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ABSTRACT
Following the rapid growth of distributed energy resources

(e.g. renewables, battery), localized peer-to-peer energy trans-
actions are receiving more attention for multiple benefits, such
as, reducing power loss, stabilizing the main power grid, etc. To
promote distributed renewables locally, the local trading price
is usually set to be within the external energy purchasing and
selling price range. Consequently, building prosumers are mo-
tivated to trade energy through a local transaction center. This
local energy transaction is modeled in bilevel optimization game.
A selfish upper level agent is assumed with the privilege to set the
internal energy transaction price with an objective of maximiz-
ing its arbitrage profit. Meanwhile, the building prosumers at
the lower level will response to this transaction price and make
decisions on electricity transaction amount. Therefore, this non-
cooperative leader-follower trading game is seeking for equilib-
rium solutions on the energy transaction amount and prices. In
addition, a uniform local transaction price structure (purchase
price equals selling price) is considered here. Aiming at reducing
the computational burden from classical Karush-Kuhn-Tucker
(KKT) transformation and protecting the private information of
each stakeholder (e.g., building), swarm intelligence based so-
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lution approach is employed for upper level agent to generate
trading price and coordinate the transactive operations. On
one hand, to decrease the chance of premature convergence in
global-best topology, Rubik’s Cube topology is proposed in this
study based on further improvement of a two-dimensional square
lattice model (i.e., one local-best topology-Von Neumann topol-
ogy). Rotating operation of the cube is introduced to dynamically
changing the neighborhood and enhancing information flow at
the later searching state. Several groups of experiments are de-
signed to evaluate the performance of proposed Rubik’s Cube
topology based particle swarm algorithm. The results have vali-
dated the effectiveness of proposed topology and operators com-
paring with global-best version PSO and Von Neumann topology
based PSO and its scalability on larger scale applications.

1. INTRODUCTION
Renewable energy is the fastest-growing energy source in

the U.S., increasing 100 percent from 2000 to 2018, and the con-
sumption of renewable energy in 2019 was nearly three times
greater than in 2000. In 2019, renewable energy supported 17%
of total U.S. electricity consumption and it surpasses coal gen-
eration for the first time in over 130 years [1]. Increasing re-
newable energy start to impose burden on current grid infras-
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tructure, and it could be a grand challenge in terms of power
system stability to integrate such amount of intermittent renew-
ables. To reduce the burden, local microgrids and energy market
is a promising option in absorbing more renewables locally, by
providing a wide range of benefits, such as reducing power loss
over long distance transmission, more choices and more cheaper
energy, preventing large scale blackouts due to extreme storms,
etc. Community level microgrid practice in U.S. could refer to
Residential Solar Microgrid in California, Long Island Commu-
nity Microgrid, North Bay Community Resilience Initiative in
San Francisco Bay area [2].

With smart grid/building technologies, traditional building
consumer has transformed into prosumers integrated with dis-
tributed energy resources (DERs). Along with more prosumers
(players) involved in the local energy trading game, Stackelberg
game or bilevel optimization is very much relied to obtain equi-
librium bidding strategies for all players. For Stackelberg game,
the common method to find subgame-perfect nash equilibrium is
to substitute the follower’s model by deriving Backward Induc-
tion. Bilevel optimization is a more general framework of Stack-
elberg game, and similarly, it can be solved by Karush-Kuhn-
Tucker (KKT) based necessary conditions [3]. For instance, a
bilevel community energy transaction market is designed as po-
tential use case for a new modular pump hydro storage patented
in oak ridge national laboratory [4] and the storage is assumed
as the game leader and price maker, then detailed KKT condi-
tions are derived for solving process. With the conflict objective
of distribution company and DERs aggregators, bilevel optimiza-
tion approach is proposed for the coordination between transmis-
sion, distribution, and DERs aggregators that interact in a local
market model. Then non-linear bilevel model is transformed into
a linear single level model through KKT conditions and duality
theory [5].

Due to the sharply increased constraints (prime constraints,
stationary constraints, Complementary Slackness Constraints)
and binary variables in KKT conditions, the resulted single level
model from bilevel optimization is generally much harder to
solve and limited for small case application. Meanwhile, KKT
approach is only applicable when lower level problem is con-
vex and it needs all information (e.g. energy storage capacity,
customer preference, etc) from lower level agents for central de-
cision making. To reduce the computational burden and pro-
tect privacy data of lower level, distributed solution approaches
have been explored in bilevel optimization context. In a bilevel
price-demand response game between distribution system oper-
ator and flexible load aggregator, particle swarm algorithm and
pattern search algorithm are investigated as distributed solution
approaches and compared with classical centralized backward
induction approach [6], where the price signal and optimal de-
mand response are shared. Similary, distributed genetic algo-
rithm is proposed for smart grid with multiple utility companies
and multiple users based on expectation bilevel programming.

At each iteration of genetic algorithm, real time price from util-
ity company and optimal consumption of users are provided and
exchanged [7]. A swarm intelligence base bilevel distributed ap-
proach is developed to coordinate transactive operations among
buildings, where the only information exchanged between sys-
tem level and building level is the marginal price of transac-
tive energy which is utilized to guide particles’ searching pro-
cess [8] [9]. For a multiple-leader multiple-follower stackelberg
game in community energy trading, the price competition among
sellers is modeled as a static non-cooperative game, while the
seller selection competition among buyers is modeled by evolu-
tionary game approach. And then two iterative distributed algo-
rithms are designed respectively for sellers’ and buyers’ compe-
tition [10]. A novel generation expansion problem that integrates
the renewable energy market is formulated as a bilevel optimiza-
tion [11], where the offering prices, supplies, and demands in
renewable energy credits market are considered as functions of
power system optimal operations. The problem is solved effec-
tively by the proposed combination of KKT reformulation and
the fixed point iterative algorithm.

For particle swarm algorithm, it uses a social topology for
particles to share information among neighbors during solution
searching. Since its introduction in 1995, two kinds of interpar-
ticle communication network were proposed: Gbest and Lbest
networks [12]. In Gbest or global topology, all particles are fully
connected and share information, each particle is attracted to-
wards the best solution found by entire swarm. Whereas, in
Lbest or local topology, each particle only share information with
immediate neighbors. Observed in large amount of studies, the
performance of PSO depends on its social topology greatly and
there is no outright best topology for all problems. Eight PSO
topologies are investigated on their performance in PSO trained
extreme learning machine [13], which include Global, Ring, Von
Neumann, Wheel, Four cluster, Clan, etc. To provide a guide
to topology selection of PSO, a class of deterministic regular
topologies with regard to what affect the optimality of algorith-
mic parameters are analyzed [14]. A ring topology is adopted
in exemplar generation to enhance diversity and exploration of
particle swarm while a global leaning component with linearly
adjusted control parameters is employed to improve adaptabil-
ity [15]. In order to improve PSO performance, a new topol-
ogy is proposed based on small-world network, in which, each
particle interacts with its cohesive neighbors and by chance to
communicate with some distant particles via small-world ran-
domization [16] [17]. In small-world topology, the neighbor-
hood size and the randomization probability are adaptively ad-
justed based on convergence state. A dynamic hierarchical ver-
sion (tree-like) topology is introduced [18], where particles with
better fitness move up the hierarchy and generate a larger influ-
ence on the swarm. By assembling positive algorithmic com-
ponents, such as time-varying topology, velocity-update mecha-
nism, time-decreasing inertia weight etc, the proposed Franken-
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stein’s PSO is capable of performing better in many cases than
the variants from which its components were taken [19]. Less
connection in a topology, the more it delays the propagation of
the best-so-far solution. Thus, low connected topologies result in
more exploratory behavior than highly connected ones.

Of particular interest, Von Neumann topology is a 2D lat-
tice grid and each particle has above, below, to the left, to the
right as its neighbors, wrapping around if necessary. It is a static
topology with fixed neighbors. In this research, we propose ru-
bik’s cube topology for particle swarm algorithm which could
be treated as 3D Von Neumann topology, and it is then applied
on bilevel energy transaction game with one leader and multi-
ple followers. The energy transaction model for leader-followers
and uniform local energy price structure are introduced in Sec-
tion II; in Section III, the proposed rubik’s cube topology and
its rotation operator are explained in details with pseudo code
for implementation; different cases are designed for experiments
in Section V with comparison on different variations of particle
swarm algorithms. Finally, conclusions are drawn in Section VI.

2. LOCAL ENERGY TRANSACTION
In this section, a benchmark bilevel local energy transaction

model is adopted from our previous study [3]. Shown by the
system scheme in Figure 1, at the upper level, an energy storage
(battery) is served as local energy market operator with the priv-
ilege of setting internal transaction price and transact with exter-
nal grid if necessary, and the lower level building prosumers can
only purchase energy from or sell energy to local energy transac-
tion market.

Local market

Prosumer buildings

Utility grid

FIGURE 1: Bilevel energy transaction scheme for local
prosumers

A. Lower Level Model
At lower level, each prosumer is trying to minimize its oper-

ation cost in Eq.(1), which consist of trading cost in local market

TABLE 1: Parameter notations for the operation model

Index

n,n′ Index of prosumers, n′ 6= n

t,u Index of time, the upper level agent

Parameter

Pp,Ps Purchasing, selling price in power grid

SV,SB Size of PV panel, power capacity of battery

EB,ηV Initial battery energy level, PV efficiency

El,Sol Nominal load profile, solar radiation

El,El Lower, upper bound for energy demand

αb,αb Min, max state-of-charge of battery

αc,αd Max coefficient of battery charging, discharging

ηc,ηd Charging, discharging efficiency of battery

γ,δ Degradation cost, sensitivity in load shifting

Variable

ep,es Energy purchased from, sold to power grid

et i,eto Energy transacted into, out from prosumers

xi,xo In/out binary status for energy transactionU

el,ev,eb Actual load, PV generation, storage level

ec,ed Charging, discharging power of battery

pt+, pt−, pt Purchasing, selling, uniform price in local market

(first term), degradation cost of battery storage (second term) and
inconvenience cost of load shifting (third term).

minCn =∑t
[
(pt+ · et i

n,t − pt− · eto
n,t)+ γ · (ecn,t + edn,t)

+δ · (eln,t −Eln,t)2] (1)

Electricity demand is balanced for each prosumer in Eq.(2).
On the left side, power generation includes solar panel, battery
discharging and local purchasing, while on the right side, power
is needed for actual load consumption, battery charging and local
selling.

evn,t + edn,t ·ηd + et i
n,t = eln,t +

ecn,t

ηc
+ eto

n,t (2)

Solar power for each prosumer is determined by its solar
panel size, solar radiation level and solar panel electricity gener-
ation efficiency, in Eq.(3)

0≤ evn,t ≤ SVn ·Solt ·ηV (3)
The behavior of battery storage is modeled by constraints

Eq.(4)-(9). The charging/discharging power are limited in the
range of Eq.(4)-(5) defined by its capacity and according co-
efficients. Energy level in battery in each time period is con-
strained in the allowable range in Eq.(6), and it is determined by
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the charging/discharging activities in Eq.(7)-(8). To mitigate the
operation dependency of two consecutive days, Eq.(9) is added
to ensure that the power level in battery at the end time period
T of operation is equal to initial level. ∆t is the time step length
with one hour as unit (e.g. 1 hour, 15/60 hour, etc).

0≤ ecn,t ≤ SBn ·αc (4)
0≤ edn,t ≤ SBn ·αd (5)

SBn ·αb ≤ ebn,t ≤ SBn ·αb (6)
ebn,1 = EBn,0 +(ecn,1− edn,1) ·∆t (7)
ebn,t − ebn,t−1 = (ecn,t − edn,t) ·∆t (8)

ebn,T = EBn,0 (9)

Prosumers have the ability to change its demand pattern
based on electricity price, but it is still need to make sure that
electricity usage does not drop below the base load or exceed
the upper limit in each hour by Eq.(10). Also, to ensure normal
operation, the total electricity consumption in the operation pe-
riod (e.g. one day) shouldn’t be curtailed beyond a user defined
curtail coefficient ρ in Eq.(11).

Eln,t ≤ eln,t ≤ Eln,t (10)
(1−ρ) ·∑t Eln,t ≤ ∑t eln,t (11)

B. Upper Level Model

The upper level agent in local energy market has the respon-
sibility to maintain market order, coordinate the trading, etc., and
also it is given the privilege to set the internal energy transaction
price. With the selfish objective, it aims at maximizing its own
profit R in Eq.(12), which equals the profit in the external mar-
ket (first term) minus battery degradation cost (second term) and
plus profit in local market arbitrage (third term).

maxR =∑t
[
(Pst · esu,t −Ppt · epu,t)− γ · (ecu,t + edu,t)

]
+∑n,t(pt+ · et i

n,t − pt− · eto
n,t)

(12)

To encourage energy trading and absorb more distributed re-
newables locally, local energy transaction prices are set to be
within the external price range in Eq.(13). Note that, different
from common discriminative price structure (pt− ≤ pt+), the
uniform trading price structure (pt− = pt+ = pt) is considered
in this work since it is shown in previous work [3] that a more
fairer profit allocation could be achieved using uniform price
structure in such a bilevel non-cooperative game. In actual im-
plementation, a very small number (e.g. 0.001) should be used
(pt− = pt+−0.001) to avoid the concurrence of et i

n,t and eto
n,t .

Pst ≤ pt− = pt+ ≤ Ppt (13)

Since upper level agent owns a battery storage, the opera-
tion constrains in Eq.(4)-(9) also need to be applied similarly for
upper level model. In summary, for this bilevel model, the up-
per level objective is in Eq.(12) with constraints Eq.(4)-(9) and
Eq.(13). The lower level agents have objective Eq.(1) and con-
straints Eq.(2)-(11).

3. RUBIK’S CUBE TOPOLOGY BASED PSO
Particle swarm algorithm is a widely used swarm intelli-

gence approach, which mimics a flock of birds flying through
the solution space while communicating with each other. Exten-
sive studies have demonstrated that PSO usually performs better
than other population-based algorithms including genetic algo-
rithms, ant-colony algorithm, shuffled frog leaping algorithms in
terms of solution quality and computational efficiency on high-
dimensional nonlinear continuous solution space [20] [8]. Mean-
while, canonical PSO has its own disadvantages, such as the high
speed of convergence which often implies a rapid loss of diver-
sity during iterations and lead to undesirable premature conver-
gence [21]. To overcome the premature convergence and avoid
local optimality effectively, lots of PSO variants have been pro-
posed from the perspective of improved social topology [13]
[15], mutation mechanism [22] [23], hybrid with other compli-
mentary algorithms [24] [25], etc.

In the standard or Gbest version of PSO, the velocity vector
vvv of each particle is updated according to its own best experience
as well as to the best particle in the swarm. The current positions
of the particles can be described as a set of candidate solution
in the space, and in each iteration new positions will be updated
by adding the velocity, which can be see as step size, to current
position coordinate vector xxx, see Eq.(14)-(15).

vvvi+1
p = ω · vvvi

p + c1 · ri
1,p · (pppi

p− xxxi
p)+ c2 · (pppi

g− xxxi
p) (14)

xxxi+1
p = xxxi

p + vvvi+1
p (15)

where pppi
p is the best position found so far by the pth particle and

pppi
g is the best position found by the whole swarm. ω is the inertia

weight which control the relationship between exploration and
exploitation by determining how much inertia it has on previous
velocity. c1,c2 are cognition and social factors. ri

1,p,r
i
2,p are two

random values in the range of [0,1].

vvvi+1
p = ω · vvvi

p + c1 · ri
1,p · (pppi

p− xxxi
p)+ c2 · (pppi

l− xxxi
p) (16)

In a local topology or Lbest version of PSO, the velocity up-
dation of each particle follows Eq.(16), where global best posi-
tion pppi

g is changed to the best position pppi
l founded by its con-

nected neighbors. Local topology usually works better when
problems contain cliffs, variable interactions, and other features
that are not typified by smooth gradients [26]. For instance, if all
particles forms a circle in ring topology, it will only communi-
cate with its two adjacent neighbors. In local topology version
PSO, the particles will be spread out and explore different re-
gions simultaneously.

The number of neighbors influences the information prop-
agation speed. Here the proposed Rubik’s cube topology is in-
spired in the Von Neumann topology. In Figure 2, three slices
(x,0,z) (x,y,0) (0,y,z) of a 4-order cubic topology (totally 16
slices) are shown. As mentioned, Von Neumann topology is
a 2D lattice grid, thus each slice is a Von Neumann topology
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grid. Depends on the coordinate location of particles, it may has
three, four, five or six adjacent neighbors, e.g, corner particle
(0,0,0) has (1,0,0), (0,1,0) and (0,0,1) three adjacent neigh-
bors. Similarly, the edge particle (1,0,0) has four, outer face
particle (1,0,1) has five and inner particle (1,1,1) has six adja-
cent neighbors. The particles are typically included in their own
neighbor set as they may influence themselves. Note that, the co-
ordinate (x,y,z) used here is not the particle position in Eq.(14), it
is only used to determine neighbor set more easily in implemen-
tation. To enhance the information flow and improve the chance
of jumping out of local minimum at the later stage of searching,
the rotation operator is introduced. The criteria of starting rotat-
ing and the selection of rotating slides may depend on the fitness
improvement ranking in several successive runs or other heuris-
tic rules. After rotation, the neighbor set of rotated particles is
re-assigned based on their coordinate location.

x

y

z

FIGURE 2: 4-order cubic social topology for particle swarm

The procedure of solving bilevel building energy transac-
tion in local market using Rubik’s cube topology based PSO is
described in Algorithm 1. The particles’ position represent local
energy transaction price pt+ = pt− in the upper level model in
section 2, which is randomly initialized (line 2 in Algorithm 1)
in the range bounded by external purchasing and selling prices
in Eq.(13). Therefore, for each particle, its position/price in-
formation will be passed to each prosumer at lower level, and
each prosumer solves its own operation model individually (line
10). Then the transaction request et i and eto are collected to up-
per level for coordinated scheduling (line 11, 12). The objective
value of upper level model is used as fitness as it complies that
the leader moves with the consideration of the followers’ reac-
tion in Stackelberg game. In this work, the upper and lower level
model is solved using CPLEX mixed integer solver, it may also
be solved by meta-heuristic with constraint handling techniques.
The Algorithm 1 could be implemented in a parallel way at parti-

cle level. Since the swarm size is not always the required number
to fully fulfill the cubic topology, the cubic order maybe modified
or some coordinates maybe left to blank but still need to keep the
connectivity.

Algorithm 1: Rubik’s cube topology based PSO
Input:

swarm size m, inertia weight ω

learning factors c1,c2
Output:
~x∗, the best particle position
f (~x∗), the best fitness of upper level

1 for particle m = 1, · · · ,M do
2 Assign m with coordinates in cubic topology
3 Initialize m with random~x ∈ [Pst ,Ppt ] and velocity

4 while stop criterion is not met do
5 for particle m = 1, · · · ,M do
6 ~pm = best position particle m has found so far
7 ~lm = best position in neighbor set of m so far
8 ~vm = velocity of m updated from Eq.16
9 ~xm = position of m updated from Eq.15

10 for prosumer n = 1, · · · ,N do
11 Solve lower level model Eq.(1)-(11)

12 Collect et i
n,t and eto

n,t from all prosumers
13 Solve upper model Eq.(12)-(13), Eq.(4)-(9)
14 Calculate f (~x) and update ~pm,~lm,~x∗

15 if rotation criterion is met then
16 Randomly pick slice s of out 12 slices
17 Rotate the slice s counter/- clockwise

18 Function rotate(s):
/* clockwise or counter clockwise */

19 for particle m = 1, · · · ,16 on slice s do
20 Update 3D coordinate of m
21 Re-assign neighbor set to m based on coordinate
22 return new neighbor set of particle m

4. NUMERICAL EXPERIMENTS
In order to evaluate the effectiveness of proposed cubic

topology with rotation operator, two case studies of bilevel build-
ing energy transaction with different time scale are designed in
this section and totally five solution approaches are considered:
1) standard Gbest particle swarm (g-PSO), 2) particle swarm
with Von Neumann topology (vn-PSO), 3) particle swarm with
rubik’s cube topology (rc-PSO), 4) rc-PSO with rotation oper-
ator (rrc-PSO) , 5) KKT based transformation which provides
centralized optimum solution.

• Case 1: With one hour time scale, the time steps from hour
6 to hour 20 are selected for one day’s optimization as lower
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level building are more active in energy transaction when
there is solar power. The hourly nominal load and solar
power profile of three prosumers n1,n2,n3 are shown in Fig-
ure 3.

• Case 2: With fifteen minute time scale, the time steps from
21 (hour 6) to 80 (hour 20) are selected for the same reason
as in Case 1. When time scale is increased, the solution
space dimension becomes much higher. 15-minute data is
generated by interpolation based on hourly data.

 n 1  n o m i n a l  l o a d
 n 2  n o m i n a l  l o a d

0 5 1 0 1 5 2 0 2 5
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0

 n 1 = n 3  s o l a r  p o w e r
 n 2  s o l a r  p o w e r

 n 3  n o m i n a l  l o a d

Po
we

r p
rof

ile 
(kW

)

H o u r

FIGURE 3: Nominal load and solar power for building
prosumers

All experiments are conducted on 64-bit Windows PC with
i7-3537 CPU @2.00GHz, 2.50GHz and 8GB RAM. Parameters
in Table 1 are set as same in Ref [3]: ηV = 0.25, ηc = ηd = 0.95,
αb = 0.05, αb = 1, αc = 0.25, αd = 0.1, γ = 0.008, δ = 0.002,
ρ = 0. For each time step, El = 0.8 · El, El = 1.2 · El. For
lower level prosumers in name order SV = [90,100,90](m2),
SB = [45,60,40](kW ). Upper level agent has a battery storage
with 160kW capacity and same efficiency parameters with build-
ing prosumers. The stop criterion of PSO algorithms is set as
same: stop when fitness improvement in continuous 20 iterations
is less than 1. For the sake of simplicity, rotation criterion for rrc-
PSO is set as: rotate when fitness improvement in continuous 5
iterations is less than 1. All PSO algorithms are run continuously
for 10 times with same parameter settings. Swarm size is 64, ini-
tial inertia weight ω is 0.6 and is adjusted based on random gen-
eration strategy in each iteration [27] [28]. Initial learning factor
c1 = c2 = 1.496 and is adjusted in each iteration according to
nonlinear acceleration strategy [27].

For Case 1, the iterated mean fitness value in 10 runs of all
PSO algorithms is plotted in Figure 4. Since PSO algorithms
doesn’t end at the same iteration number in multiple runs due to
the stop criterion, the converged value is filled to maximum iter-
ation number to calculate the mean value. KKT approach solves

this small case in 4 seconds and gives optimum revenue solution
$3.074 for upper level agent, which is the upper bound for other
algorithms. g-PSO performs best in this small case since it con-
verges to near optimum solution faster than others because the
best solution is shared within the swarm. Other PSO with local
topologies slowly converges following very similar mean fitness
trace. The resulted mean energy transaction prices are given in
Figure 5. The energy purchasing price Pp and selling price Ps in
external grid serves as upper and lower bound. It is shown that,
before building prosumers have extra electricity before hour 10
and afterr hour 19 due to less solar, the upper level agent tends
to set local energy transaction price as high as possible to make
more profit. Between hour 10 and 18, the local transaction price
is much lower than external purchasing price, and since local pur-
chasing price equals selling price, the arbitrage revenue of upper
level depends on difference of purchasing and selling amount,
see Eq.(12). The mean price signals obtained in Figure 5 are used
to calculate operation cost of lower level prosumers, recorded in
Table 2. Without knowing private information on building pro-
sumers, all PSO algorithms solves the lower level model in a
distributed way and performance well in this small case.
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FIGURE 4: Mean fitness in 10 runs of PSO algorithms in Case 1

TABLE 2: Mean operation cost ($) of prosumers in Case 1

Prosumers KKT g-PSO vn-PSO rc-PSO rrc-PSO

n1 8.791 8.773 8.517 8.704 8.588

n2 46.742 46.187 46.898 46.760 46.875

n3 31.306 31.542 31.148 31.200 31.183

In Case 2, the time dimension or solution space dimension
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FIGURE 5: Mean transaction price of PSO algorithms in Case 1

increases from 15 to 60, about 4 times. As mentioned, constraints
and variables number increases sharply for KKT approach, and
it takes more than 1 hour to reach $16.06 with an relative opti-
mality gap 18.76% and was stopped due to time budget. Since
it is not optimal solution, the 16.06 is plotted as possible upper
bound using dot dash line in following figures. Same as in Case
1, the converged value of PSO algorithms after stopping is filled
to maximum iteration number to calculate the mean value for
Case 2 shown in Figure 6. Hence the iteration number in Fig-
ure 6 is the maximum iteration number of multiple runs for each
PSO. Similar mean fitness pattern can be observed as in Figure
4, except that mean converged value of g-PSO is much far away
from possible optimum. The iteration fitness value in 10 runs of
g-PSO is shown in Figure 7, which indicates that the searching
is trapped into several local optimal solution easily in a higher
dimension Case 2 and its performance is very much versatile in
multiple runs. In contrast, shown by Figure 8, proposed rrc-PSO
could jump out of premature local optimal neighborhood and is
very reliable for each continuous run. The performance of PSO
algorithms in Case 2 is summarized in Table 3. The final fitness
range of g-PSO in 10 runs is about 48.7 and have a very high vari-
ance of 170, but with a very low mean iteration number due to
premature convergence. The Von Neumann topology has greatly
improved g-PSO average final performance on this case with a
higher mean iteration number. Proposed Rubic’s cube topology
is superior to vn-PSO on the fitness and reliability. Proposed
rotation operator could further enhance the final fitness perfor-
mance of rc-PSO by 10% but converges much slower with the
highest mean iteration number.

5. CONCLUSION
In this research, solution approaches for localized bilevel

energy transaction among building prosumers are focused. To
overcome the sharply increased computational burden from tra-
ditional KKT transformation, particle swarm intelligence based
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FIGURE 6: Mean fitness in 10 runs of PSO algorithms in Case 2
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FIGURE 8: Fitness iteration in 10 runs of rrc-PSO in Case 2

distributed solution approaches are studied for bilevel optimiza-
tion model, where the upper level agent observes the transac-
tion responses of lower level by passing down the price signal
coded in particles’ position. In this trial and learn process, up-
per level agent maximizes its selfish objective in terms of over-
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TABLE 3: Performance summary of PSO algorithms in Case 2

Algorithm Mean fitness Best Worst Var Mean Iter.

g-PSO -18.714 6.369 -42.436 170.570 114.0

vn-PSO 3.808 7.687 0.754 3.737 129.4

rc-PSO 7.715 9.120 5.068 1.339 139.0

rrc-PSO 8.476 9.474 7.546 0.391 149.7

all revenue without knowing sensitive information from lower
level prosumers. Only the information of prices and transaction
amount are exchanged. Aiming at maintaining population di-
versity and decreasing the chance of premature convergence of
Gbest topology, a Rubik’s cube topology with rotation operators
is proposed based on Von Neumann topology. Comparison ex-
periments on two cases have demonstrated the effectiveness and
reliability of proposed topology and operators.
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