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ABSTRACT

With the growing number of applications designed for heterogeneous HPC devices, application
programmers and users are finding it challenging to compose scalable workflows as ensembles of
these applications, that are portable, performant and resilient. The Kokkos C++ library has been
designed to simplify this cumbersome procedure by providing an intra-application uniform
programming model and portable performance. However, assembling multiple Kokkos-enabled
applications into a complex workflow is still a challenge. Although Kokkos enables a uniform
programming model, the inter-application data exchange still remains a challenge from both
performance and software development cost perspectives. In order to address this issue, we
propose Kokkos data staging memory space, an extension of Kokkos’ data abstraction (memory
space) for heterogeneous computing systems. This new abstraction allows to express data on a
virtual shared-space for multiple Kokkos applications, thus extending Kokkos to support
inter-application data exchange to build an efficient application workflow. Additionally, we study
the effectiveness of asynchronous data layout conversions for applications requiring different
memory access patterns for the shared data. Our preliminary evaluation with a synthetic
benchmark indicate the effectiveness of this conversion adapted to three different scenarios
representing access frequency and use patterns of the shared data.
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1. MOTIVATION

With the trend that various computing devices are integrated in next generation exascale clusters,
a growing number of heterogeneous applications are designed for fully utilizing the computing
power. However, application programmers and users are finding it challenging to compose
scalable, performant and portable in-situ workflow with a multiple of concurrent application
executions to enable multi-scale and multi-component simulations and analyses. Such workflows
require the users to understand the performance charactersitics of the target heterogeneous
computing platforms and application programs in detail. Heterogeneous programming
frameworks, such as Kokkos[1] and RAJA[2], are well-designed and widely adopted as solutions
to write performance portable applications targeted at all major HPC platforms. But to our best
knowledge, none of these programming frameworks have the capabilities to link multiple
heterogeneous applications into a complex workflow using similar performance portable
abstractions. The efficient implementation of these interaction capabilities is paramount to the
coming heterogeneous HPC era. DataSpaces[3] provides capabilities for coupling applications
through a shared-space abstraction. As a coupling framework, DataSpaces enables flexible data
redistribution between applications using simple put/get and concurrency control semantics.
These low-level semantics provides a good foundation for instrumenting scalable application
interactions, but does not inherently provide any usable heterogeneous computing abstractions as
seen in Kokkos.

As such, the overarching goal of this research is to build a performance-portable data staging
service at extreme scale that can couple multiple applications with a single heterogeneous
programming model. Specifically, our approach integrates existing data staging solution with the
Kokkos ecosystem by supporting inter-application data exchanges between various memory
layouts. The resulting portable data staging service allows us to simply transfer data between
applications in the Kokkos semantics at runtime regardless of the underlying data layout of these
applications. We also develop an in-transit mechanism to manage data reorganization and
replication for heterogeneous memory layouts performed at our data staging service. More
specifically, we propose three designs with different in-transit data reorganization placement
adapted to system resources constraints and workflow characteristics.

2. DESIGN

2.1. Architecture

A schematic overview of the portable data staging service based on Kokkos is presented in Figure
2-1. It is built upon the DataSpaces framework and directly leverages existing components by
reusing its data transport, indexing and querying capabilities. The DataSpace client APIs are
seamlessly integrated with the Kokkos core library to support Kokkos::Staging APIs. The key
components of the portable data staging service include the Data Reorganization module and the
Kokkos::Staging Interface. These modules cooperate to facilitate data movement and sharing
across heterogeneous HPC workflow applications.
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Figure 2-1 Architecture of portable data staging service based on Kokkos. The data
reorganization module and Kokkos::Staging APIs were implemented on top of DataS-
paces and Kokkos framework respectively.

2.2. Data Reorganization module

The Data Reorganization module accommodates a unified data layout management abstraction
for the data staging movement. Specifically, it implements general-purpose transposition
algorithms for arbitrary data structure, but provides a plugin interface for third-party algorithms
as well. It is also responsible for managing the supported data layouts and scheduling the data
reorganization operations. In a complex workflow, the required data layouts for the multiple
applications can be varied. If such a workflow scales out, the complexity of data access requests
would be a Cartesian product of the number of layout types and the number of data objects. When
there are thousands or even millions of asynchronous heterogeneous data requests floods in,
concurrency also becomes a major concern if the data reorganization operations are proceeded at
the staging server. To overcome this problem, concurrency control and heterogeneous replica
control are implemented in the Data Reorganization module. When many requests comes to the
staging server for the same data object but in heterogeneous layouts, if the requested layout is
replicated at the server, then the server send the data object to the client. However, if the data
object with the requested layout does not exist, the server will only launch a data reorganization
for the first request and let others wait until it is ready, saving both computational overhead and
memory usage at the clients.

2.3. Kokkos::Staging Interface

In order to make our new data staging capability compliant to other memory spaces in Kokkos,
we wrap DataSpaces client operations with a new name space Kokkos: : Staging. In order to use
Kokkos: :Staging functionalities, an initialization call is required. This call is responsible for
initializing an internal DataSpaces client, assuming that Kokkos initialization call has been made.
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At the end of each program but before Kokkos finalizes, Kokkos: : Staging needs to be called in
order to release the resource binding to the DataSpaces server.

Kokkos::Staging::initialize();

Kokkos::Staging::finalize();

After the initialization, users can declare a Kokkos: : Staging view similar to what they are
supposed to do with Kokkos: : CudaSpace. The layout of Kokkos: : Staging view should be
explicitly declared for heterogeneity, otherwise it would use the default layout as the host space.

using ViewStaging_t = Kokkos::View<Data_t**, Kokkos::StagingSpace>;

ViewStaging_ t v_S("StagingView", i1, 12);

using ViewStaging_lr_t = Kokkos::View<double**, Kokkos::LayoutRight,
Kokkos::StagingSpace>;

ViewStaging_lr t v_S_lr("StagingView_LayoutRight", il, i2);

The deep_copy function enables the put/get operations for Kokkos applications to transfer data
to/from the staging server. In the deep_copy function, zero-copy non-blocking data transfer to
the staging server is performed. But before the actual data transfer, setting the version and
bounding box of the variable is optional but strongly suggested.

Kokkos::Staging::set_version(v_S_lr, version);
Kokkos::Staging::set_lower_bound(v_S_lr, 1b0, 1bl);
Kokkos::Staging::set_upper_bound(v_S_lr, ub0, ubl);
// from host to staging

Kokkos: :deep_copy(v_S_1lr, v_P);

// from staging to host

Kokkos: :deep_copy (v_G, v_S);

When reader applications request the data with a different layout, an extra line is needed to
declare the heterogeneity. This will also allow completely different view label for data in other
layouts.

Kokkos::Staging::view_bind_layout (v_S_11, v_S_1r);

A simple usage example of Kokkos: : Staging is illustrated here.



using ViewHost_lr_t Kokkos: :View<double**, Kokkos::LayoutRight,
Kokkos: :HostSpace>;

Kokkos::View<double**, Kokkos::LayoutLeft,

using ViewHost_11_t
Kokkos: :HostSpace>;

using ViewStaging_lr_t = Kokkos::View<double**, Kokkos::LayoutRight,
Kokkos::StagingSpace>;

using ViewStaging_ll_t = Kokkos::View<double**, Kokkos::LayoutLeft,
Kokkos::StagingSpace>;

ViewHost_lr_t v_P ("PutView", il, 1i2);

ViewStaging_lr t v_S_lr("StagingView_LayoutRight", il, i2);

Kokkos::Staging::set_version(v_S_lr, version);
Kokkos::Staging::set_lower_bound(v_S_lr, 1b0, 1bl);
Kokkos::Staging::set_upper_bound(v_S_lr, ub0, ubl);

// from host to staging
Kokkos: :deep_copy(v_S_lr, v_P);

ViewStaging_ll t v_S_11("StagingView_LayoutLeft", il, 1i2);
ViewHost_11_t v_G("GetView", i1, 12);

Kokkos::Staging::set_version(v_S_11, version);
Kokkos::Staging::set_lower_bound(v_S_11, 1b0, 1bl);
Kokkos::Staging::set_upper_bound(v_S_11, ub0, ubl);
// bind two staging views in different layout
Kokkos::Staging::view_bind layout (v_S_11, v_S_lr);

// from staging to host
Kokkos: :deep_copy (v_G, v_S_11);

With these fundamental APIs, we can exchange data between heterogeneous applications.
Coupled applications are expected to be aware of the variable name and local bounding box of the
data. They can then simply call deep_copy () to enable data exchange between the coupled
applications. Users are free to implement complex functions by encapsulating these basic
operations.

3. HETEROGENEOUS DATA REORGANIZATION MECHANISM

In extreme scale in-situ workflows using data-staging middleware such as DataSpaces, the data
producer applications are typically computationally intensive. Therefore, it is desirable for these
producer applications to offload the operations for managing different data layouts across the
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Figure 3-1 A schematic illustration of reorganization at Destination.

coupled applications in their workflow. To achieve this goal, we proposed three data
reorganization approaches, i.e., reorganization at destination, reorganization at staging as
requested, and reorganization at staging in advance. In this section, we present the design of these
three approaches.

3.1. Reorganization at Destination

To prepare the data for a specific layout different from the origin, the most straightforward
approach is fetching the original data and reorganizing it at the destination application. We
implemented this approach by adding a generic reorganization wrapper after fetching the original
data from the server at the DataSpaces client, which is co-located with the destination application.
The major advantage of this approach is simplicity in the implementation, and it can scale out
with the destination application. The disadvantage of this approach is lack of reuse for multiple
application instances with the same data reorganization. As shown in Figure 3-1, if multiple
applications request the data in the same layout but different with the original one, every
application has to reorganize the data on it own, which is a waste of both computation resources
and time to solution.

3.2. Reorganization at Staging as Requested

For the purpose of reorganized data reuse, it is possible to offload the data reorganization
operations to the staging server. Figure 3-2 illustrates the data reorganization as requested at the
staging server. The first fetch request for the data in a layout different from the origin will invoke
the reorganization process at server. To avoid a waste of computation as well as duplicated
heterogeneous replica storage, other concurrent requests for the same data object in the same
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Figure 3-2 A schematic illustration of Reorganization at Staging as Requested.

reorganized layout are halted until the ongoing reorganization finishes. Then, the staging server
sends the reorganized data to its multiple destinations, saving the reorganized data into its storage
at the same time for future requests. Since the staging server keeps the replicated data in
heterogeneous layouts, the subsequent fetch requests for the data in the available layouts are
processed efficiently. This design utilizes the idle computing resources at the staging server while
staging is always an I/O-bound task. Since the first request of each data object with new data
layout still leads to longer I/O time, reorganization at the server might lead to a significant
slowdown with an extremely limited scale of the staging server.

3.3. Reorganization at Staging in Advance

In order to make the destination applications unaware of data reorganization from the I/O
performance perspective, overlapping the reorganization time in the staging server with the
processing time in the destination applications is essential. We achieved this goal by reorganizing
the data to all types of the available layouts at the staging server in advance. As shown in Figure
3-3, the staging server will start to reorganize the entire data object immediately after receiving it
from the source applications. In this approach, all the subsequent fetch requests are not aware of
data reorganization at all, since the staging server keeps the heterogeneous data replica for all
possible layouts. However, the major weakness of this approach is the large memory capacity
requirement to meet the increasing number of the supported layouts.

4. EVALUATION

In this section, we present the empirical evaluations of our heterogeneous data reorganization
mechanism with our synthetic benchmarks, which simulate a variety of data access patterns.

Our experiments have been performed on the Frontera System at the Texas Advanced Computing
Center (TACC). Frontera hosts 8368 compute nodes, each containing Dual Intel Xeon Platinum
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Figure 3-3 A schematic illustration of Reorganization at Staging in Advance.

8280 ("Cascade Lake"), 28-core processor with 192GB of DDR4 RAM and 240GB SSD. All of
the tests in subsequent sections are performed 3 times and the average result is reported.

Data read access rate and layout matching between source and destination impacts the
performance of simulation/analysis workflows. To better understand the impact of typical data
read patterns upon our approach, we select two scenarios similar to [4]: reading entire data
domain for all time steps, and reading subset data domain for all time steps. In both scenarios,
coupled scientific applications are assumed to write/read data to/from a three-dimensional data
domain. The data is assumed to be written over multiple iterations or time-steps in a fixed layout,
and read in the similar temporal fashion but reorganized into different layouts.

In our synthetic tests, two application codes, namely readers and writers, are used to emulate a
generic end-to-end data movement behavior in real coupled simulation workflows. As their
names suggest, the writers produce simulation data and write it to the staging servers and the
readers read the data from the staging servers then perform some analysis. The data is organized
in a 3-dimensional Cartesian grid format with X XY x Z scale.

In all of the synthetic test cases, one writer application writes the data for the entire domain in a
fixed layout over all the (simulation) time steps into the staging servers, while one reader
application reads the data in either same or different layout of the writers’ data format. To
demonstrate the reuse of the reorganized data, we have evaluated the performance of the second
reader, which shares the same read pattern of the first one.
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Figure 4-1 Sequence diagram of the workflow used in exploring the task placement
of data reorganization

Data Domain 1024 x 1024 x 1024
No. of Parallel Writer Cores (Nodes) 512(16)
No. of Parallel Reader Cores (Nodes) 64(4)
No. of 2nd Parallel Reader Cores (Nodes) 64(4)
No. of Staging Cores (Nodes) 32(8)
Total Staged Data Size (20 Time-steps) 160 GB

Table 4-1 experimental setup configurations of core-allocations for writer and staging
server, data domain and size of the staged data for data reorganization task place-
ment tests

41, Exploring the task placement of data reorganization

This experiment evaluates the impact on the I/O performance for scalable in-transit workflow of
three data reorganization task placement scenarios discussed in the previous section. To better
understand the tradeoffs between these approaches, three critical metrics in in-transit workflow
are selected based on [5]. Table 4-1 details the base setup for all the tests cases in this experiment.
This setup might be changed due to different metrics to be evaluated. As shown in figure 4-1, the
second reader is designated to start after the first one finishes in this experiment to eliminate the
interference between asynchronous reader applications.
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10 Performance with different application cycle time
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Figure 4-2 Comparison of I/0 time per time step among three different data reorgani-
zation placement with varying cycle time of applications

4.1.1. Metric 1 - Cycle time of writer and reader

Because our synthetic writers and readers use a simplified data generator, both of the applications
has a relatively fast cycle time. Some applications could be represented by such a fast cycle time,
but the implications with applications who have longer cycle time should be studied as well. To
simulate these longer cycle times, a pause is added to our synthetic writers and readers after the
completion of computation but before the data movement in each cycle. The four cases used
were:

Delay(0): writers and readers ran with no sleep command.

Delay(5): writers and readers ran with a 5 second sleep after each computation time step.

Delay(10): writers and readers ran with a 10 second sleep after each computation time step.

Delay(20): writers and readers ran with a 20 second sleep after each computation time step.

Figure 4-2 shows the I/O time per time step for each data reorganization design with varying
cycle time of applications. Apparently, longer cycle times benefit data reorganization at staging
server. Reorganization 1, where data reorganization resides at the reader side, cannot take
advantage of latency hiding and keeps a steady I/O time regardless of delay time. As for
Reorganization 2, it benefits from longer cycle times, because infrequent data fetch leaves enough
time for data reorganization at staging server, avoiding the cascading slow down for the
subsequent data fetches. Reorganization 3 exploits the longer cycles effectively to achieve the
speedup of 25x and 5x compared to Reorganization 1 and 2 respectively in Delay(20) because
the staging server can perform the data reorganization during the idle time of the writer. However,
in Delay(0), the writer dramatically degrades its performance because the data staging server has
to concurrently perform the data reorganization for the outstanding reader’s request and the data
transfer from the writer. For the second reader, both reorganization 2 and 3 have nearly identical
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Figure 4-3 Comparison of I/0 time per time step among three different data reorgani-
zation placement with different staging server scale

read time by directly hitting the reorganized replica at staging server, while reorganization 1 still
has to transform every data object. This "cache hit" saves up to 94% read time.

4.1.2. Metric 2 - Staging server scale

Placing the data reorganization task at staging server has a great potential to make the staging
server computational bound. Consequently, the respond rate to incoming I/O requests would slow
down, which might further stalls the entire workflow disastrously. For the in-transit paradigm, the
scale of simulation and analysis are typically predetermined. Thus, we change the number of
staging server cores to explore how the computational capability of the staging server impacts the
performance. We have investigated the three server configurations with the scale of 512(16)
writer cores(nodes) and 64(4) reader cores(nodes) as follows:

* 8(2): the staging server runs with 8(2) cores(nodes).
* 16(4): the staging server runs with 16(4) cores(nodes).
* 32(8): the staging server runs with 32(8) cores(nodes).

Figure 4-3 demonstrates the I/O time per time step among three different data reorganization
placement with different staging server scale. There are several insights that can be drawn from
Figure 4-3. First, all three data reorganization design are subject to slightly I/O time increase as
the server:reader ratio decreases. Second, the server scale has a large impact on reorganization 2
and 3. For the first reader, the I/0O performance of both Reorganization 2 and 3 degrades as the
server scale decreases. In the server:reader ratio of 8:64, Reorganization 2 performs the worst
while Reorganization 3 has a relatively same performance with Reorganization 1. However, due
to the asynchronous workflow we were running, the I/O behavior varies as the time step increases.
Figure 4-4 demonstrate the read time of all the data reorganization designs in each time step with

16



—e— 1st Reader of Reorganization 1
8000 4 —m- 2nd Reader of Reorganization 1
1st Reader of Reorganization 2
2nd Reader of Reorganization 2
—e— 15t Reader of Reorganization 3
6000 A -m=- 2nd Reader of Reorganization 3
W
E
@
E
|_
- 4000
m
ub}
o
2000 A
0 .
T T T T T T T T T

T T T T T T T T T T
o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Time Step

Figure 4-4 Comparison of read time in each time step among three data reorganization
with the server:reader ratio of 1:8

the server:reader ratio of 1:8. Since the first reader starts with the writer at the same time, the read
time of the first time step is extremely long because the reader has to wait for the data generated
and transferred to the staging server. From the second time step, the read time of Reorganization 1
is stable as expected, while Reorganization 2 has longer reader time than Reorganization 1 in
almost every time step due to the limited parallelism at staging server. The read time of
Reorganization 3 is significantly long at the first several time steps, because the reader has to wait
for the finish of reorganization, which happens immediately after the staging server receiving the
data from the writer. As the writer stops transferring the data to the staging server and the server
finishes the reorganization in advance, the first reader starts to take advantages of reorganized
replicas at server, thus the read time becomes shorter than the other two from time step 8 and
converge to the read time of the second readers who completely reuse the reorganized replicas at
server. This also explains the large span of error bar of Reorganization 3 in Figure 4-3.
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Figure 4-5 Comparison of /0O time per time step among three different data reorgani-
zation placement with different size of subset domain to read (any % for the saving
from the full-domain?

4.1.3. Metric 3 - Data size of reading subset domain

Besides the scenario where the entire data domain is read, accessing a subset of the data domain
is representative for applications such as interactive visualizations and descriptive statistic
analysis[6]. Processing the data as requested saves both the computation and storage overheads. It
is also important to explore the saving with respect to the size of the subset. Thus, we only reads
the data assigned to a single core of the simulation (writer) code, whose coordinates is

{W, W} in each dimension of the entire domain. The three distance parameters (d) are
given as:

* d=128: readers only read a 128 x 128 x 128 cube from the core of the entire data domain.
* d=256: readers only read a 256 x256x256 cube from the core of the entire data domain.
e d=512: readers only read a 512x512x512 cube from the core of the entire data domain.

In Figure 4-5, we show the I/O time per time step among the three different data reorganization
placement with the different sizes of the subset domain to read. It was observed that for both the
writer and the first reader, Reorganization 1 and 2 share almost the same I/O time due to the small
size of the subset data to transform. On the other hand, Reorganization 3 has the worst
performance and large variation at the writer and the reader due to the concurrent execution of the
data reorganization of the entire domain and the data transfer from the writer. As for the second
reader, the difference between Reorganization 1 and the others becomes relatively smaller than
the writer and the first reader.

The memory usage for the three data reorganization with the different subset domain sizes are
presented in Figure 4-6. Reorganization 1 just needs the memory for the original data.
Reorganization 2 exhibits the great saving from just maintaining the replica of the subset as it is
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designed to create a reorganized subset as needed. Reorganization 3 always keeps the entire data
domain in another layout, doubling the memory requirement irrespective to the subset size.

From the aforementioned test cases, a tradeoff is drawn with respect to the available resources and
the features of workflow planned to run. Apart from the main applications, if the additional
resources for staging server is very limited, Reorganization 1 turns to perform the best in both
time to solution and memory usage, since the other two are likely to be slow due to heavy
workload at server and even breaks down due to exhausted memory. Applications with long cycle
time will benefit from reorganization in advance as Reorganization 3 works. For the situation
where applications only need a subset of data, Reorganization 2 outperforms others by computing
as needed.
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Figure 4-7 Sequence diagram of the workflow used in strong scaling comparison to

existing methods

Data Domain 1024 x 1024 x 1024
No. of Parallel Writer Cores (Nodes) 256(8) | 512(16) | 1024(32) | 2048(64) | 4096(128)
No. of Parallel Reader Cores (Nodes) 32(2) 64(4) 128(8) 256(16) 512(32)
No. of 2nd Parallel Reader Cores (Nodes) | 32(2) 64(4) 128(8) 256(16) 512(32)
No. of Staging Cores (Nodes) 16(4) 32(8) 64(16) 128(32) 256(64)
Total Staged Data Size (20 Time-steps) 160 GB
Cycle Time 20 second

Table 4-2 experimental setup configurations of data domain, core-allocations and size
of the staged data for strong scaling tests

4.2, Strong scaling comparison to existing methods

Besides the experiment to explore the tradeoffs between three data reorganization placements, we
compared our heterogeneous data staging system with two other existing methods of
inter-application data exchange based on file in the Kokkos framework: standard I/O (data is
stored as binary files in disk using C++ standard I/O implementation and involves ad-hoc data
reorganization if the layouts between simulations and analyses are mismatched.), HDF5[7] (data
is stored as HDFS files in disk using HDFS implementation and involves ad-hoc data
reorganization if needed.). Because the data coupling through file systems does not support
asynchronous I/O between applications, writer, reader and the second reader are running in
sequence, as shown in Figure 4-7, in all the cases of this study. To simulate a typical extreme
scale in-situ workflow, such as XGC1[8], FLASH[9], according to[10], a strong scaling test has
been performed with the detailed configuration described in Table 4-2.

In Figure 4-8, we show the result of strong scaling comparison among C++ standard I/0, HDF5
and DataSpaces in the fixed data domain for both homogenous and heterogenous data exchange
between the writer and the reader. It was observed clearly that almost all cases using DataSpaces
outperforms the other two existing baseline approaches by the I/O time reduction of 20%-87%
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Figure 4-8 Strong scaling comparison of I/O time per time step among C++ standard
10, HDF5 and DataSpaces

and 27%-97% for the writer and the reader respectively, except for DataSpaces Reorganization 3,
which sacrifices a little at the writer’s side but gains the overhead hidden at the reader’s side with
the performance identical to the homogenous data fetch. This is expected because the data storage
and management in DataSpaces avoids the involvement of secondary storage. In contrast to the
result of the fixed scale experiments, DataSpaces exhibits a great overall scalability and an
acceptable overhead with the increasing number of application processing elements from 300 to
Sk in total, compared to the existing baseline approach.

From our strong scaling workflow simulations, we can infer that the file-based in-situ data
exchange between applications performs poorly at extreme scale due to the unnecessary
involvement of file systems. In addition, heterogeneous workflow makes the file-based in-situ
data exchange difficult to provide a portability form both performance and development
perspectives. On contrary, our heterogeneous staging service is able to tackle these cases easily
and provide an I/O time reduction up to 97% in comparison to C++ standard I/O and HDF5.
From our data reorganization placement exploration, we also observe that putting data
reorganization tasks into staging server would achieve the best performance for a large scale
workflow as long as the resources for staging is not extremely limited. Also, our staging service
provides identical APIs for heterogeneous applications so that developers could easily couple
them by adding extra few lines. In summary, our staging service can effectively provide both
performance and development portable data staging service for heterogeneous workflows at
extreme scale with efficient data reorgnization on the fly.
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5. FUTURE WORK

While heterogeneous programming frameworks have emerged as effective solutions for porting
applications to various platforms, they are not capable of assembling these applications into a
heterogeneous in-situ workflow. In this paper, we designed data reorganization mechanisms,
which simplifies data exchange between heterogeneous applications that require different
memory access pattern for performance. We implemented the data reorganization mechanisms
within Kokkos Staging Space, an extension of Kokkos data abstraction, based on DataSpaces data
staging framework. Kokkos Staging Space is deployed on the Frontera system at TACC, and
experimentally evaluated using a synthetic benchmark. Our experiment results gave insight into
the effectiveness and tradeoffs between the three data reorganization mechanisms: reorganization
at destination, reorganization at staging as requested, and reorganization at staging in advance,
under different scenarios representing access frequency and use patterns of the shared data. The
result also demonstrated that Kokkos Staging Space performs better than existing file-based
Kokkos data abstraction in terms of time-to-solution and scalability for inter-application data
exchange.

As future work, we plan to build an adaptive data reorganization mechanism by combining the
three design we implemented in this paper, which could learn the data access pattern and
dynamically choose the most appropriate reorganization method according to both time to
solution and memory usage. Besides, we also plan to support more data reorganization type, such
as the transformation between Array of Struct(AoS) and Struct of Array(SoA). In addition,
seeking a real in-situ workflow consist by heterogeneous applications and evaluating it is an
important task in our following work as well.
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