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Abstract

To understand the mathematics behind Uncertainty Quantification (UQ), one first needs to under-

stand the basics of orthogonal polynomials, which this report covers.
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Definition 1 (Coefficient Sequence). A coefficient sequence c is simply a finite sequence of com-

plex numbers, such that, either (a) c is empty (i.e., the sequence has no elements), or (b) c is

non-empty and its last element is non-zero (i.e., c = [c0, c1, c2, . . . , ci], where ci 6= 0).

Definition 2 (Polynomial). Given a coefficient sequence c, we define a function pc, that takes a

complex number z as input, and returns another complex number pc(z) as output. This function,

known as the “polynomial” corresponding to the coefficient sequence c, is given by:

pc(z) =







c0 + c1z + c2z
2 + . . . + ciz

i =
iX

j=0

cjz
j, if c = [c0, c1, c2, . . . , ci] is non-empty, and

0, if c is empty.

(1)

Or, we could use “lambda function” notation (e.g., as in Python R
 [1]), to say:

pc =







λ z : c0 + c1z + c2z
2 + . . . + ciz

i = λ z :
iX

j=0

cjz
j , if c = [c0, c1, c2, . . . , ci] is non-empty, and

λ z : 0, if c is empty.

(2)

Remark 3. If c is empty, we say that pc is “identically zero”.

Observation 4 (Canonicity of Coefficient Sequences and Polynomials). If pc1 and pc2 are identical

polynomial functions (i.e., pc1(z) = pc2(z), for every complex number z), then their corresponding

coefficient sequences, c1 and c2, must be identical as well. Conversely, if two coefficient se-

quences c1 and c2 are identical, then their corresponding polynomial functions, pc1 and pc2 , will

also be identical (by Definition 2).

Definition 5 (Degree of a Polynomial). Given a polynomial pc, corresponding to the coefficient

sequence c, we define the degree of pc as follows:

degree (pc) =

(

i, if c = [c0, c1, c2, . . . , ci] is non-empty, and

−1, if c is empty.
(3)

Definition 6 (Monic Polynomial). A polynomial pc, corresponding to the coefficient sequence

c, is called “monic” if (a) c is non-empty, and (b) the highest coefficient ci = 1 (where c =
[c0, c1, c2, . . . , ci]).

Remark 7. We denote the set of complex numbers by C, the set of real numbers by R, and the

set of integers by Z.

Definition 8 (Real Polynomial). A polynomial pc, corresponding to the coefficient sequence c, is

called “real” if either, (a) c is empty, or (b) (if c is non-empty) the coefficients in c are all real; that

is, cj ∈ R for every integer j such that 0 ≤ j ≤ i (where c = [c0, c1, c2, . . . , ci]).

Definition 9 (Moment Functional). Given an infinite sequence of complex numbers µ = [µ0, µ1, µ2, . . . ] ,
we define a function Lµ, that takes a polynomial pc as input, and returns a complex number Lµ(pc)
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as output. This function, known as the “moment functional” associated with the “moment se-

quence” µ, is given by:

Lµ(pc) =







Lµ



λ z :

iX

j=0

cjz
j



 =

iX

j=0

cj µj, if c = [c0, c1, c2, . . . , ci] is non-empty, and

0, if c is empty.

(4)

Observation 10. With the above definition, we have Lµ

(
λ z : zi

�
= µi, for every integer i ≥ 0.

Observation 11. Lµ is “additive”. That is,

Lµ(pc1 + pc2) = Lµ(λ z : pc1(z) + pc2(z)) = Lµ(pc1)+Lµ(pc2) , for any two polynomials pc1 and pc2 .

(5)

Observation 12. Lµ is “homogeneous”. That is,

Lµ(α pc) = Lµ(λ z : α pc(z)) = αLµ(pc) , for any polynomial pc and any complex number α. (6)

Observation 13. Lµ is “linear”, because it satisfies the additivity and homogeneity conditions

above.

Example 14 (Weighted Integral Moment Functional). This moment functional will be of particular

interest to us. Given a non-negative “weight function” w, with a positive measure, that is defined

on the real interval [a, b], we define the corresponding moment sequence µ = {µi | i ∈ Z, i ≥ 0}
to be:

µi =

Z b

x=a

w(x)xi dx (7)

In particular, we will be interested in the case where the weight function w above happens to be

the probability density function of a random variable.

Definition 15 (Orthogonal Polynomial Sequence or OPS). Given a moment functional Lµ, we de-

fine an infinite sequence of polynomials p
Lµ
= [pc0 , pc1, pc2 , . . . ] (corresponding to the coefficient

sequences [c0, c1, c2, . . . ] respectively) to be an orthogonal polynomial sequence (or OPS) with

respect to Lµ, if the following three conditions are satisfied:

1. For every integer i ≥ 0, pci is a polynomial of degree i,

2. For every two integers i and j such that i ≥ 0, j ≥ 0, and i 6= j, we have:

Lµ

(
pci × pcj

�
= Lµ

(
λ z : pci(z)× pcj(z)

�
= 0, and (8)

3. For every integer i ≥ 0, we have:

Lµ

(
p2ci

�
= Lµ(λ z : pci(z)× pci(z)) 6= 0. (9)

10



Observation 16. Given an arbitrary moment sequence µ, there may or may not exist an OPS

associated with Lµ.

Observation 17. Let p
Lµ

= [pc0, pc1 , pc2 , . . . ] be an OPS, with respect to the moment functional

Lµ. Then, q
Lµ
= [β0 pc0 , β1 pc1 , β2 pc2, . . . ] is also an OPS with respect to Lµ, for any sequence of

non-zero complex numbers [β0, β1, β2, . . . ]. Thus, if an OPS with respect to Lµ exists, then there

exist infinitely many OPSes with respect to Lµ.

Definition 18 (Monic OPS). An OPS p
Lµ
= [pc0 , pc1, pc2 , . . . ] is called “monic” if every polynomial

(pc0 , pc1, pc2 , . . . ) in the OPS is monic (as in Definition 6).

Definition 19 (K-OPS). Given (a) a moment functional Lµ, and (b) an infinite sequence of non-

zero complex numbers, K = [K0, K1, K2, . . . ], we define p
Lµ
= [pc0 , pc1 , pc2, . . . ] to be a K-OPS

with respect to Lµ, if it is an OPS with respect to Lµ that, in addition to satisfying the regular OPS

conditions of Definition 15, also satisfies the following:

Lµ

(
zi pci

�
= Lµ

(
λ z : zi × pci(z)

�
= Ki, for every integer i ≥ 0. (10)

Definition 20 (Normalised OPS, or Orthonormal Polynomial Sequence). Given a moment func-

tional Lµ, we define p
Lµ

= [pc0 , pc1 , pc2, . . . ] to be a “normalised” OPS with respect to Lµ, or an

orthonormal polynomial sequence with respect to Lµ, if it is an OPS with respect to Lµ that, in

addition to satisfying the regular OPS conditions of Definition 15, also satisfies the following:

Lµ

(
p2ci

�
= 1, for every integer i ≥ 0. (11)

Definition 21 (Positively Oriented Complex Number). We say that a complex number z = Re(z)+√
−1.Im(z) is “positively oriented” if it lies either in the open right half of the complex plane, or on

the positive imaginary axis. That is, we have:

(Re(z) > 0) or (Re(z) = 0 and Im(z) > 0) (12)

Definition 22 (Positively Oriented OPS). Given a moment functional Lµ, we define p
Lµ
= [pc0, pc1 , pc2 , . . . ]

to be a “positively oriented” OPS with respect to Lµ if it is an OPS with respect to Lµ that, in addi-

tion to satisfying the regular OPS conditions of Definition 15, is also such that, for each i ≥ 0, the

highest coefficient in pci (i.e., the coefficient of zi in the expansion of pci(z)) is positively oriented.

Definition 23 (Negatively Oriented OPS). Given a moment functional Lµ, we define p
Lµ
= [pc0, pc1 , pc2 , . . . ]

to be a “negatively oriented” OPS with respect to Lµ if it is an OPS with respect to Lµ that, in addi-

tion to satisfying the regular OPS conditions of Definition 15, is also such that, for each i ≥ 0, the

highest coefficient in pci (i.e., the coefficient of zi in the expansion of pci(z)) lies in the region of

the complex plane given by {z |Re(z) < 0 or (Re(z) = 0 and Im(z) < 0)} (i.e., the open left half of

the complex plane, plus the negative imaginary axis).

Observation 24. An OPS may be neither positively nor negatively oriented.

Theorem 25. Let p
Lµ

= [pc0 , pc1 , pc2, . . . ] be an OPS, with respect to the moment functional Lµ.

Then, pc0 = λ z : c, where c is a non-zero complex number.

11



Proof. From the first condition of Definition 15, pc0 is a polynomial of degree 0. That is, we have:

degree (pc0) = 0. (13)

From Definition 5, this is possible only when the coefficient sequence c0 has exactly one element.

This element, from Definition 1, must be a complex number. If we call this complex number c, we

have:

c0 = [c]. (14)

Applying Definition 2 to the above, we have:

pc0 = λ z : c. (15)

Now, all that’s left to prove is that c 6= 0. This we can see from Definition 1: c, being the last

element of a non-empty coefficient sequence c0, has to be non-zero.

Theorem 26. Let p
Lµ

= [pc0 , pc1 , pc2, . . . ] be an OPS, with respect to the moment functional Lµ.

Then, for every i ≥ 1, Lµ(pci) = 0.

Proof. From Theorem 25, let pc0 = λ z : c, where c is a non-zero complex number. Then, for every

i ≥ 1, we have:

Lµ(pci) =
c

c
Lµ(pci)

=
1

c
Lµ(c pci) (from Observation 12)

=
1

c
Lµ(pc0 × pci)

=
1

c
0 (from the second condition of Definition 15)

= 0. (16)

Definition 27 (Vector Spaces of Polynomials). For every i ≥ 0, we define Pi to be the vector

space of polynomials of degree at most i, over the field of complex numbers C. Operations such

as field addition, field multiplication, vector addition, and multiplication of a vector by a scalar, are

assumed to be done “the natural way” and are not defined precisely here.

Observation 28. For every i ≥ 0, the set of polynomials given by {λ z : zj | 0 ≤ j ≤ i} forms a

basis for the vector space Pi. Thus, the dimension of Pi is i+ 1 [2].

Theorem 29 (Basis Sets of Orthogonal Polynomials). Let p
Lµ

= [pc0 , pc1 , pc2 , . . . ] be an OPS,

with respect to the moment functional Lµ. Then, for every i ≥ 0, the set of polynomials {pc0 , pc1, pc2 , . . . , pci}
forms a basis for the vector space Pi.

12



Proof. For every i ≥ 1, because pci is of degree i, it cannot be written as a linear combination of the

polynomials
�
pc0, pc1 , pc2 , . . . , pci−1

	
, which all have smaller degrees. Therefore, the polynomials

{pc0 , pc1 , pc2 , . . . , pci} are linearly independent. But these are i+1 linearly independent “vectors”

from the vector space Pi, which, by Observation 28, is of dimension i + 1. Therefore, by the di-

mension theorem for vector spaces (see, for example, [2]), the polynomials {pc0 , pc1 , pc2, . . . , pci}
must form a basis for Pi.

Theorem 30. Let p
Lµ

= [pc0 , pc1 , pc2, . . . ] be an OPS, with respect to the moment functional

Lµ. Then, for each i ≥ 0, Lµ(q × pci) = 0 for every polynomial q of degree smaller than i, and

Lµ(q × pci) 6= 0 for every polynomial q of degree equal to i.

Proof. Let q be a polynomial of degree j, which is at most i.

Now, if q is identically zero (i.e., j = −1), then q × pci will also be identically zero for every i ≥ 0,

and thus Lµ(q × pci) will trivially be zero (from Definition 9) for every i ≥ 0. So let us just consider

situations where j ≥ 0. That is,

degree (q) = j, where 0 ≤ j ≤ i. (17)

Then, by the “basis sets of orthogonal polynomials” theorem (Theorem 29), we can write q as a

linear combination of the polynomials in
�
pc0 , pc1 , pc2 , . . . , pcj

	
. That is, we have:

q =

j
X

k=0

αk pck (18)

Also, in the expansion above, the last coefficient αj will be non-zero. This is because the left hand

side (q) of the equation above is of degree j, and if αj were zero, the linear combination on the

right hand side would have a degree strictly smaller than j, which would be a contradiction. Thus,

we have:

αj 6= 0. (19)

Multiplying Eq. (18) by pci and applying Lµ to both sides, we get:

Lµ(q × pci) = Lµ

  
j

X

k=0

αk pck

!

× pci

!

= Lµ

 
j

X

k=0

αk (pck × pci)

!

=

j
X

k=0

αk Lµ(pck × pci) (by the linearity of Lµ, i.e., Observation 13) (20)

Now, from Eq. (17), j ≤ i. If j < i, each term in the summation above vanishes due to the

second condition from Definition 15. But if j = i, the last term in the summation (corresponding to

13



k = j = i) alone survives. Thus, we have:

Lµ(q × pci) =

(

0, if j < i, and

αi Lµ

(
p2ci

�
, if j = i.

(21)

But if j = i, we have αi 6= 0 from Eq. (19), and we also have Lµ

(
p2ci

�
6= 0 from the third condition

of Definition 15. Therefore, Eq. (21) allows us to conclude that, for every i ≥ 0:

Lµ(q × pci)

(

= 0, if degree (q) < i, and

6= 0, if degree (q) = i,
(22)

where we have replaced j by degree (q) using Eq. (17).

Theorem 31 (Converse of Theorem 30). Let p = [pc0 , pc1, pc2 , . . . ] be an infinite sequence of

polynomials (with coefficient sequences [c0, c1, c2, . . . ] respectively), where pci has degree i,

for every i ≥ 0. Also, let Lµ be a moment functional, with respect to the moment sequence

[µ0, µ1, µ2, . . . ] . Suppose that, for every i ≥ 0, we have Lµ(q × pci) = 0 for every polynomial q of

degree smaller than i, and that Lµ(q × pci) 6= 0 for every polynomial q of degree equal to i. Then,

p is an OPS with respect to Lµ.

Proof. Since, for every i ≥ 0, pci is given to be a polynomial of degree i, the sequence p clearly

satisfies the first condition of Definition 15. Now, choose any i > 0 and j > 0. There are only three

possibilities:

1. i < j. In this case, letting “q” = pci and “i” = j in “Lµ(q × pci) = 0 for every polynomial q of

degree smaller than i”, we get Lµ

(
pci × pcj

�
= 0.

2. i > j. In this case, letting “q” = pcj and “i” = i in “Lµ(q × pci) = 0 for every polynomial q of

degree smaller than i”, we get Lµ

(
pcj × pci

�
= Lµ

(
pci × pcj

�
= 0.

3. i = j. In this case, letting “q” = pci and “i” = j (= i) in “Lµ(q × pci) 6= 0 for every polynomial

q of degree equal to i”, we get Lµ

(
pci × pcj

�
= Lµ

(
p2ci

�
6= 0.

Thus, we have:

Lµ

(
pci × pcj

�

(

= 0, if i 6= j, and

= Lµ

(
p2ci

�
6= 0, if i = j,

(23)

which shows that the sequence p satisfies the second and third conditions of Definition 15. There-

fore, p is an OPS with respect to Lµ.

Theorem 32. Let p
Lµ

= [pc0 , pc1 , pc2, . . . ] be an OPS, with respect to the moment functional Lµ.

Then, for every i ≥ 0, given any polynomial q of degree i, we can write q as:

q =

iX

j=0

αj pcj,

where αj =
Lµ

(
q × pcj

�

Lµ

�

p2cj

� , for every 0 ≤ j ≤ i. (24)
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Proof. From Theorem 29, we already know that the set of polynomials {pc0 , pc1 , pc2, . . . , pci}
forms a basis for the vector space Pi, for every i ≥ 0. Also, q, being a polynomial of degree i,

is a member of the vector space Pi. Therefore, q can be written as a linear combination of the

polynomials {pc0, pc1 , pc2 , . . . , pci}. That is, we have:

q =
iX

j=0

αj pcj (25)

Multiplying both sides of the above equation by pck (where 0 ≤ k ≤ i), and applying Lµ to both

sides, we get:

Lµ(q × pck) = Lµ









iX

j=0

αj pcj



× pck





= Lµ





iX

j=0

αj (pcj × pck)





=

iX

j=0

αj Lµ

(
pcj × pck

�
(by the linearity of Lµ, i.e., Observation 13) (26)

From the second condition in Definition 15, we see that only the term corresponding to j = k

survives in the summation above; the rest of the terms vanish. Therefore, we have:

Lµ(q × pck) = αk Lµ(pck × pck) = αk Lµ

(
p2ck

�
, for every k ∈ {0, 1, 2, . . . , i} (27)

Dividing both sides by Lµ

(
p2ck

�
(which we know to be non-zero from the third condition of Defini-

tion 15) we get:

αk =
Lµ(q × pck)

Lµ

(
p2ck

� , for every k ∈ {0, 1, 2, . . . , i} (28)

Changing the dummy index variable from k to j in Eq. (28), we get:

αj =
Lµ

(
q × pcj

�

Lµ

�

p2cj

� , for every j ∈ {0, 1, 2, . . . , i} (29)

Combining Eq. (25) and Eq. (29), we get:

q =

iX

j=0

αj pcj

where αj =
Lµ

(
q × pcj

�

Lµ

�

p2cj

� , for every 0 ≤ j ≤ i. (30)
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Theorem 33 (Uniqueness of OPS upto constant factors). Given a moment functional Lµ. Let

p = [pc0 , pc1 , pc2 , . . . ] and q = [qd0
, qd1

, qd2
, . . . ] be two orthogonal polynomial sequences as-

sociated with Lµ, with coefficient sequences [c0, c1, c2, . . . ] and [d0, d1, d2, . . . ] respectively.

Then, the polynomials in p and those in q will only differ by constant factors; that is, for every i ≥ 0,

qdi
= βi pci , where [β0, β1, β2, . . . ] is a sequence of non-zero complex numbers.

Proof. Applying Theorem 32, we can write the polynomial qdi
(which is of degree i) as a linear

combination of the polynomials {pc0, pc1 , pc2 , . . . , pci}, as follows:

qdi
=

iX

j=0

αj pcj ,

where αj =
Lµ

(
qdi

× pcj
�

Lµ

�

p2cj

� . (31)

But applying Theorem 30, with qd as the sequence of orthogonal polynomials, qdi
as the ith poly-

nomial (with degree i) in the sequence, and pcj (for 0 ≤ j ≤ i) as the “arbitrary” polynomial of

degree at most i, we get:

Lµ

(
pcj × qdi

�
= Lµ

(
qdi

× pcj
�

(

= 0, if i < j, and

6= 0, if i = j,
(32)

for every j from 0 to i.

From Eq. (31) and Eq. (32), we see that only the last term (corresponding to j = i) in the summa-

tion on the right hand side of Eq. (31) survives; the rest of the terms vanish because αj = 0 for

every j from 0 to i− 1. Therefore, we have:

qdi
=

Lµ(qdi
× pci)

Lµ

(
p2ci

�

| {z }

βi

pci, for every i ≥ 0. (33)

The complex numbers βi in the equation above are all non-zero. We know this because each βi is

a fraction, where we know the numerator to be non-zero from the “i = j” case of Eq. (32), and the

denominator to be non-zero from the third condition of Definition 15.

Remark 34. Theorem 33 tells us that, given a moment functional Lµ, orthogonal polynomial se-

quences with respect to Lµ are essentially unique — except for the non-zero constant factors βi
above.

But often, for concreteness, we will need to single out a particular OPS for discussion, without

having to worry about these constant factors. In such cases, we will typically follow one of the

three approaches below:

1. We will insist that the OPS be monic (as in Definition 18), or

16



2. We will specify an infinite sequence of non-zero complex numbers, K = [K0, K1, K2, . . .],
and we will insist that the OPS be a K-OPS with respect to Lµ (as in Definition 19), or

3. We will insist (a) that the OPS be normalised (as in Definition 20), and (b) that the OPS be

either positively (as in Definition 22) or negatively (as in Definition 23) oriented.

Each of the above is enough to guarantee uniqueness. For example, given a moment functional

Lµ, if there exists an OPS for it, there will also exist a monic OPS for it, and this monic OPS

will be unique (see Theorem 35). Similarly, given a moment functional Lµ, if there exists an

OPS for it, there will also exist a unique K-OPS for it, with respect to any sequence of non-zero

complex numbers K (see Theorem 36). And finally, given a moment functional Lµ, if there exists

an OPS for it, there will also exist a unique positively/negatively oriented, normalised OPS for it

(see Theorem 37).

Moreover, given a moment functional Lµ, and any OPS for it, it is easy to get from it the corre-

sponding monic OPS, or the corresponding K-OPS with respect to any sequence of non-zero

complex numbers K, or the corresponding positively/negatively oriented, normalised OPS.

We state the following theorems without proof.

Theorem 35. Given a moment functional Lµ, such that an OPS with respect to Lµ exists. Then,

there exists a unique monic OPS with respect to Lµ.

Theorem 36. Given (a) a moment functional Lµ, such that an OPS with respect to Lµ exists, and

(b) an infinite sequence of non-zero complex numbers, K = [K0, K1, K2, . . .]. Then, there exists

a unique K-OPS with respect to Lµ.

Theorem 37. Given a moment functional Lµ, such that an OPS with respect to Lµ exists. Then,

there exists a unique positively oriented, normalised OPS with respect to Lµ, and a unique nega-

tively oriented, normalised OPS with respect to Lµ.

Definition 38 (Moment Matrices). Given a moment sequence µ = [µ0, µ1, µ2, . . . ] , we define

an infinite sequence of square matrices, Mµ =
�
M(0, µ), M(1, µ), M(2, µ), . . .

�
, known as “moment

matrices”, as follows:

M(i, µ) =










µ0 µ1 µ2 · · · µi

µ1 µ2 µ3 · · · µi+1

µ2 µ3 µ4 · · · µi+2
...

...
...

. . .
...

µi µi+1 µi+2 · · · µ2i










, for every i ≥ 0. (34)

Definition 39 (Moment Determinants). Given a moment sequence µ = [µ0, µ1, µ2, . . . ] , we define

an infinite sequence of complex numbers, dµ =
�
d(0, µ), d(1, µ), d(2, µ), . . .

�
, known as “moment

determinants”, as follows:

d(i, µ) = det
(
M(i, µ)

�
=

�
�
�
�
�
�
�
�
�
�
�

µ0 µ1 µ2 · · · µi

µ1 µ2 µ3 · · · µi+1

µ2 µ3 µ4 · · · µi+2
...

...
...

. . .
...

µi µi+1 µi+2 · · · µ2i

�
�
�
�
�
�
�
�
�
�
�

, for every i ≥ 0. (35)
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Theorem 40 (Existence of OPS). Let Lµ be a moment functional, corresponding to the moment

sequence µ = [µ0, µ1, µ2, . . . ]. Then, a necessary and sufficient condition for the existence of

an OPS with respect to Lµ is that the moment matrices
�
M(0, µ), M(1, µ), M(2, µ), . . .

�
(as defined

in Definition 38) are all non-singular, i.e., the moment determinants
�
d(0, µ), d(1, µ), d(2, µ), . . .

�
(as

defined in Definition 39) are all non-zero.

Theorem 41. Given (a) a moment functional Lµ, and (b) a K-OPS p
Lµ

= [pc0 , pc1 , pc2 , . . . ] with

respect to Lµ, corresponding to the sequence K = [K0, K1, K2, . . .] (as in Definition 19). Then,

for every i ≥ 0, the highest coefficient c(i, i) of pci, i.e., the last element of ci, or the coefficient

multiplying zi in the expansion of pci(z), is given by:

c(i, i) =
Ki d(i−1, µ)

d(i, µ)
, (36)

where d(−1, µ) is defined to be 1.

Definition 42 (S-positive definiteness). Given an infinite set of real numbers S, a moment func-

tional Lµ is called “positive definite with respect to S”, or “S-positive definite”, if, for every polynomial

p that is (a) non-negative on S (i.e., p(x) ≥ 0 for every x ∈ S), and (b) not identically zero, we have

Lµ(p) > 0.

Definition 43 (Positive definiteness). A moment functional Lµ is called “positive definite” if it is

S-positive definite, when S = (−∞, ∞).

Theorem 44 (S-positive definiteness implies positive definiteness). Let Lµ be an S-positive definite

moment functional, with respect to the infinite set S. Then, Lµ is also positive definite.

Theorem 45. Let Lµ be a positive definite moment functional, corresponding to the moment se-

quence µ = [µ0, µ1, µ2, . . . ] . Then, for every i ≥ 0, µi is real and µ2i > 0.

Theorem 46. Let Lµ be a positive definite moment functional. Then, an OPS with respect to Lµ

exists.

Theorem 47. Let p be a polynomial that is non-negative on (−∞, ∞), i.e., p(x) ≥ 0 for all real x.

Then, p can always be written as the sum of squares of two real polynomials. That is, we have:

p = q2 + r2, (37)

where q and r are real polynomials (as in Definition 8).

Theorem 48. Let Lµ be a moment functional, corresponding to the moment sequence µ =
[µ0, µ1, µ2, . . . ]. Then, Lµ is positive definite if and only if (a) µi is real for every i ≥ 0, and

(b) d(i, µ) > 0 for every i ≥ 0.

Theorem 49. Let p
Lµ

= [pc0 , pc1 , pc2, . . . ] be an OPS, with respect to the moment functional Lµ.

Then, if (a) pci is real for every i ≥ 0, and (b) Lµ

(
p2ci

�
> 0 for every i ≥ 0, then Lµ is positive

definite.

Theorem 50 (Three-term Recurrence Formula). Let p
Lµ

= [pc0 , pc1 , pc2, . . . ] be an OPS, with

respect to the moment functional Lµ. Then, there exist three sequences of complex numbers,

γ = [γ1, γ2, γ3, . . . ], δ = [δ1, δ2, δ3, . . . ], and θ = [θ2, θ3, θ4, . . . ], such that, for every z ∈ C, we

have:

pc1(z) =

�
z − δ1

γ1

�

pc0(z) , and

18



pci(z) =

�
z − δi

γi

�

pci−1
(z)−

�
θi

γi

�

pci−2
(z) , for every i ≥ 2. (38)

In particular, we have:

γi =
Lµ

(
z pci−1

pci
�

Lµ

(
p2ci

� , for every i ≥ 1,

δi =
Lµ

�

z p2ci−1

�

Lµ

�

p2ci−1

� , for every i ≥ 1, and

θi =
Lµ

(
z pci−2

pci−1

�

Lµ

�

p2ci−2

� , for every i ≥ 2. (39)
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