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Abstract

To understand the mathematics behind Uncertainty Quantification (UQ), one first needs to under-
stand the basics of orthogonal polynomials, which this report covers.
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Definition 1 (Coefficient Sequence). A coefficient sequence c is simply a finite sequence of com-
plex numbers, such that, either (a) c is empty (i.e., the sequence has no elements), or (b) c is
non-empty and its last element is non-zero (i.e., ¢ = [y, c1, c2, ..., ¢, where ¢; # 0).

Definition 2 (Polynomial). Given a coefficient sequence c, we define a function p., that takes a
complex number z as input, and returns another complex number p.(z) as output. This function,
known as the “polynomial” corresponding to the coefficient sequence c, is given by:

(@) ozl +.. = ch , ifc = [co, 1, 2, ..., ¢ is non-empty, and
PelZ) =

0, if cis empty.

Or, we could use “lambda function” notation (e.g., as in Python®) [1]), to say:

Az:ico+cz+em®+.. +et=Nz: Zc] , ifc = [co, 1, 2, ..., ¢ IS nON-empty, and
Pec =
A z:0, if cis empty.
(2)

Remark 3. If c is empty, we say that p. is “identically zero”.

Observation 4 (Canonicity of Coefficient Sequences and Polynomials). If p., and p., are identical
polynomial functions (i.e., pe, (2) = pe,(2), for every complex number z), then their corresponding
coefficient sequences, c; and ca, must be identical as well. Conversely, if two coefficient se-
quences c; and c2 are identical, then their corresponding polynomial functions, p., and pc,, will
also be identical (by Definition 2).

Definition 5 (Degree of a Polynomial). Given a polynomial p., corresponding to the coefficient
sequence c, we define the degree of p. as follows:

i, if c = [cg, 1, 2, ..., ¢] IS NnON-empty, and
—1, if c is empty.

degree (pc) = { (3)

Definition 6 (Monic Polynomial). A polynomial p., corresponding to the coefficient sequence
c, is called “monic” if (a) c is non-empty, and (b) the highest coefficient ¢; = 1 (where ¢ =
[CQ, Cl, C2y ..., Cz])

Remark 7. We denote the set of complex numbers by C, the set of real numbers by R, and the
set of integers by Z.

Definition 8 (Real Polynomial). A polynomial p., corresponding to the coefficient sequence c, is
called “real” if either, (a) c is empty, or (b) (if c is non-empty) the coefficients in c are all real; that
is, ¢; € R for every integer j such that 0 < j < (where ¢ = [co, c1, ¢2, ..., ¢i]).

Definition 9 (Moment Functional). Given an infinite sequence of complex numbers p = [uo, p1, o, - ..

we define a function £,,, that takes a polynomial p. as input, and returns a complex number £, (pc)
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as output. This function, known as the “moment functional” associated with the “moment se-
quence” u, is given by:

£o(pe) = Lo|Az: chzj = ch wj, if ¢ =[eo, c1, c2, ..., ¢] is non-empty, and )
2 j=0

= =
0, if c is empty.

Observation 10. With the above definition, we have £, () z : z') = y;, for every integer i > 0.

Observation 11. £, is “additive”. That is,

L, (Pey + Dey) = Lu(A 22 pey (2) 4 Dey(2)) = Lu(pey)+Lu(pe, ) , for any two polynomials pe, and pe, -
(5)

Observation 12. £, is “homogeneous”. That is,

L (ape) =Ly(Nz:ape(z)) =aL,(pe), for any polynomial p. and any complex number o. (6)

Observation 13. £, is “linear”, because it satisfies the additivity and homogeneity conditions
above.

Example 14 (Weighted Integral Moment Functional). This moment functional will be of particular
interest to us. Given a non-negative “weight function” w, with a positive measure, that is defined
on the real interval [a, b], we define the corresponding moment sequence = {u; | i € Z, i > 0}
to be:

m=/bwmﬂm 7)

=a

In particular, we will be interested in the case where the weight function w above happens to be
the probability density function of a random variable.

Definition 15 (Orthogonal Polynomial Sequence or OPS). Given a moment functional £, we de-
fine an infinite sequence of polynomials p . = [Peos Pers Pess -- -] (cOrresponding to the coefficient
1

sequences [co, c1, c2, ...] respectively) to be an orthogonal polynomial sequence (or OPS) with
respect to £, if the following three conditions are satisfied:

1. For every integer i > 0, p, is a polynomial of degree 1,

2. For every two integers 7 and j such that: > 0, j > 0, and i # j, we have:
L, (pCi X pcj) =L, ()\ 2z pe; (%) X pcj(z)) =0, and (8)
3. For every integer i > 0, we have:

L0(p2) = Lu(X 2 : ey (2) X pey(2)) # 0. (9)
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Observation 16. Given an arbitrary moment sequence p, there may or may not exist an OPS
associated with £,,.

Observation 17. Let P, = [Deos Pers Pess -- -] D€ @an OPS, with respect to the moment functional
1
L,. Then, q, = (60 Peg» 1 Peys> B2 Pes, ---] I8 @lso an OPS with respect to £,,, for any sequence of
e
non-zero complex numbers [5y, 51, B2, ...]. Thus, if an OPS with respect to £,, exists, then there

exist infinitely many OPSes with respect to £,,.

Definition 18 (Monic OPS). An OPS P, = [Peos Peys Pess - - - is called “monic” if every polynomial
(Pegs Peys Pegs - - - ) inthe OPS is monic (as in Definition 6).

Definition 19 (K-OPS). Given (a) a moment functional £, and (b) an infinite sequence of non-
zero complex numbers, K = [Ko, K1, K>, ...], we define p,. = [pcy, Peys Pess - - -] 1o be a K-OPS
1

with respect to £,,, if it is an OPS with respect to £,, that, in addition to satisfying the regular OPS
conditions of Definition 15, also satisfies the following:

L(2'pe;) = LN 2 : 2" % pe,(2)) = K, for every integer i > 0. (10)

Definition 20 (Normalised OPS, or Orthonormal Polynomial Sequence). Given a moment func-
tional £,,, we define p,. = [Peos Pers Peas ---] 10 be a “normalised” OPS with respect to £, or an
I

orthonormal polynomial sequence with respect to £, if it is an OPS with respect to £,, that, in
addition to satisfying the regular OPS conditions of Definition 15, also satisfies the following:

L,(p2,) =1, for every integer i > 0. (11)

Definition 21 (Positively Oriented Complex Number). We say that a complex number z = Re(z) +
v—1.Im(z) is “positively oriented” if it lies either in the open right half of the complex plane, or on
the positive imaginary axis. That is, we have:

(Re(z) > 0) or (Re(z) =0 and Im(z) > 0) (12)

Definition 22 (Positively Oriented OPS). Given a moment functional £,,, we define p . = [pey, Peys Pes - -
1

to be a “positively oriented” OPS with respect to £, if it is an OPS with respect to £,, that, in addi-
tion to satisfying the regular OPS conditions of Definition 15, is also such that, for each ¢ > 0, the
highest coefficient in p., (i.e., the coefficient of 2* in the expansion of pe, (z)) is positively oriented.

Definition 23 (Negatively Oriented OPS). Given a moment functional £,,, we define P, = [Peos Pers Pegs - -
"

to be a “negatively oriented” OPS with respect to £, if it is an OPS with respect to £, that, in addi-
tion to satisfying the regular OPS conditions of Definition 15, is also such that, for each ¢ > 0, the
highest coefficient in p., (i.e., the coefficient of z* in the expansion of p.,(z)) lies in the region of
the complex plane given by {z |Re(z) < 0 or (Re(z) =0 and Im(z) < 0)} (i.e., the open left half of
the complex plane, plus the negative imaginary axis).

Observation 24. An OPS may be neither positively nor negatively oriented.
Theorem 25. Letp o= [Peos Pers Peas ---| be @an OPS, with respect to the moment functional L,,.
"

Then, pc, = A z : ¢, where c is a non-zero complex number.

11
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Proof. From the first condition of Definition 15, p., is a polynomial of degree 0. That is, we have:

degree (pe,) = 0. (13)

From Definition 5, this is possible only when the coefficient sequence co has exactly one element.
This element, from Definition 1, must be a complex number. If we call this complex number ¢, we
have:

co = [d]. (14)

Applying Definition 2 to the above, we have:

Peog = A Z:C. (15)

Now, all that’s left to prove is that ¢ # 0. This we can see from Definition 1: ¢, being the last
element of a non-empty coefficient sequence cq, has to be non-zero. O

Theorem 26. Letp, = [pco, Pess Peas -- -] be an OPS, with respect to the moment functional L,,.
"
Then, foreveryi > 1, L,,(pe;) = 0.

Proof. From Theorem 25, let p., = A z : ¢, where cis a non-zero complex number. Then, for every
1> 1, we have:

Ly (pe,) = (—C: Ly(pe;)
= % L,(cpe,) (from Observation 12)
= % L, (Peo X Pey)
= % 0 (from the second condition of Definition 15)
= 0. (16)

O

Definition 27 (Vector Spaces of Polynomials). For every i > 0, we define P; to be the vector
space of polynomials of degree at most i, over the field of complex numbers C. Operations such
as field addition, field multiplication, vector addition, and multiplication of a vector by a scalar, are
assumed to be done “the natural way” and are not defined precisely here.

Observation 28. For every i > 0, the set of polynomials given by {\ z : 2/ | 0 < j < i} forms a
basis for the vector space P;. Thus, the dimension of P; is i + 1 [2].

Theorem 29 (Basis Sets of Orthogonal Polynomials). Let p, = [Peos Pers Pess -- -] be an OPS,
1

with respect to the moment functional £,,. Then, for everyi > 0, the set of polynomials {pc,, e, , Pes - - -

forms a basis for the vector space P;.

12
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Proof. Foreveryi > 1, because p, is of degree i, it cannot be written as a linear combination of the
polynomials {pCO, Deps Pegs - - - s ch}, which all have smaller degrees. Therefore, the polynomials
{Pcos Pers Peas - - - » Pe; } are linearly independent. But these are i+ 1 linearly independent “vectors”
from the vector space P;, which, by Observation 28, is of dimension i + 1. Therefore, by the di-
mension theorem for vector spaces (see, for example, [2]), the polynomials {pc,, pc,: Pess - --» De;
must form a basis for P;. O

Theorem 30. Letp o= [Peos Peys Pess -- -] bE an OPS, with respect to the moment functional
1
L,. Then, for eachi > 0, L,(q x pe;) = 0 for every polynomial q of degree smaller than i, and

L,.(q x pe;) # 0 for every polynomial q of degree equal to i.
Proof. Let ¢ be a polynomial of degree j, which is at most .

Now, if ¢ is identically zero (i.e., j = —1), then ¢ x p., will also be identically zero for every i > 0,
and thus £, (¢ x pc,) will trivially be zero (from Definition 9) for every i > 0. So let us just consider
situations where j > 0. That is,

degree (q) = j, where 0 < j <. (17)

Then, by the “basis sets of orthogonal polynomials” theorem (Theorem 29), we can write ¢ as a

linear combination of the polynomials in {pcy, pey: Pess - - -+ De; }- That is, we have:
J
q = Z Oék pck (1 8)
k=0

Also, in the expansion above, the last coefficient «; will be non-zero. This is because the left hand
side (¢) of the equation above is of degree j, and if a;; were zero, the linear combination on the
right hand side would have a degree strictly smaller than j, which would be a contradiction. Thus,
we have:

(&%} 75 0. (19)

Multiplying Eq. (18) by p¢; and applying £,, to both sides, we get:

ﬁu(q X pci) = £M ( (Z o ka) x pCi)
k=0
J
=L, (Z g (Pey X pci)>

k=0

j
= Zo‘k L, (Pey, X Pe;) (by the linearity of £,,, i.e., Observation 13)  (20)
k=0

Now, from Eq. (17), 7 < i. If j < ¢, each term in the summation above vanishes due to the
second condition from Definition 15. But if j = 4, the last term in the summation (corresponding to
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k = j = i) alone survives. Thus, we have:

0, if j <4, and

21
i La(p2) i = @)

L,(q X pe;) = {

Butif j = i, we have a; # 0 from Eq. (19), and we also have £, (pZ,) # 0 from the third condition
of Definition 15. Therefore, Eq. (21) allows us to conclude that, for every i > 0:

=0, if degree (¢) < i, and
L,,(q X pe;) " oed (@ ) (22)
# 0, if degree (¢) =1,

where we have replaced j by degree (¢) using Eq. (17). O
Theorem 31 (Converse of Theorem 30). Letp = [pecgy, Peys Peqs ---| b€ a@n infinite sequence of
polynomials (with coefficient sequences |co, c1, c2, ...| respectively), where p., has degree i,
for every i > 0. Also, let L, be a moment functional, with respect to the moment sequence
(Lo, 1, p2, -..]. Suppose that, for every i > 0, we have L,(q x pc,) = 0 for every polynomial q of

degree smaller than i, and that L,,(q x pc;) # 0 for every polynomial q of degree equal to i. Then,
p is an OPS with respect to L,,.

Proof. Since, for every i > 0, p., is given to be a polynomial of degree i, the sequence p clearly
satisfies the first condition of Definition 15. Now, choose any i > 0 and j > 0. There are only three
possibilities:
1. @ < j. In this case, letting “¢” = pe; and “i” = j in “L,,(¢ x pe,) = 0 for every polynomial ¢ of
degree smaller than i”, we get £, (pe; X pe;) = 0.

2. i > j. Inthis case, letting “¢” = p; and “” = i in “L,, (¢ x pc;) = 0 for every polynomial ¢ of
degree smaller than i”, we get £, (pe; X pe;) = Ly (Pe; X Pe;) = 0.

3. i = j. In this case, letting “¢” = pc, and “i” = j (=) in “L,(¢q x pe,) # 0 for every polynomial
q of degree equal to i”, we get £, (pe; X pe;) = L, (pe,) # 0.

Thus, we have:
=0, ifi # j, and
L Pe; X Pe; . .
ﬂ( .]) {: ‘Cﬂ(pgi) £ 0, ifi =4,

which shows that the sequence p satisfies the second and third conditions of Definition 15. There-
fore, p is an OPS with respect to £,,. O

(23)

Theorem 32. Letp, = [peo, Pesrs Peas -- -] be an OPS, with respect to the moment functional L,,.
1
Then, for every i > 0, given any polynomial q of degree i, we can write q as:

7
q = Z aj pCj7
7=0

L,.(q X pe;)
Ly, (pgj>

14
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Proof. From Theorem 29, we already know that the set of polynomials {pc,, Pcis Pess - -5 Pe; }
forms a basis for the vector space P;, for every i > 0. Also, ¢, being a polynomial of degree 1,
is a member of the vector space P;. Therefore, ¢ can be written as a linear combination of the

polynomials {pcy, Peys Peas -- -5 Pe; - That is, we have:
7
§=0

Multiplying both sides of the above equation by p., (where 0 < k£ < i), and applying £, to both
sides, we get:

ﬁu(q X pck) = ﬁu ( (Z Q; pcj) X pck)
j=0
=Ly (Z aj (Pe; X pck)>
=0

= Zaj L, (pe; X Pey.) (by the linearity of £,,, i.e., Observation 13)  (26)
=0

From the second condition in Definition 15, we see that only the term corresponding to j = &
survives in the summation above; the rest of the terms vanish. Therefore, we have:

L,(q X pey) = o L(Peye X Dey) = Ok £H(pzk) , forevery k € {0, 1,2, ...,1i} (27)

Dividing both sides by £, (p2, ) (which we know to be non-zero from the third condition of Defini-
tion 15) we get:
_ Lu(g X Pey)

ap = , forevery k € {0, 1,2, ..., i} (28)
ﬁﬂ(pgk)

Changing the dummy index variable from & to j in Eq. (28), we get:

_ L,(q % pe;)

, forevery j € {0, 1,2, ..., i} (29)
Ly (pgj)

Combining Eq. (25) and Eq. (29), we get:

i
4= a;pe
=0

L,.(q % pey)

L, (p%J,)

where a; = , forevery 0 < j <. (30)

15



Theorem 33 (Uniqueness of OPS upto constant factors). Given a moment functional L,,. Let
P = [Pcos Peys Pess --- | @NA A = [qdy, 94, 9ds - - - | b€ tWo orthogonal polynomial sequences as-
sociated with L, with coefficient sequences |co, c1, c2, ...] and [do, d1, da, ...] respectively.
Then, the polynomials in p and those in q will only differ by constant factors; that is, for everyi > 0,
qd, = Bi pe,, Where [y, b1, P2, .. .| is a sequence of non-zero complex numbers.

Proof. Applying Theorem 32, we can write the polynomial g4, (Which is of degree i) as a linear
combination of the polynomials {pc,, Pc,, Peqs - - - Pe; }» @s follows:

7
qdi = Z aj pCj7
=0
‘C/J (Qd, X pCj)

where o = C <p2.>
J

(31)

But applying Theorem 30, with ¢4 as the sequence of orthogonal polynomials, ¢4, as the i poly-
nomial (with degree 1) in the sequence, and pe, (for 0 < j < i) as the “arbitrary” polynomial of
degree at most i, we get:

=0, ifi < j, and

L0, ifi =, (52)

‘C/J(pCj X le) = Eu(Qdi X pcj) {

for every j from 0 to i.

From Eq. (31) and Eq. (32), we see that only the last term (corresponding to j = i) in the summa-
tion on the right hand side of Eq. (31) survives; the rest of the terms vanish because «; = 0 for
every j from 0 to i — 1. Therefore, we have:

qa. = ﬁN(Qdi X pCi)
1 £H(pgi)

Bi

Pe;, for every i > 0. (33)

The complex numbers 3; in the equation above are all non-zero. We know this because each g; is
a fraction, where we know the numerator to be non-zero from the “i = j” case of Eq. (32), and the
denominator to be non-zero from the third condition of Definition 15. O

Remark 34. Theorem 33 tells us that, given a moment functional £, orthogonal polynomial se-
quences with respect to £,, are essentially unique — except for the non-zero constant factors 3;
above.

But often, for concreteness, we will need to single out a particular OPS for discussion, without
having to worry about these constant factors. In such cases, we will typically follow one of the
three approaches below:

1. We will insist that the OPS be monic (as in Definition 18), or
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2. We will specify an infinite sequence of non-zero complex numbers, K = [K, K1, Ko, .. .],
and we will insist that the OPS be a K-OPS with respect to £,, (as in Definition 19), or

3. We will insist (a) that the OPS be normalised (as in Definition 20), and (b) that the OPS be
either positively (as in Definition 22) or negatively (as in Definition 23) oriented.

Each of the above is enough to guarantee uniqueness. For example, given a moment functional
L,, if there exists an OPS for it, there will also exist a monic OPS for it, and this monic OPS
will be unique (see Theorem 35). Similarly, given a moment functional £, if there exists an
OPS for it, there will also exist a unique K-OPS for it, with respect to any sequence of non-zero
complex numbers K (see Theorem 36). And finally, given a moment functional £,,, if there exists
an OPS for it, there will also exist a unique positively/negatively oriented, normalised OPS for it
(see Theorem 37).

Moreover, given a moment functional £, and any OPS for it, it is easy to get from it the corre-
sponding monic OPS, or the corresponding K-OPS with respect to any sequence of non-zero
complex numbers K, or the corresponding positively/negatively oriented, normalised OPS.

We state the following theorems without proof.

Theorem 35. Given a moment functional L,,, such that an OPS with respect to L,, exists. Then,
there exists a unique monic OPS with respect to L,,.

Theorem 36. Given (a) a moment functional L,,, such that an OPS with respect to L,, exists, and
(b) an infinite sequence of non-zero complex numbers, K = [Ky, K, Ko, ...]. Then, there exists
a unique K-OPS with respect to L,,.

Theorem 37. Given a moment functional L,,, such that an OPS with respect to L,, exists. Then,
there exists a unique positively oriented, normalised OPS with respect to L,,, and a unique nega-
tively oriented, normalised OPS with respect to L,,.

Definition 38 (Moment Matrices). Given a moment sequence p = [uo, p1, 2, --.|, we define
an infinite sequence of square matrices, M,, = [M(q, .y, M1, ), M(2,,,), - - -] , known as “moment
matrices”, as follows:

Mo M1 M2 223
Mmoo M2 L e |
Mg )= [H2 K3 M4 - [hiv2| | forevery i > 0. (34)
| i Mi+1l Miy2 o0 24
Definition 39 (Moment Determinants). Given a moment sequence i = [ug, i1, p2, -- -], we define
an infinite sequence of complex numbers, d,, = [d(, ), d@1, )5 d(2, ), - - -] » known as “moment
determinants”, as follows:
Mo H1 M2 - 223
H1 o M2 m3 o il
d(i, u) = det(M;, ,)) = H2 o Hs o p4 g2 forevery i > 0. (35)
Hi o Pi+1 Hiy2 o 24
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Theorem 40 (Existence of OPS). Let £,, be a moment functional, corresponding to the moment
sequence i = [uo, 1, p2, --.]. Then, a necessary and sufficient condition for the existence of
an OPS with respect to L,, is that the moment matrices [M(O, ws My Mg, ), - ] (as defined
in Definition 38) are all non-singular, i.e., the moment determinants [d . .y, d(1, ) d(2, ), ---] (@S
defined in Definition 39) are all non-zero.

Theorem 41. Given (a) a moment functional L,,, and (b) a K-OPS p . = [pcy, Peys Pess ---| With
1

respect to L,,, corresponding to the sequence K = [K,, K1, Ko, ...] (as in Definition 19). Then,
for every i > 0, the highest coefficient c; ;) of pe,, i.e., the last element of c;, or the coefficient
multiplying =" in the expansion of p, (z), is given by:
Kidg_q,
Ci,i) = #a (36)
(4, 1)
where d(_, ,, is defined to be 1.

Definition 42 (S-positive definiteness). Given an infinite set of real numbers S, a moment func-
tional £,, is called “positive definite with respect to S”, or “S-positive definite”, if, for every polynomial
p that is (a) non-negative on S (i.e., p(x) > 0 for every x € S), and (b) not identically zero, we have
L,(p) > 0.

Definition 43 (Positive definiteness). A moment functional £, is called “positive definite” if it is
S-positive definite, when S = (—o0, o).

Theorem 44 (S-positive definiteness implies positive definiteness). Let £,, be an S-positive definite
moment functional, with respect to the infinite setS. Then, L,, is also positive definite.

Theorem 45. Let L, be a positive definite moment functional, corresponding to the moment se-
quence i = [uo, p1, p2, --- |- Then, for every i > 0, u; is real and py; > 0.

Theorem 46. Let L, be a positive definite moment functional. Then, an OPS with respect to L,
exists.

Theorem 47. Let p be a polynomial that is non-negative on (—oo, ), i.e., p(x) > 0 for all real x.
Then, p can always be written as the sum of squares of two real polynomials. That is, we have:

p=q*+r (37)
where q and r are real polynomials (as in Definition 8).

Theorem 48. Let £, be a moment functional, corresponding to the moment sequence . =

(Lo, 1, p2, -..]. Then, L, is positive definite if and only if (a) y; is real for every i > 0, and

(b) d;, .y > 0 for everyi > 0.

Theorem 49. Letp £, [Deo» Pers Peas ---| be @an OPS, with respect to the moment functional L,,.

Then, if (a) p; is real for every i > 0, and (b) L, (pz) > 0 for every i > 0, then L, is positive

definite.

Theorem 50 (Three-term Recurrence Formula). Let p,. = [Peos Peys Pess ---| be @an OPS, with

"

respect to the moment functional L,,. Then, there exist three sequences of complex numbers,

v = [v1, ¥2, V35 -+ -], 0 = [01, 02, 03, ...|, @and O = [0s, O3, 04, ...], such that, for every z € C, we

have:

z — 51
Y1

Peq (2) = < > Peo(2), @and
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pe;(2) = <z _,5i> Pey 1 (2) — <%> Pe,_,(2), forevery i > 2.

In particular, we have:

Ly (Z DPe;_ pCi)

v = ————+ foreveryi>1,
' £H(pgi)
Ly (zpﬁi,l)
0; = ————+, foreveryi > 1, and
Gy
ﬁu (chifz pcifl)

0; =

, for every i > 2.
A
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