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Component separation techniques such as non-negative matrix factorization (NMF) have found a
permanent home in the electron energy-loss spectroscopy (EELS) community due to their ability to
separate overlapped signals in a hyperspectral dataset. Especially in the field of nanoplasmonic, where
NMF components can directly represent physical plasmon modes in simple systems [1]. While NMF has
only been extensively used in EELS over the last decade, it has been an established technique in the
signal processing community for much longer [2]. We believe there is significant potential application to
porting other established signal processing techniques to EELS hyperspectral analysis. Here, we will
discuss two such techniques: a data fusion methodology called pan-sharpening and unsupervised
component separation methodology using a type of machine-learning network called an autoencoder.

Pan-sharpening is a class of methodologies developed for satellite imaging, where two datasets with
different beneficial properties are combined into one dataset with the beneficial properties of both. For
the application in EELS, we acquire two hyperspectral datasets on the same region: one with a large
number of pixels (and hence high spatial resolution) and one with a long acquisition time for each
spectrum (and hence high spectral fidelity). We then perform an NMF decomposition on the high
spectral fidelity dataset and use the spectral endmembers to solve for abundance maps in the high spatial
resolution dataset, creating a single dataset with both high spatial resolution and high spectral fidelity
[3], as shown in Figure 1.

For the autoencoder component separation, it is important to note that NMF itself is a form of
unsupervised component separation. While for simple systems, NMF is extremely effective at separating
and isolating individual physical mechanisms, for complex systems the interpretability of the
components can become highly challenging. In our approach we use the autoencoder to convert the
entire hyperspectral dataset into a latent space, where all spectra in the dataset can be represented by
Cartesian coordinates in latent space [4]. By reducing the dimensionality of a hyperspectral dataset in
this manner analysis can be performed directly in latent space using distance metrics, such as k-means
clustering or Gaussian mixture modeling (shown in Fig. 2). The latent-space analysis labels the
individual pixels in the dataset but does not alter them, meaning physical mechanisms are separated
spatially without the EELS signal at the labeled pixels being altered. This provides an excellent
alternative to NMF to unmix components in complex systems.
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Figure 1. Example of pan-sharpening. We combine NMF decompositions in a high spatial resolution
dataset with a high spectral fidelity dataset to achieve one dataset with the beneficial properties of both.
The images are slices of the hyperspectral dataset at 700 meV (marked with a blac line in the spectra)
and the spectra are from the white squares in the slices.
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Figure 2. Analysis in latent space generated by autoencoder. (a) A hyperspectral dataset is encoded into
latent space. Each point represents a spectrum in the dataset, and we use Gaussian mixture modeling to
break the dataset into three labels. (b) The original dataset can now be shown in terms of the localization
of the three labels. (c) The average spectra from the labeled pixels in (b).



