063/1.1578621
https://doi.org/10.1063/1.2777146
https://doi.org/10.1063/1.2777146
https://doi.org/10.1063/1.2777146
https://doi.org/10.1007/s00214-009-0608-y
https://doi.org/10.1007/s00214-009-0608-y
https://doi.org/10.1063/1.468148
https://doi.org/10.1063/1.468148
https://doi.org/10.1063/1.468148
https://doi.org/10.1063/1.1290013
https://doi.org/10.1063/1.1290013
https://doi.org/10.1063/1.4820484
https://doi.org/10.1063/1.4820484
https://doi.org/10.1063/1.4820484
https://doi.org/10.1063/1.4820484
https://doi.org/10.1021/ct400250u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400250u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400250u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.6b10150?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.6b10150?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/qua.25894
https://doi.org/10.1002/qua.25894
https://doi.org/10.1002/qua.25894
https://doi.org/10.1021/acs.jctc.8b01294?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01294?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01294?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01294?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00957?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00957?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00957?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0009-2614(83)80703-9
https://doi.org/10.1016/0009-2614(85)85003-X
https://doi.org/10.1016/0009-2614(85)85003-X
https://doi.org/10.1002/jcc.540140615
https://doi.org/10.1002/jcc.540140615
https://doi.org/10.1002/jcc.540140615
https://doi.org/10.1063/1.471289
https://doi.org/10.1063/1.471289
https://doi.org/10.1016/S0009-2614(00)00066-X
https://doi.org/10.1016/S0009-2614(00)00066-X
https://doi.org/10.1021/acs.jctc.7b00554?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00554?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00554?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C4CP03502J
https://doi.org/10.1039/C4CP03502J
https://doi.org/10.1039/C4CP03502J
https://doi.org/10.1063/1.480174
https://doi.org/10.1063/1.480174
https://doi.org/10.1080/00268970412331319227
https://doi.org/10.1080/00268970412331319227
https://doi.org/10.1002/jcc.10003
https://doi.org/10.1002/jcc.10003
https://doi.org/10.1002/jcc.10003
https://doi.org/10.1063/1.3218842
https://doi.org/10.1063/1.3218842
https://doi.org/10.1063/1.3218842
https://doi.org/10.1063/1.3696963
https://doi.org/10.1063/1.3696963
https://doi.org/10.1063/1.4984322
https://doi.org/10.1063/1.4984322
https://doi.org/10.1063/1.4984322
https://doi.org/10.1021/acs.jctc.9b00511?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00511?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00511?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4773581
https://doi.org/10.1063/1.4773581
https://doi.org/10.1063/1.4821834
https://doi.org/10.1063/1.4821834
https://doi.org/10.1063/1.4821834
https://doi.org/10.1063/1.5011798
https://doi.org/10.1063/1.5011798
https://doi.org/10.1063/1.5011798
https://doi.org/10.1063/1.5011798
https://doi.org/10.1016/S0009-2614(99)00937-9
https://doi.org/10.1016/S0009-2614(99)00937-9
https://doi.org/10.1016/S0009-2614(99)00937-9
https://doi.org/10.1016/S0009-2614(99)00874-X
https://doi.org/10.1016/S0009-2614(99)00874-X
https://doi.org/10.1016/S0009-2614(01)01416-6
https://doi.org/10.1016/S0009-2614(01)01416-6
https://doi.org/10.1002/wcms.1322
https://doi.org/10.1002/wcms.1322
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Applications. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017, 7,
No. e1322.
(64) Gordon, M. S.; Fedorov, D. G.; Pruitt, S. R.; Slipchenko, L. V.
Fragmentation Methods: A Route to Accurate Calculations on Large
Systems. Chem. Rev. 2012, 112, 632−672.
(65) Li, W.; Piecuch, P. Multilevel Extension of the Cluster-in-
Molecule Local Correlation Methodology: Merging Coupled-Cluster
and Møller-Plesset Perturbation Theories. J. Phys. Chem. A 2010, 114,
6721−6727.
(66) Piecuch, P.; Włoch, M. Renormalized Coupled-Cluster
Methods Exploiting Left Eigenstates of the Similarity-Transformed
Hamiltonian. J. Chem. Phys. 2005, 123, 224105.
(67) Piecuch, P.; Włoch, M.; Gour, J. R.; Kinal, A. Single-Reference,
Size-Extensive, Non-Iterative Coupled-Cluster Approaches to Bond
Breaking and Biradicals. Chem. Phys. Lett. 2006, 418, 467−470.
(68) Findlater, A. D.; Zahariev, F.; Gordon, M. S. Combined
Fragment Molecular Orbital Cluster in Molecule Approach to
Massively Parallel Electron Correlation Calculations for Large
Systems. J. Phys. Chem. A 2015, 119, 3587−3593.
(69) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.;
Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K.
A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. J. A. General
Atomic and Molecular Electronic Structure System. J. Comput. Chem.
1993, 14, 1347−1363.
(70) Barca, G. M. J.; Bertoni, C.; Carrington, L.; Datta, D.; De Silva,
N.; Deustua, J. E.; Fedorov, D. G.; Gour, J. R.; Gunina, A. O.; Guidez,
E.; Harville, T.; Irle, S.; Ivanic, J.; Kowalski, K.; Leang, S. S.; Li, H.; Li,
W.; Lutz, J. J.; Magoulas, I.; Mato, J.; Mironov, V.; Nakata, H.; Pham,
B. Q.; Piecuch, P.; Poole, D.; Pruitt, S. R.; Rendell, A. P.; Roskop, L.
B.; Ruedenberg, K.; Sattasathuchana, T.; Schmidt, M. W.; Shen, J.;
Slipchenko, L.; Sosonkina, M.; Sundriyal, V.; Tiwari, A.; Galvez
Vallejo, J. L.; Westheimer, B.; Wloch, M.; Xu, P.; Zahariev, F.;
Gordon, M. S. Recent Developments in the General Atomic and
Molecular Electronic Structure System. J. Chem. Phys. 2020, 152,
154102.
(71) Fedorov, D. G.; Olson, R. M.; Kitaura, K.; Gordon, M. S.;
Koseki, S. A New Hierarchical Parallelization Scheme: Generalized
Distributed Data Interface (GDDI), and an Application to the
Fragment Molecular Orbital Method (FMO). J. Comput. Chem. 2004,
25, 872−880.
(72) Pham, B. Q.; Gordon, M. S. Hybrid Distributed/Shared
Memory Model for the RI-MP2Method in the Fragment Molecular
Orbital Framework. J. Chem. Theory Comput. 2019, 15, 5252−5258.
(73) Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F., III An Efficient
Reformulation of the Closed Shell Coupled Cluster Single and
Double Excitation (CCSD) Equations. J. Chem. Phys. 1988, 89,
7382−7387.
(74) Kállay, M.; Surján, P. R. Higher Excitations in Coupled-Cluster
Theory. J. Chem. Phys. 2001, 115, 2945−2954.
(75) Engels-Putzka, A.; Hanrath, M. A Fully Simultaneously
Optimizing Genetic Approach to the Highly Excited Coupled-Cluster
Factorization Problem. J. Chem. Phys. 2011, 134, 124106.
(76) Datta, D.; Gauss, J. A Non-antisymmetric Tensor Contraction
Engine for the Automated Implementation of Spin-Adapted Coupled
Cluster Approaches. J. Chem. Theory Comput. 2013, 9, 2639−2653.
(77) Weigend, F.; Häser, M.; Patzelt, H.; Ahlrichs, R. RI-MP2:
Optimized Auxiliary Basis Sets and Demonstration of Efficiency.
Chem. Phys. Lett. 1998, 294, 143−152.
(78) Weigend, F.; Köhn, A.; Hättig, C. Efficient use of the
Correlation Consistent Basis Sets in Resolution of the Identity MP2
Calculations. J. Chem. Phys. 2002, 116, 3175−3183.
(79) Hellweg, A.; Hättig, C.; Höfener, S.; Klopper, W. Optimized
Accurate Auxiliary Basis Sets for RI-MP2 and RI-CC2 Calculations
for the Atoms Rb to Rn. Theor. Chem. Acc. 2007, 117, 587−597.
(80) Rendell, A. P.; Lee, T. J.; Komornicki, A. A Parallel Vectorized
Implementation of Triple Excitations in CCSD(T): Application to the
Binding Energies of the AlH3, AlH2F, AlHF2 and AlF3 Dimers.
Chem. Phys. Lett. 1991, 178, 462−470.

(81) Rendell, A. P.; Lee, T. J.; Komornicki, A.; Wilson, S. Evaluation
of the Contribution from Triply Excited Intermediates to the Fourth-
Order Perturbation Theory Energy on Intel Distributed Memory
Supercomputers. Theor. Chim. Act. 1993, 84, 271−287.
(82) Dunning, T. H. Gaussian Basis Sets For Use in Correlated
Molecular Calculations. I. The Atoms Boron Through Neon and
Hydrogen. J. Chem. Phys. 1989, 90, 1007−1023.
(83) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. Electron
Affinities of the First-row Atoms Revisited. Systematic Basis Sets and
Wave Functions. J. Chem. Phys. 1992, 96, 6796−6806.
(84) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence,
Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn:
Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7,
3297−3305.
(85) Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X.;
Reuter, K.; Scheffler, M. Ab Initio Molecular Simulations with
Numeric Atom-Centered Orbitals. Comput. Phys. Commun. 2009, 180,
2175−2196.
(86) Kállay, M.; Nagy, P. R.; Mester, D.; Rolik, Z.; Samu, G.;
Csontos, J.; Csóka, J.; Szabó, P. B.; Gyevi-Nagy, L.; Hégely, B.;
Ladjánszki, I.; Szegedy, L.; Ladóczki, B.; Petrov, K.; Farkas, M.; Mezei,
P. D.; Ganyecz, Á. The MRCC Program System: Accurate Quantum
Chemistry from Water to Proteins. J. Chem. Phys. 2020, 152, 074107.
(87) Gustafson, J. L. Reevaluating Amdahl’s Law. Commun. ACM
1988, 31, 532−533.
(88) Wilke, J. J.; Lind, M. C.; Schaefer III, H. F.; Császár, A. G.;
Allen, W. D. Conformers of Gaseous Cysteine. J. Chem. Theory
Comput. 2009, 5, 1511−1523.
(89) Huenerbein, R.; Schirmer, B.; Moellmann, J.; Grimme, S.
Effects of London Dispersion on the Isomerization Reactions of Large
Organic Molecules: A Density Functional Benchmark Study. Phys.
Chem. Chem. Phys. 2010, 12, 6940−6948.
(90) Řezác,̌ J.; Riley, K. E.; Hobza, P. S66: A Well-balanced
Database of Benchmark Interaction Energies Relevant to Biomolec-
ular Structures. J. Chem. Theory Comput. 2011, 7, 2427−2438.
(91) Řezác,̌ J.; Riley, K. E.; Hobza, P. Extensions of the S66 Data
Set: More Accurate Interaction Energies and Angular-Displaced
Nonequilibrium Geometries. J. Chem. Theory Comput. 2011, 7, 3466−
3470.
(92) Kesharwani, M. K.; Karton, A.; Sylvetsky, N.; Martin, J. M. L.
The S66 Non-Covalent Interactions Benchmark Reconsidered Using
Explicitly Correlated Methods Near the Basis Set Limit. Aust. J. Chem.
2018, 71, 238−248.
(93) Sylvetsky, N.; Peterson, K. A.; Karton, A.; Martin, J. M. L.
Toward a W4-F12 Approach: Can Explicitly Correlated and Orbital-
Based Ab Initio CCSD(T) Limits Be Reconciled? J. Chem. Phys. 2016,
144, 214101.
(94) Halkier, A.; Helgaker, T.; Jørgensen, P.; Klopper, W.; Koch, H.;
Olsen, J.; Wilson, A. K. Basis-set Convergence in Correlated
Calculations on Ne, N2, and H2O. Chem. Phys. Lett. 1998, 286,
243−252.
(95) Shilov, A. E.; Shul’pin, G. B. Activation of C-H Bonds by Metal
Complexes. Chem. Rev. 1997, 97, 2879−2932.
(96) Ackermann, L. Carboxylate-Assisted Transition-Metal-Cata-
lyzed C-H Bond Functionalizations: Mechanism and Scope. Chem.
Rev. 2011, 111, 1315−1345.
(97) Algarra, A. G.; Cross, W. B.; Davies, D. L.; Khamker, Q.;
Macgregor, S. A.; McMullin, C. L.; Singh, K. Combined Experimental
and Computational Investigations of Rhodium-and Ruthenium-
Catalyzed C-H Functionalization of Pyrazoles with Alkynes. J. Org.
Chem. 2014, 79, 1954−1970.
(98) Dohm, S.; Hansen, A.; Steinmetz, M.; Grimme, S.; Checinski,
M. P. Comprehensive Thermochemical Benchmark Set of Realistic
Closed-Shell Metal Organic Reactions. J. Chem. Theory Comput. 2018,
14, 2596−2608.
(99) Becke, A. D. Density-Functional Exchange-Energy Approx-
imation with Correct Asymptotic Behavior. Phys. Rev. A: At., Mol.,
Opt. Phys. 1988, 38, 3098−3100.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

W

https://doi.org/10.1002/wcms.1322
https://doi.org/10.1021/cr200093j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr200093j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp1038738?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp1038738?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp1038738?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.2137318
https://doi.org/10.1063/1.2137318
https://doi.org/10.1063/1.2137318
https://doi.org/10.1016/j.cplett.2005.10.116
https://doi.org/10.1016/j.cplett.2005.10.116
https://doi.org/10.1016/j.cplett.2005.10.116
https://doi.org/10.1021/jp509266g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp509266g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp509266g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp509266g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.540141112
https://doi.org/10.1002/jcc.540141112
https://doi.org/10.1063/5.0005188
https://doi.org/10.1063/5.0005188
https://doi.org/10.1002/jcc.20018
https://doi.org/10.1002/jcc.20018
https://doi.org/10.1002/jcc.20018
https://doi.org/10.1021/acs.jctc.9b00409?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00409?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00409?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.455269
https://doi.org/10.1063/1.455269
https://doi.org/10.1063/1.455269
https://doi.org/10.1063/1.1383290
https://doi.org/10.1063/1.1383290
https://doi.org/10.1063/1.3561739
https://doi.org/10.1063/1.3561739
https://doi.org/10.1063/1.3561739
https://doi.org/10.1021/ct400216h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400216h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400216h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0009-2614(98)00862-8
https://doi.org/10.1016/S0009-2614(98)00862-8
https://doi.org/10.1063/1.1445115
https://doi.org/10.1063/1.1445115
https://doi.org/10.1063/1.1445115
https://doi.org/10.1007/s00214-007-0250-5
https://doi.org/10.1007/s00214-007-0250-5
https://doi.org/10.1007/s00214-007-0250-5
https://doi.org/10.1016/0009-2614(91)87003-T
https://doi.org/10.1016/0009-2614(91)87003-T
https://doi.org/10.1016/0009-2614(91)87003-T
https://doi.org/10.1007/BF01113267
https://doi.org/10.1007/BF01113267
https://doi.org/10.1007/BF01113267
https://doi.org/10.1007/BF01113267
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.462569
https://doi.org/10.1063/1.462569
https://doi.org/10.1063/1.462569
https://doi.org/10.1039/b508541a
https://doi.org/10.1039/b508541a
https://doi.org/10.1039/b508541a
https://doi.org/10.1016/j.cpc.2009.06.022
https://doi.org/10.1016/j.cpc.2009.06.022
https://doi.org/10.1063/1.5142048
https://doi.org/10.1063/1.5142048
https://doi.org/10.1145/42411.42415
https://doi.org/10.1021/ct900005c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/c003951a
https://doi.org/10.1039/c003951a
https://doi.org/10.1021/ct2002946?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct2002946?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct2002946?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct200523a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct200523a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct200523a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1071/CH17588
https://doi.org/10.1071/CH17588
https://doi.org/10.1063/1.4952410
https://doi.org/10.1063/1.4952410
https://doi.org/10.1016/S0009-2614(98)00111-0
https://doi.org/10.1016/S0009-2614(98)00111-0
https://doi.org/10.1021/cr9411886?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr9411886?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr100412j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr100412j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jo402592z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jo402592z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jo402592z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b01183?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b01183?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevA.38.3098
https://doi.org/10.1103/PhysRevA.38.3098
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(100) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H.
Energy-Adjusted ab initio Pseudopotentials for the Second and Third
Row Transition Elements. Theor. Chim. Acta 1990, 77, 123−141.
(101) Brookhart, M.; Green, M. L. H.; Parkin, G. Agostic
Interactions in Transition Metal Compounds. Proc. Natl. Acad. Sci.
U. S. A. 2007, 104, 6908−6914.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00389
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

X

https://doi.org/10.1007/BF01114537
https://doi.org/10.1007/BF01114537
https://doi.org/10.1073/pnas.0610747104
https://doi.org/10.1073/pnas.0610747104
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00389?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

