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Abstract—Many high-performance systems now include differ-
ent types of memory devices within the same compute platform to
meet strict performance and cost constraints. Such heterogeneous
memory systems often include an upper-level tier with better
performance, but limited capacity, and lower-level tiers with
higher capacity, but less bandwidth and longer latencies for reads
and writes. To utilize the different memory layers efficiently,
current systems rely on hardware-directed, memory-side caching
or they provide facilities in the operating system (OS) that
allow applications to make their own data-tier assignments. Since
these data management options each come with their own set of
trade-offs, many systems also include mixed data management
configurations that allow applications to employ hardware- and
software-directed management simultaneously, but for different
portions of their address space.

Despite the opportunity to address limitations of stand-alone
data management options, such mixed management modes are
under-utilized in practice, and have not been evaluated in prior
studies of complex memory hardware. In this work, we develop
custom program profiling, configurations, and policies to study
the potential of mixed data management modes to outperform
hardware- or software-based management schemes alone. Our
experiments, conducted on an Intel R© Knights Landing platform
with high-bandwidth memory, demonstrate that the mixed data
management mode achieves the same or better performance than
the best stand-alone option for five memory intensive benchmark
applications (run separately and in isolation), resulting in an
average speedup compared to the best stand-alone policy of over
10%, on average.

I. INTRODUCTION

Memory technologies with different performance and capa-
bilities than conventional SDRAM have emerged. Many high-
performance computing platforms now package conventional
memory DIMMs together with devices containing high band-
width, but limited capacity, “die-stacked” DRAM, such as
HBM [1], [2] or MCDRAM [3], or alongside large capacity,
non-volatile, memory modules, such as Intel R©’s OptaneTM

DCPMMs.1 These multi-layer memory architectures have dis-
rupted the traditional notion of memory as a single block
of volatile storage with uniform performance. Assigning data
with high amounts of reuse to the correct tier can improve
performance dramatically for applications that are too large to
fit within the fastest memory tier.

Propelled by this shifting architectural landscape, system
designers and researchers have developed new strategies to al-

1DCPMM stands for Data Center Persistent Memory Module.

locate and move data efficiently across the memory hierarchy.
One common approach is to exercise the faster, smaller capac-
ity tier(s) as a hardware-managed cache. For example, Intel R©’s
Cascade Lake platform includes a “memory-mode” option,
which applies this approach with DDR4 as a large direct-
mapped cache to Optane DC memory [4]. While hardware-
managed caching provides some immediate advantages, such
as software-transparency and backwards compatibility, it is in-
flexible, often less efficient, and reduces the system’s available
capacity.

Alternatively, software-based data tiering uses either the OS
by itself, or the OS in conjunction with the application to
assign data into different memory tiers, with facilities to allow
migrations of data between tiers as needed. Some multi-tier
memory systems also provide APIs that allow applications to
control the placement of their data objects through the use of
source code annotations [5], [6]. These finer-grained controls
permit the user to coordinate data-tier assignments with knowl-
edge of data allocation and usage patterns originating from the
application itself, potentially exposing powerful efficiencies.

While software-based data tiering can enable signifi-
cant speedups, it has some severe drawbacks compared to
hardware-based caching. Specifically, this approach requires
experts with knowledge of application data usage to update,
build, and distribute annotated binaries. Researchers have
recently developed custom compiler and runtime tools that can
reduce or eliminate much of these burdens [7]–[11], but these
approaches still require offline program profiling, analysis,
and recompilation in order to be effective. Another significant
limitation, which has not been addressed in practice or in
research, is that all of these software-based approaches employ
static tier assignments or only migrate data in very infrequent
intervals. Hardware-based strategies are typically much more
adaptive because there is no need to synchronize low-level
data movement with the upper-level software.

As both hardware- and software-directed data management
have their own advantages, many heterogeneous memory
platforms now include mixed or combined HW/SW data
management modes. Such mixed modes allow applications to
employ both hardware- and software-based data management
simultaneously, but for different portions of their address
space. For example, hybrid mode on the Intel R© Knights
Landing (KNL) architecture allows applications to allocate and
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while the remaining capacity is managed as a hardware-
directed cache [12]. In this scheme, all data objects that are
not directly allocated to or cannot fit within the software-
reserved portion of MCDRAM are always accessed through
the MCDRAM cache. Alternatively, the mixed mode on the
Intel R© Cascade Lake platform uses the entire conventional
(DDR SDRAM) memory tier as a cache for data on the
storage class (Optane DCPMM) memory tier, but also allows
applications to withhold data objects from the in-memory
cache [4].

While such mixed data management modes provide an
opportunity to address the limitations of either hardware- or
software-directed data management alone, the task of design-
ing policies and strategies that use mixed mode approaches
presents some significant research challenges. In particular,
the system or application designer must determine which sets
of data will access the faster, smaller memory tiers through
hardware-directed caching, and which sets will be software-
managed. The best configuration depends on a variety of
parameters, including the performance, capacity, and caching
scheme of each memory hardware tier, as well as the data
allocation and usage patterns of each application. However,
the community currently lacks tools for understanding and
evaluating how these factors impact the effectiveness of mixed
data management modes.

This work examines the performance potential of mixed
HW/SW data management for heterogeneous memory sys-
tems. It presents a custom framework, based on the Simplified
Interface to Complex Memory (SICM) runtime system [13],
for evaluating application performance with mixed HW/SW
data management configurations. Our developed framework
also adopts and extends the MemBrain approach [10], [11]
(which has been previously integrated into SICM), and uses
it to automatically partition application data into different
sets for hardware- and software-based data management. We
deploy our framework Intel R© KNL platform with two memory
hardware tiers (MCDRAM and DDR). Using this platform,
we evaluate a simple mixed HW/SW data management con-
figuration with a set of five memory intensive applications
from the CORAL-2 [14] and SPEC CPU 2017 benchmark
suites [15]. Additionally, we develop and present a custom
profiling tool with potential to increase the performance of
mixed HW/SW data management by automatically identifying
sets of application data that can be managed effectively with
hardware-directed caching.

This study makes the following important contributions:
1) We find that even a simple mixed HW/SW management

configuration achieves the same or better performance
than the best standalone hardware- or software-based
management scheme for all of our benchmark appli-
cations on our experimental platform. On average, the
mixed HW/SW management approach outperforms the
best standalone approach by more than 10%.

2The exact amount is configurable at boot time.

2) We demonstrate a custom profiling tool that records the
distribution of accesses to the pages allocated by each
program allocation site. Sites that allocate small groups
of intensely accessed pages are better candidates for
management with hardware-based caching, while sites
that generate uniform bandwidth to a large set of pages
are better managed in software.

The rest of this paper is organized as follows. Section II
presents recent research in hardware- and software-directed
data management for multi-tier memory systems, and contrasts
these approaches with this work. Section III describes the
tools and framework we have adopted as the basis of this
work. Section IV describes the extensions that this work
makes to the adopted software framework and tools. Section V
describes our experimental platform and methodology and also
presents and analyzes our results. Section VI discusses several
directions for future work, and Section VII concludes the
paper.

II. RELATED WORK

A. Hardware-Managed DRAM Caches

Architecting DRAM as a large, hardware-managed cache
imposes some unpalatable design choices for hybrid memory
systems. In particular, the faster memory tier must either be
implemented as a tagless direct mapped cache or it requires
logic and storage for associative tags. These issues become
even more problematic as the capacity of the hardware-
managed tier(s) increases, and so scalability of this technique
is a concern.

Some works have proposed architectural strategies to ad-
dress these issues, for example, by: collocating tags and data
in DRAM to increase efficiency [16], [17], keeping track of
cache contents in TLBs and page tables to reduce metadata
traffic [18]–[20], or swapping data lines out of the cache
to preserve capacity [21], [22]. Mittal and Vetter provide a
(2016) survey of this research [23]. In contrast to these works,
this research does not propose any architectural modifications
or techniques. Our approach leverages existing architectural
capabilities to implement a framework that supports mixed
HW/SW data management.

B. Software-Directed Data Management

Research in software-directed data management has pri-
marily focused on building tools and techniques to facilitate
the assignment of data to memory tiers. Some prior works
integrate coarse-grained architectural profiling with page-level
management in the OS [24]–[26]. Other projects allow ap-
plications to tag and profile certain program data, and then
use classification heuristics to assign data to the appropriate
tier [27]–[30].

While these efforts demonstrate that application guidance
can be useful for certain usage scenarios, they require manual
source code modifications or expensive online detection to
attach recommendations to data objects. To address this limi-
tation, some frameworks, including the SICM and MemBrain
projects adopted in this work, employ static and lightweight
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runtime tools to attach memory usage guidance to program
data automatically [10], [11], [31]. However, all of these
previous works, employ software-based data management
alone with static, or mostly static tier recommendations. Some
studies [8], [9], [31] have implemented adaptive placement
policies, but these approaches only migrate a small amount of
data at relatively infrequent intervals to manage overheads. In
contrast to all of these previous works, this work integrates
high-level application guidance with mixed HW/SW data
management. Hence, our framework enables applications to
bind data with stable and uniform usage to a specific memory
tier (using software guidance) with the ability to transparently
move application data with bursty or non-uniform usage into
and out of a large, hardware-managed DRAM cache.

III. ADOPTED RUNTIME FRAMEWORK

Our new tools extend the Simplified Interface to Complex
Memory (SICM) project, which is a unified software frame-
work, developed as part of the DOE Exascale Computing
Project [13], for automatically adapting applications to a vari-
ety of memory devices and configurations. Our work builds on
a recent extension of SICM that enables applications to guide
their own data management across heterogeneous memory
tiers through the use of low-overhead profiling and compiler-
assisted allocation site annotations [11]. In this section, we
provide an overview of these existing tools.

A. Simplified Interface to Complex Memory

The U.S. Department of Energy (DOE) is working towards
achieving new levels of scientific discovery through ever-
increasingly powerful supercomputers [32], [33]. Short-term
plans call for achieving exaFLOP performance by the year
2021. To make these computing environments viable, the DOE
has initiated a large effort titled the Exascale Computing
Project (ECP) [34], [35]. The project includes multiple thrust
areas to deal with the hardware and software challenges of
the most complex and high-performance supercomputers. For
such systems, the DOE spends hundreds of millions of dollars

to achieve the highest performance possible from available
hardware.

The Simplified Interface to Complex Memory (SICM), one
of the ECP projects, seeks to deliver a simple and unified
interface to the emerging complex memory hierarchies on
exascale nodes [13]. To achieve this goal, SICM is split into
two separate interfaces: the low-level and the high-level, as
shown in Figure 1. The high-level interface delivers an API
that allows applications to allocate, migrate, and persist their
data without detailed knowledge of the underlying memory
hardware. To implement these operations efficiently, the high-
level API invokes the low-level interface, which interacts
directly with device-specific services in the OS.

B. Portable Application Guidance for Complex Memory Sys-
tems

The SICM project was recently extended with new tools
and allocation strategies to implement a portable guidance-
based approach for assigning program data to heterogeneous
memory tiers [10], [11]. The approach, which they call Mem-
Brain, automates the use of data-tier guidance by associating
profiles of memory behavior (i.e., bandwidth and capacity)
with program allocation sites. Each allocation site corresponds
to the source code file name and line number of an instruction
that allocates program data (e.g., malloc or new) and
may optionally include part or all of the call path leading
up to the instruction. A separate analysis pass converts the
profiles into tier recommendations for each site prior to guided
execution. Figure 2 presents an overview of this approach. A
full description of SICM with the extended MemBrain toolset
is available in [11].

IV. COMBINED HARDWARE AND SOFTWARE DATA
MANAGEMENT WITH SICM+MEMBRAIN

This work extends the SICM+MemBrain framework de-
scribed in the previous section with two new capabilities:

1) New experimental configurations for systems with com-
bined HW/SW data management modes, and



2) A custom profiling tool for estimating the cache effi-
ciency of data associated with each allocation site.

A. Experimental Configurations for Combined HW/SW Data
Management

To evaluate the potential of mixed HW/SW data manage-
ment, we deployed the SICM+MemBrain toolset on an Intel R©

Knights Landing platform booted into hybrid memory mode.
In this configuration, the KNL reserves half of its (16 GB) high
bandwidth (MCDRAM) tier for use as a software-managed
address space, while the other half is used as a hardware-
managed cache [12]. In this way, data allocated directly to
MCDRAM by software does not interfere with data in the
MCDRAM cache. Next, we updated the SICM+MemBrain
toolset to consider the physical addresses corresponding to the
software-managed memory as the upper (high-performance)
tier. We then applied the MemBrain approach, described in
Figure 2, to assign the data allocated at each allocation site
into the hardware- or software-managed sets during each ex-
perimental run. For these experiments, we employ the greedy
hotset approach [31] to select application data with the highest
bandwidth per unit capacity to be allocated directly to the non-
cached MCDRAM tier.

B. Custom Profiling for Estimating Efficiency of In-memory
Caching

While our new experimental configurations are useful for
evaluating existing guidance-based approaches on combined
HW/SW data management platforms, they do not consider the
cache efficiency of the data associated with each allocation
site. For example, the hotset approach may assign allocation
sites with a relatively large number of cold pages to the
uncached tier because the site contains a small number of
very hot pages. To estimate the cache efficiency of the data
associated with each allocation site, we extended the memory
usage profiling capabilities in SICM to measure the rate of
usage on each page associated with each allocation site. Our
offline profiling tool maintains a map of pages for each site,
and maps each memory access sample to each page. The tool
prints all of the accessed pages, along with their associated
allocation sites, and number of memory access samples to a
file on disk at the end of the run.

V. EVALUATION

A. Experimental Setup

The profiling and evaluations for this work were collected
on an Intel Knights Landing(KNL) platform equipped with
an Intel Xeon Phi with 64 cores, 256 hyper-threads, running
at 1.40GHz. The machine has 16GBs of MCDRAM and
96GBs of DDR4. The MCDRAM can operate in one of three
different modes, as a memory-side direct mapped cache, a
software-managed mode, or in a mixed mode exercising 8GB
of the MCDRAM as a hardware-directed cache and the other
8GB accessible through software-managed mode. We installed
Debian 9.12 with Linux Kernel version 5.2.

Fig. 3: Figure of merit for the limited (8 GB) cache mode,
hybrid Mode, and flat mode shown relative to the full cache
mode (16 GB) configuration (higher is better).

For this evaluation, we selected applications from the SPEC
CPU 2017 [15] and CORAL2 [14] benchmark suites with data
usage patterns which are known to stress memory bandwidth
and processor cache performance. Specifically, we employ
three proxy applications (LULESH, AMG, SNAP) and one full
scale application (QMCPACK) from the CORAL2 benchmark,
as well as the multi-threaded (6xx) version of the fotonik3d ap-
plication from SPEC CPU 2017. All applications use OpenMP
and are configured to use 256 software threads (one for each
hardware thread on our KNL platform). For the CORAL2
benchmarks, we employ the ’large’ input size from [11] which
requires between 80 and 90 GB of capacity for each workload.
To test fotonik3d with larger capacity requirements than the
default ref input (which requires less than 16GB of memory
capacity), we constructed a custom input file for a problem
size of Nx = 480, Ny = 1880, and Nz = 480 and 812 time
steps. Running fotonik3d with this input requires about 40GB
of memory capacity with the default cache mode configuration
on our KNL platform.

B. Performance Potential of Application Guidance with
Combined HW/SW Data Management Modes

Our first set of experiments aims to evaluate the perfor-
mance potential of existing application guidance-based ap-
proaches with combined HW/SW management modes. For
these experiments, we ran each of the selected applications on
the KNL platform in mixed HW/SW mode with the guidance
configurations described in Section IV-A. For comparison, we
ran each application with three additional configurations:

1) A full cache mode configuration, which uses the entire
16GB of MCDRAM as a hardware-directed cache,

2) A limited cache mode configuration, which only ac-
cesses MCDRAM through hardware-directed caching,
but uses the hybrid mode option on the KNL to limit
the MCDRAM cache size only 8GB of capacity, and

3) A fully software-directed flat mode configuration that
uses the hotset approach to assign application data to
the MCDRAM tier with the full 16GB capacity.
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Fig. 4: Distribution of memory accesses and peak resident set size (RSS) of data allocated at distinct allocation sites. The
violin plots, plotted on the left y-axis (log scale), show the sampled memory accesses per page for each site. The peak RSS
of each site (in GB) is plotted as an orange marker using the right y-axis.

Figure 3 presents the figure of merit (FoM)(throughput) of
each application with the limited cache mode, guided hybrid
mode, and guided flat mode configurations relative to the full
cache mode configuration. All results in this figure report the
median FoM of three application runs (higher is better).

The results show that hybrid mode performs at least as well
as the full cache mode in all cases, and is significantly faster
than full cache mode for both LULESH and AMG. Addition-
ally, while the fully guided flat mode performs as well or better
than cache mode for four of the five benchmarks, it exhibits
much worse performance for QMCPACK. Hence, hybrid mode
achieves the best performance of the four configurations we
tested, and outperforms the next closest configuration (i.e.,
guided flat mode) by more than 10%, on average.

C. Identifying Cache Efficient Program Data

Our next study aims to identify program allocation sites
that are likely to generate cache efficient program data and
distinguish these from sites that generate data with poor cache
utilization. For this analysis, we employ the profiling tool
described in Section IV-B to generate violin plots of the
distribution of accesses to each page allocated at selected
profiling allocation sites. Specifically, for each workload, we
use kernel density estimation to show the distribution of
accesses to pages within each site (e.g., a wider violin plot
indicates more pages with similar access counts)

Figure 4 shows the violin plots for each workload. For
presentation purposes, we display only those sites that allocate
at least 16MB of data corresponding to at least 1% of sampled
memory accesses. For each site, the violin plot is shown
vertically in blue with a logarithmic scale of accesses on
the left y-axis. The median and both extrema of each sites
distribution are also indicated with a darker blue line. We also

plot the peak RSS of that site, represented by an orange dot,
in GBs along the right y-axis. Sites are sorted along the x-axis
from hottest to coldest by accesses per byte.

The plots show that this collection of programs and al-
location sites generate a wide range of capacity and usage
distributions. Additionally, we find that the data generated by
certain allocation sites are likely to utilize memory caches
more efficiently than others. Consider sites 2 and 4 for the
AMG workload shown in Figure 4b. These sites show a clear
bimodal distribution and these would be potential candidate
sites to be excluded from the software managed upper-tier
and instead could be supported by the hardware memory-side
cache since most of their pages have a low number of accesses
with just a few pages contributing a large portion of that sites
total accesses. On the other hand, site 1 is better suited for the
software-managed flat mode of the KNL’s hybrid mode since
it has a low overall peak RSS and most of its pages have a
uniform number of accesses across them. We can see sites
exhibiting similar behavior across the other workloads. For
instance, site 2 of QMCPACK (4d) shows a similar bimodal
distribution as sites 2 and 4 from AMG. We also see a potential
reason for fotonik3d (4e) performing best with the guided flat
mode since most of its hottest sites have a uniform access
distribution across their pages.

VI. FUTURE WORK

The development of profiling tools for estimating the cache
efficiency of allocation sites for in-memory caches and the
analysis of this data are important steps towards understanding
how to leverage combined HW/SW data management modes.
The next direct step to take would be to evaluate the per-
formance of this model using the guidance data we have
gathered. We can extend the hot allocation site identification



we discussed in Section IV-A to identify hot sites that should
be managed using the software-directed approach but we
can exclude sites that we expect to have good in-memory
cache performance based on access distribution to potentially
improve overall workload throughput even more.

It would also be interesting to explore how these tools can be
used on other memory platforms that support mixed HW/SW
data management, such as Intel R©’s Cascade Lake platform
with conventional DRAM as an in-memory cache for non-
volatile Optane DC memory devices.

VII. CONCLUSION

In this work we demonstrate that augmenting a combined
HW/SW memory management strategy with application guid-
ance obtains a 10% improvement on average over configura-
tions that use hardware-directed caching or software-directed
data placement alone. This work presented new extensions
to the SICM+Membrain framework to allow the profiling of
of data usage rates of physical pages associated with each
allocation site. Lastly, this work presents additional analysis
that shows the potential of this approach for guiding data
placement on complex memory systems with mixed HW/SW
data management modes.
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