
SANDIA REPORT
SAND2019-10756

Printed September 17, 2019

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185

Livermore, California 94550

Sierra/SolidMechanics 4.54

Capabilities in Development

SIERRA Solid Mechanics Team
Computational Solid Mechanics and Structural Dynamics Department
Engineering Sciences Center

SAND2019-10756

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

S TATE S OF
A

M

E
R

I
C

A

2

ABSTRACT

This user’s guide documents capabilities in Sierra/SolidMechanics which remain
“in-development” and thus are not tested and hardened to the standards of capabilities listed in
Sierra/SM 4.54 User’s Guide. Capabilities documented herein are available in Sierra/SM for
experimental use only until their official release.

These capabilities include, but are not limited to, novel discretization approaches such as
peridynamics and the reproducing kernel particle method (RKPM), numerical fracture and failure
modeling aids such as the extended finite element method (XFEM) and J-integral, explicit time
step control techniques, dynamic mesh rebalancing, as well as a variety of new material models
and finite element formulations.

3

CONTENTS

1. Introduction 11

2. Representative Volume Elements 12

2.1. RVE Processing . 12
2.2. Mesh Requirements . 14
2.3. Input Commands . 16

2.3.1. RVE Material Model . 16
2.3.2. Embedded Coordinate System . 16
2.3.3. RVE Region . 17
2.3.4. Definition of RVEs . 18
2.3.5. Multi-Point Constraints . 19
2.3.6. RVE Boundary Conditions . 19

3. Explicit Subcycling 21

3.1. Specifying Subcycling in Input . 21
3.2. Limitations of Subcycling . 23
3.3. Other Subcycling Issues . 24
References . 25

4. Automatic Time Step Selector 26

5. Modal Analysis 27

5.1. Modal Analysis . 27

6. Solvers and Solver Options 28

6.1. Newton Solver . 28
6.2. Control Contact : Control Subset . 30

7. eXtended Finite Element Method (XFEM) 31

7.1. General XFEM Commands . 32
7.2. XFEM for Fracture and Fragmentation . 34

7.2.1. Fixed and Prescribed XFEM Discontinuities . 34
7.2.2. Spontaneous Crack Nucleation, Growth, and Branching 34
7.2.3. Cohesive Zone Insertion . 36
7.2.4. Other Options . 37

7.3. XFEM Carving . 38
7.4. Use of XFEM with Existing Capabilities . 39

7.4.1. Contact . 39

4

7.4.2. CONWEP Blast Pressure . 39
7.4.3. Implicit Dynamics . 39

References . 41

8. Explicit Control Modes 42

8.1. Limitations and Requirements . 42
8.2. Control Modes Region . 44

8.2.1. Model Setup Commands . 45
8.2.2. Time Step Control Commands . 45
8.2.3. Mass Scaling Commands . 47
8.2.4. Damping Commands . 48
8.2.5. Kinematic Boundary Condition Commands . 48
8.2.6. Output Commands . 48
8.2.7. ECM with Lanczos . 49

8.3. ECM Theory . 51
8.3.1. Introduction . 51
8.3.2. Modal Decomposition Approach . 52
8.3.3. Explicit-Explicit Partitioning . 53
8.3.4. Energy Ratio: a Measure of Approximation . 54

References . 55

9. External Loadstep Predictor 56

References . 56

10. Total Lagrange 57

10.1. Formulation . 57
10.2. Strain Incrementation . 58
10.3. Cubature Degree . 59
10.4. Volume Average J . 60
References . 61

11. Bolt 62

12. Linear Beam 64

References . 65

13. Contact 66

13.1. Analytic Contact Surfaces . 66
13.1.1. General Analytic Surfaces . 66
13.1.2. Plane . 69
13.1.3. Cylinder . 70
13.1.4. Other Analytic Surface Options . 70

13.2. Implicit Solver Control Contact Options . 72
References . 73

5

14. J-Integrals 74

14.1. Technique for Computing J . 75
14.2. Input Commands . 77
14.3. Output . 80
14.4. Required Discretization . 81
14.5. Results and History Output . 82
References . 83

15. Nonlocal Regularization 84

15.1. Variational nonlocal method . 84
15.2. Nonlocal partitioning . 86
15.3. Command summary . 88
15.4. Usage guidelines . 90
References . 92

16. POD 93

16.1. Time Step Control Commands . 93
References . 95

17. RKPM 96

17.1. Formulation . 96
17.2. Domain integration . 98
17.3. Kinematics for RKPM in SIERRA . 99
17.4. Input format . 100

17.4.1. Converting a mesh to particles . 101
References . 102

18. Material Models 103

18.1. Elastic Orthotropic Model . 103
18.2. Elastic Orthotropic Damage Model . 107
18.3. Elastic Orthotropic Fail Model . 110
18.4. Elastic Orthotropic Shell Model . 117
18.5. Karagozian and Case Concrete Model . 119
18.6. Kayenta Model . 125
18.7. Shape Memory Alloy . 129
18.8. Linear Elastic . 137
18.9. Elastic Three-Dimensional Anisotropic Model . 138
18.10.J2 Plasticity . 140
18.11.Karafillis Boyce Plasticity Model . 147
18.12.Cazacu Plasticity Model . 151
18.13.Cazacu Orthotropic Plasticity Model . 158
18.14.Skorohod-Olevsky Viscous Sintering (SOVS) . 165
18.15.Hydra Plasticity . 169

18.15.1.Summary . 169
18.15.2.User Guide . 169

6

18.15.3.Theory . 174
18.15.4.Implementation . 180
18.15.5.Verification . 185

18.16.NLVE 3D Orthotropic Model . 195
18.17.Honeycomb Model . 200
18.18.Viscoplastic Foam . 203
18.19.Foam Damage . 208
18.20.Thermo EP Power Model . 213
18.21.Thermo EP Power Weld Model . 214
18.22.Universal Polymer Model . 215
18.23.Other Undocumented Material Models . 220
References . 221

19. Cohesive Material Models 223

19.1. Intrinsic models . 223
19.1.1. Mixed-mode Dependent Toughness . 223

19.2. Extrinsic models . 225
19.2.1. Tvergaard Hutchinson . 225
19.2.2. Thouless Parmigiani . 227

References . 228

20. Multicriteria Rebalance 229

21. Other In-Development Capabilities 230

21.1. Initial Particle Conversion . 230
21.2. Shell Contact Lofting Factor . 231
21.3. Reaction Diffusion Solver . 232
21.4. Phase Field Fracture Material . 234
21.5. Discrete Element Method (DEM) . 235
21.6. Q1P0 Element . 236
References . 238

22. Peridynamics 239

22.1. Theory . 239
22.1.1. Overview . 239
22.1.2. State-Based Linear Peridynamic Solid Material Model 240
22.1.3. Bond-Based Microelastic Peridynamic Material Model 241
22.1.4. Bond-Based Microplastic Peridynamic Material Model 241
22.1.5. Interface to Classical Material Models . 241
22.1.6. Peridynamic Influence Function . 242
22.1.7. Modeling Fracture . 243
22.1.8. Peridynamics and Contact . 244

22.2. Usage Guidelines . 245
22.2.1. Peridynamics Section . 246
22.2.2. Identify Fragments . 250

7

References . 251

Index 252

8

LIST OF FIGURES

Figure 2-1. Example of meshes for RVE analysis . 14

Figure 7-1. Example of XFEM element cutting and duplication. 31
Figure 7-2. Illustration of XFEM submesh topology for various mesh element topologies. . 32
Figure 7-3. Example of allowed and restricted branching. 36

Figure 14-1. Example weight functions for a J-integral integration domain 79

Figure 15-1. Partitions At Crack Tip . 86
Figure 15-2. CVT partitions through k-means clustering . 87

Figure 18-1. Shape Memory Alloy Theory: Phase Diagram . 131
Figure 18-2. Undeformed (top) and deformed (bottom) shapes for the six element tests. 186
Figure 18-3. Hardening data used in all five test cases. 188
Figure 18-4. Failure data used in all five test cases. 189
Figure 18-5. Comparison of results from test case 1. 190
Figure 18-6. Comparison of results from test case 2. 191
Figure 18-7. Comparison of results from test case 3. 192
Figure 18-8. Comparison of results from test case 4. 193
Figure 18-9. Comparison of results from test case 5. 194

Figure 19-1. The effective traction-separation model following [2]. 225

Figure 22-1. Default influence function for peridynamics. 243

9

LIST OF TABLES

Table 11-1. Bolt Element Output Variables . 63

Table 14-1. Global Variables for J-Integral . 82
Table 14-2. Nodal Variables for J-Integral . 82
Table 14-3. Element Variables for J-Integral . 82

Table 18-1. State Variables for ELASTIC ORTHOTROPIC Model . 106
Table 18-2. Additional State Variables for ELASTIC ORTHOTROPIC FAIL Model 116
Table 18-3. State Variables for SHAPE MEMORY ALLOY Model (Section 18.7) 136
Table 18-4. State Variables for J2 PLASTICITY Model (Section 18.10) 146
Table 18-5. State Variables for KARAFILLIS_BOYCE_PLASTICITY Model 150
Table 18-6. State Variables for CAZACU PLASTICITY Model (Section 18.12) 157
Table 18-7. State Variables for CAZACU ORTHOTROPIC PLASTICITY Model (Sec-

tion 18.13) . 164
Table 18-8. State Variables for SOVS Model (Section 18.14) . 168
Table 18-9. State Variables for HYDRA PLASTICITY Model (Section 18.15) 175
Table 18-10. Hydra plasticity test case matrix . 187
Table 18-11. State Variables for HONEYCOMB Model . 202
Table 18-12. State Variables for VISCOPLASTIC FOAM Model 18.18 207
Table 18-13. State Variables for FOAM DAMAGE Model . 212
Table 18-14. State Variables for THERMO EP POWER Model . 213
Table 18-15. State Variables for THERMO EP POWER WELD Model 214
Table 18-16. State Variables for UNIVERSAL POLYMER Model . 219
Table 18-17. Other Material Models Available, but Undocumented . 220

Table 19-1. State Variables for MDGc CZM (Section 19.1.1) . 224

10

1. INTRODUCTION

This document is a user’s guide for capabilities that are not considered mature but are available in
Sierra/SolidMechanics (Sierra/SM) for early adopters. The determination of maturity of a
capability is determined by many aspects: having regression and verification level testing,
documentation of functionality and syntax, and usability are such considerations. Capabilities in
this document are lacking in one or many of these aspects.

11

2. REPRESENTATIVE VOLUME

ELEMENTS

This chapter describes the Representative Volume Element (RVE) capability, which is a
multi-scale technique that uses a separate finite element model to represent the material response
at a point.

The use of representative volume elements (RVEs) is a multi-scale technique in which the
material response at element integration points in a reference mesh is computed using an RVE
that is itself discretized with finite elements. RVEs are typically used to represent local, periodic
material inhomogeneities such as fibers or random micro structures to avoid the requirement of a
global mesh with elements small enough to capture local material phenomena.

In the current implementation of RVEs, periodic boundary conditions are applied to each RVE
representing the deformation of a parent element and the stresses are computed in the elements of
the RVE. These stresses are then volume-averaged over the RVE and the resulting homogenized
stresses are passed back to the parent element.

This chapter explains how to use the RVE capability. Section 2.1 gives a detailed description of
how RVEs are incorporated into an analysis. Details of the mesh requirements are delineated in
Section 2.2 and the commands needed in an input file are described in Section 2.3.

Known Issue: The capability to use RVEs with reference mesh multi integration
point elements is still under development and should be used with caution.

2.1. RVE PROCESSING

The use of the RVE capability requires two regions, each with its own mesh file. One region
processes the reference mesh and the other processes all the RVEs. The commands used in the
input file for the reference mesh region are the same as any other Sierra/SM region with the
exception that a special RVE material model is used for every element block that uses an RVE.
The RVE region is similar to an ordinary region. The only differences are that an RVE region has
a line command for defining the RVEs’ relationship to parent elements in the reference region and
has restrictions on the use of boundary conditions.

The processing of an RVE essentially replaces the constitutive model of the parent element in the
reference mesh. The steps followed at each iteration/time step of the reference mesh during an
analysis using RVEs are as follows:

12

1. Internal force algorithm is called in the reference region to compute rate of deformation.

2. Each RVE gets the rate of deformation from its integration point on its parent element in the
reference region.

3. The rate of deformation is applied to each RVE as a periodic boundary condition using
prescribed velocity.

4. The RVE region is solved to obtain the stress in each element of each RVE.

5. The stresses in the elements of an RVE are volume-averaged over the RVE.

6. Each RVE passes its homogenized or volume-averaged stress tensor back to its integration
point of its parent element in the reference mesh.

7. The reference region computes internal force again. Element blocks whose elements have
associated RVEs do not compute a stress; they use the stress passed to them from their RVE.

13

2.2. MESH REQUIREMENTS

Two mesh files, one for the reference region and one for the RVE region, are required for an RVE
analysis. Figure 2-1 shows an example of the two meshes. The reference mesh of a bar with six
single integration point elements is shown on the upper left. On the lower right is the mesh for the
RVE region containing six RVEs, one for each element (since the elements have only one
integration point) of the reference region. In this case, the first five RVEs each consist of two
element blocks and the last RVE has four.

Figure 2-1. Example of meshes for RVE analysis

In general, each RVE should be a cube with any discretization the user desires. All RVEs must be
aligned with the global x, y, and z axes. For stress computations, these axes are rotated into a
local coordinate system, which can be specified on the reference mesh elements if these reference
elements are uniform gradient hexahedra. In other words, if a local coordinate system is specified
on a reference mesh uniform gradient element, the RVE global axes will be rotated internally in
Sierra/SM to align with the local system on the associated parent element. The global X axis for
an RVE is actually the local X′ axis in the parent element.

Additional mesh requirements apply if the mesh does not match across opposing surfaces of the
RVE. In this case, the RVE must include a block of membrane elements on the exterior surfaces
with matching discretization on opposing surfaces (+x/-x, +y/-y, +z/-z). In order to minimize the
effects of this membrane layer on the RVE response, it should be made as thin as possible. This
membrane layer then must be tied to the underlying non matching RVE surfaces.

The RVE mesh must contain sidesets or node sets on each surface of every RVE. The RVE may
be enclosed with one sideset that spans all six surfaces of the curb, or the user may specify

14

individual sidesets or node sets on each face. These sidesets/node sets are used to apply the
periodic boundary conditions on the RVE. Sierra/SM generates the boundary conditions internally
so the user does not have to include them in the input file. However, this assumes that the
sidesets/node sets exist in the mesh file numbered in a specified order. If individual sidesets/node
sets are used on each face of the RVE, the six sidesets/node sets must be numbered consecutively,
starting with the positive-x face, followed by the negative-x face, positive-y face, negative-y face,
positive-z face, and ending with the negative-z face. The beginning sideset id (for the positive-x
face) is set by the user in the input file.

15

2.3. INPUT COMMANDS

There are several input commands that are relevant to RVEs. In the reference region, these
commands include a special RVE material model and commands to define and use a local
coordinate system along which an associated RVE will be aligned. In addition to the reference
region, an RVE region is needed using the BEGIN RVE REGION command block. The RVE
region command block uses the same nested commands as any other Sierra/SM region (with some
restrictions as explained in this section) and an additional line command that relates the RVEs to
their parent elements in the reference region.

2.3.1. RVE Material Model

In an RVE analysis, any elements of the reference mesh that use an RVE must use the RVE
material model. This model is defined similar to other material models as described in the
Sierra/SM 4.54 User’s Guide but uses the RVE keyword on the
BEGIN PARAMETERS FOR MODEL command line as follows:

BEGIN MATERIAL <string>mat_name

#

DENSITY = <real>density_value

#

BEGIN PARAMETERS FOR MODEL RVE

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

END PARAMETERS FOR MODEL RVE

#

END [MATERIAL <string>mat_name]

Currently, the RVE material model tells the reference element not to perform a constitutive
evaluation but to instead accept the stress tensor obtained from computation on an RVE. However,
the use of an RVE material model still requires the input of Young’s modulus and Poissons ratio.
These values may be used for time step estimation and hourglass computations, even though they
are not used in a constitutive evaluation.

Element blocks in the RVE region can use any material model that is supported in Sierra/SM
other than RVE.

2.3.2. Embedded Coordinate System

The finite element model of an element block in the reference mesh that uses RVEs can use an
embedded coordinate system to orient the RVE relative to the reference element, if the reference
elements are uniform gradient hexes. A coordinate system is defined in the sierra scope as
described in the Sierra/SM 4.54 User’s Guide. A local coordinate system is then associated with

16

an element block through the use of a COORDINATE SYSTEM command line within a
BEGIN SOLID SECTION command block.

BEGIN SOLID SECTION <string>section_name

#

COORDINATE SYSTEM = <string>coord_sys_name

#

END [SOLID SECTION <string>section_name]

The string coord_sys_name must be a name associated in the input file with a
BEGIN COORDINATE SYSTEM command block in the sierra scope. This coordinate system will
then be used on all elements of a block associated with a BEGIN PARAMETERS FOR BLOCK

command block that includes the command line specifying this solid section.

Known Issue: Currently, the rotation of RVEs to a local element block coordinate
system only works with uniform gradient hexes in the reference mesh.

2.3.3. RVE Region

A representative volume element (RVE) region must be a quasistatic region specified with the
RVE keyword in the BEGIN RVE REGION command line. The RVE region uses the same block
commands and line commands as any other quasistatic region with the addition of line commands
that define which element blocks of the reference region are associated with RVEs. There are also
some restrictions on boundary conditions as described in Section 2.3.6.

BEGIN RVE REGION <string>rve_region_name

#

Definition of RVEs

ELEMENTS <integer>elem_i:<integer>elem_j

<integer>num_intg_pts_per_elem

BLOCKS <integer>blk_i:<integer>blk_j

SURFACE|NODESET <integer> start_id INCREMENT

<integer> k

#

Boundary Conditions

#

Results Output Definition

#

Solver Definition

#

END [RVE REGION <string>rve_region_name]

17

2.3.4. Definition of RVEs

One or more ELEMENTS command lines are used to associate elements of the reference region
mesh with RVEs in the RVE region. In the

ELEMENTS <integer>elem_i:<integer>elem_j

<integer>num_intg_pts_per_elem

BLOCKS <integer>blk_i:<integer>blk_j

SURFACE|NODESET <integer>start_id INCREMENT

<integer>incr

command line, elements numbered elem_i through elem_j of the reference mesh and their
num_intg_pts_per_elem integration points will be associated with RVEs (for a total number
of RVEs equal to (elem_j - elem_i + 1) * num_intg_pts_per_elem), and each RVE will
consist of blk_i - blk_j + 1 element blocks. Each integration point will be associated with a
separate RVE. The block IDs of the first RVE must be blk_i through blk_j and subsequent
RVEs (if elem_j is greater than elem_i or num_intg_pts_per_elem is greater than 1) must
have consecutively increasing numbers for their block IDs.

Similarly start_id gives the surface_id of the first RVE if a single, encompassing surface is
used, or the first surface_id or nodelist_id of the first RVE (the positive x surface as
explained in Section 2.2) if six individual sidesets/nodeset are used. The remaining surfaces
(nodesets) of the first RVE and all the surfaces of the following RVEs must be consecutively
numbered following start_id in the mesh file as explained in Section 2.2.

The increment value incr indicates the number of sidesets present on the exterior of the RVEs.
This is used to determine how to increment the IDs of the sidesets from one RVE to the next and
to determine how to prescribe periodic boundary conditions on the RVE. The increment can have
a value of either one or six. A value of one indicates that each RVE has one sideset that
encompasses all six faces, while a value of six specifies that six sidesets or nodesets are present,
one on each face. Nodesets are not allowed for the case where incr is one.

The following example shows the use of the ELEMENTS command line:

elements 1:5 1 blocks 1:2 surface 7 increment 6

elements 6:6 1 blocks 11:14 nodeset 15 increment 6

These commands generate the RVEs shown in Figure 2-1.

The first ELEMENTS command line specifies that elements with element IDs 1 through 5 in the
parent region mesh each have one integration point and that each integration point has an RVE
with two element blocks. The RVE associated with the integration point of element 1 of the parent
region will have two element blocks starting with block_id of 1 and ending with a block_id of
2. Subsequent RVEs will have consecutively numbered element blocks. For example: the
integration point of parent element 2 will be associated with an RVE that consists of element
blocks 3 and 4 in the RVE region, the integration point of parent element 3 will be associated with
the RVE that has element blocks 5 and 6, etc. Again, this is the case for the first five elements of

18

the parent region mesh. The keyword SURFACE specifies that all the periodic boundary conditions
generated by the code for the RVEs for elements 1 to 5 will use sidesets in the RVE region mesh.
These sidesets will start with id 7 for the positive-x face of the RVE associated with parent
element 1 and continue consecutively for the other faces of the RVE and the RVEs associated with
the integration points of parent elements 2 through 5 (in the order specified in Section 2.2). In
other words, the positive-x face of the RVE for parent element 1 is sideset 7, negative-x is sideset
8, positive-y is sideset 9, negative-y is sideset 10, positive-z is sideset 11, and negative-z is sideset
12. The sidesets for the RVE for parent element 2 will start with id 13 and continue consecutively
in the same face order. The process continues for all five RVEs specified in this command line.

The second ELEMENTS line specifies that the integration point of element 6 of the parent region
mesh will be associated with the RVE that consists of element blocks 11, 12, 13, and 14. The
NODESET keyword says this RVE has a nodeset associated with each face of the RVE, starting
with nodeset id 15 on the positive-x face, with id’s increasing consecutively for the other five
faces in the same order described in the paragraph above.

The six elements specified in these command lines must be in element blocks of the reference
region mesh that use the RVE material model.

2.3.5. Multi-Point Constraints

In the case in which the RVE has non matching surfaces, and therefore includes a block of
membrane elements on the exterior surfaces, the user must specify a set of multi-point constraints
(MPCs) to tie the membranes to the surface. This is done in the input file through use of an MPC

command block:

RESOLVE MULTIPLE MPCS = ERROR

BEGIN MPC

MASTER SURFACE = <string>membrane_surface_id

SLAVE SURFACE = <string>RVE_surface_id

SEARCH TOLERANCE = <real>tolerance

END

In this case, the membrane_surface_id corresponds to the single sideset that encompasses the
membrane block is the master and the single sideset that encompasses the exterior surfaces of the
RVE is the slave. While the underlying RVE may have non matching exterior surfaces, the
opposing surfaces of the membrane block must have matching discretizations. More detailed
information on the use of MPCs, is discussed in the Sierra/SM 4.54 User’s Guide.

2.3.6. RVE Boundary Conditions

Strain rates computed by elements in the reference region are applied through periodic prescribed
velocity boundary conditions on the faces of the associated RVEs. These are generated internally
by Sierra/SM so the periodic boundary conditions do not need to be in the user’s input file.

19

However, because the RVE region is quasistatic, each of the RVEs must be fixed against rigid
body motion. This must be done in the input file through use of the prescribed velocity boundary
conditions:

BEGIN PRESCRIBED VELOCITY pres_vel_name

NODE SET = <string>nodelist_name

FUNCTION = <string>function_name

SCALE FACTOR = <real>scale_factor

COMPONENT = <string>X|Y|Z

END [PRESCRIBED VELOCITY pres_vel_name]

This type of boundary condition is described in detail in the Sierra/SM 4.54 User’s Guide but the
use for RVEs is restricted- Either the function must always evaluate to 0.0 or the scale_factor
must have a value of 0. This is essentially a way of using the prescribed velocity boundary
condition to fix the nodes in nodelist_name. However, in order for these conditions to work
with the periodic boundary conditions used to apply the strain rate, PRESCRIBED VELOCITY

must be used rather than FIXED DISPLACEMENT or PRESCRIBED DISPLACEMENT boundary
conditions.

Generally, three BEGIN PRESCRIBED VELOCITY command blocks will be needed, one each for
X, Y, and Z components. In order to eliminate rigid body motion without over constraining the
motion, each BEGIN PRESCRIBED VELOCITY block should constrain exactly one node of an
RVE in one component direction. (However, nodelist_name may contain nodes from multiple
RVEs. Separate boundary condition blocks are not required for each RVE.). To prevent rigid body
rotations, the three constrained nodes on each RVE should not be collinear.

20

3. EXPLICIT SUBCYCLING

This chapter describes how to setup an analysis to use explicit subcycling. Subcycling can be
used to run different parts of the mesh at different time step sizes to improve speed.

Warning: Explicit subcycling is a capability still in the development stages. This
capability is not yet recommended for general use.

Explicit subcycling can be used in an explicit transient dynamics analysis to run one part of the
mesh at a small time step while running another connected part of the mesh at a large time step.
Explicit subcycling can provide a substantial model speedup only if two properties hold. First,
some region of the mesh must have a substantially smaller element critical time step than another
region of the mesh. Second, the portion of the mesh with the small critical time step must contain
a small fraction of the total number of elements used by the analysis.

Explicit subcycling divides the analysis domain into two regions: A coarse region iterating with a
large time step and a fine region iterating at a smaller time step that is some integer fraction of the
coarse time step. At the coarse mesh time step, both regions sync up to the same analysis time and
exchange information. Using the standard analysis technique, every element must run at the same
small time step. Testing has shown that an analysis run using subcycling can give equally
accurate results as an analysis run without subcycling. The accuracy of the simulation is subject
to several restrictions on cross region communication and compatible capabilities.

3.1. SPECIFYING SUBCYCLING IN INPUT

The recommended method to turn on subcycling is to use a feature to automatically generate the
coarse and fine regions in the input deck. This is done by adding the following command to the
presto region.

SUBCYCLE BLOCKS = <string list>block_names

If this command is present, Sierra/SMwill automatically generate and run a new input deck that
can be used for the subcycling. If the original input deck is named ‘input.i’ the automatically
generated subcycling input deck will be named ‘input.subcycle.i’. The block_names specified are
the names of the blocks targeted for inclusion in the fine region (run with the small time step).

The algorithm to split the regions is done as follows.

• 1. Define the trial coarse region based off of everything not in the fine region.

21

• 2. Compute the critical time step of the coarse region as the smallest element time step in
that region.
• 3. Compute the maximum time step each node can be integrated at as the smallest time step

of any element near the node.
• 4. For every element in the mesh, if the element is attached to only nodes with time steps

greater than or equal to the coarse region time step, place the element in the coarse region.
• 5. For every element in the mesh, if the element is attached to any node with time steps less

than the coarse region time step, place the element in the fine region.
• 6. Split all boundary conditions defined on the coarse and fine region appropriately and

write to appropriate results files. Each region will generate independent output files.

The mathematical foundations of the subcycling algorithm used in Sierra/SM can be found in
Reference [1]. The portions of this paper specifically used in Sierra/SM are: Explicit-Explicit,
Central Difference, and Linear Interpolation method.

22

3.2. LIMITATIONS OF SUBCYCLING

Subcycling is currently incompatible either in whole or in part with many other capabilities. The
capabilities that have incompatibility with subcycling include but may not be limited to the
following:

• Subcycling is incompatible with most capabilities that require an auxiliary region. This
include representative volume elements (RVE), Gemini coupling, and multi-procedure
analysis coupled via hand-offs or solution control.
• Subcycling currently does not work with implicit dynamics, implicit statics, or modal

analysis.
• Subcycling is currently not compatible with rigid bodies.
• Subcycling is incompatible with any critical time step computation method other than the

default element based time step calculation. This includes nodal based and Lanczos
algorithm based time step computation methods.

Additionally several capabilities will not function correctly if that capability is operating at or
near the boundary between the coarse and fine region. If such a capability is included in the
subcycling analysis and that capability happens to cross the coarse/fine boundary, accuracy and
stability problems may result. The capabilities known to be have restrictions when used with
subcycling include but may not be limited to:

• Element death near the subcycling boundary may not be able to correctly determine when a
node shared between the two regions goes inactive (leading to accuracy and stability issues).
• Contact between any surface in the fine region and any surface in the coarse region cannot

be evaluated.
• Methods that define a force from an external load (such as CTH) can only be coupled to the

deformation of the coarse.
• No non-local element or boundary condition can span the coarse to the fine boundary. This

includes nodal based tetrahedra, MPCs, Spot Welds, Super Elements, Peridynamic bonds,
Cylindrical Joints, and the J-Integral computation.
• Nodal output quantities at the coarse to fine boundary may not be displayed properly in plot

files. Contributions to quantities such as nodal force may exist in both the fine and coarse
region and the outputs would need to be summed from both.

23

3.3. OTHER SUBCYCLING ISSUES

In parallel, subcycling will perform best if a mesh rebalance is performed to ensure both the fine
and coarse regions are divided evenly among the processor sets. A mesh rebalance command
similar to the one below can be used to automatically performance such a mesh rebalance. See the
Sierra/SM 4.54 User’s Guide Section ?? for more information on mesh rebalancing.

BEGIN REBALANCE

PERIODIC REBALANCE = AUTO

DELETE DEACTIVATED ELEMENTS AFTER REBALANCE = ON

END

24

REFERENCES

[1] Willem E.M. Bruijs. Subcyling in Transient Finite Element Analysi. PhD thesis, Technical
University of Eindhoven, 1234.

25

4. AUTOMATIC TIME STEP SELECTOR

For performance reasons, it is sometimes desired to run at the highest possible time step in
explicit dynamics. The NODE BASED TIME STEP and the LANCZOS TIME STEP have proven
to yield a higher time step than the default element time step for most problems. However,
because these routines take significantly more time to calculate, sometimes the performance
benefits are unseen. The automatic time step selector attempts to weigh the performance benefits
of each time step calculation. The time steps are compared every hundred steps, and the one
proving most beneficial is used for the proceeding hundred steps.

Currently, only the node based time step and the element time step are compared. Because the
node based time step takes longer to calculate than the element based time step (as noted above),
a scale factor is used when comparing the two. To run with the automatic time step selector, the
following must be included in the input file:

In the BEGIN PARAMETERS FOR PRESTO REGION block, the following line must be
included:

BEGIN PARAMETERS FOR PRESTO REGION <string>presto_region

TIME STEP SELECTOR = AUTO

END PARAMETERS FOR PRESTO REGION <string>presto_region

Additionally, the node based time step syntax must also be included in the input file:

BEGIN NODE BASED TIME STEP PARAMETERS <string>name

END NODE BASED TIME STEP PARAMETERS <string>name

26

5. MODAL ANALYSIS

This chapter describes a simple modal analysis capability. This capability will compute the lowest
few vibration eigenmodes and values at the end of each model load step. This capability only
works with solid uniform gradient hex elements and augmented Lagrange tied contact.

5.1. MODAL ANALYSIS

Warning: Modal analysis is still a capability in the early development stages. This
capability is not recommended for general use, nor will any use of this capability
currently be supported by the Sierra/SMdevelopment.

BEGIN LANCZOS EIGEN SOLVER

MASS MATRIX = IDENTITY|LUMPED(LUMPED)

NUMBER OF EIGENPAIRS = <integer>N

DEBUG = OFF|ON(OFF)

END

The command NUMBER OF EIGENPAIRS defines the number of eigenvalues and modes to
compute. The lowest N modes will be computed. Significant expense is required to compute and
store each mode, thus N should be kept relatively small (no more than 25 or so).

The DEBUG command turns on or off additional debugging outputs from the eigensolver.

The MASS MATRIX allows the user to selectively compute the eigenvalues of the tangent stiffness
matrix when IDENTITY is set. Otherwise, the standard eigenvalue problem is computed with both
the tangent stiffness matrix and the lumped mass matrix. A consistent mass matrix is not available
at this time.

27

6. SOLVERS AND SOLVER OPTIONS

6.1. NEWTON SOLVER

BEGIN SOLVER

BEGIN NEWTON

#

convergence criteria commands

#

TARGET RESIDUAL = <real>target_resid

[DURING <string list>period_names]

TARGET RELATIVE RESIDUAL = <real>target_rel_resid(1.0e-4)

[DURING <string list>period_names]

ACCEPTABLE RESIDUAL = <real>accept_resid

[DURING <string list>period_names]

ACCEPTABLE RELATIVE RESIDUAL = <real>accept_rel_resid

[DURING <string list>period_names]

REFERENCE = EXTERNAL|INTERNAL|BELYTSCHKO|RESIDUAL|ENERGY

(EXTERNAL) [DURING <string list>period_names]

RESIDUAL NORM TYPE = ALL|TRANSLATION|SCALE_RB_ROTATIONS

(ALL) [DURING <string list>period_names]

#

iteration control

#

MINIMUM ITERATIONS = <integer>min_iter(0)

[DURING <string list>period_names]

MAXIMUM ITERATIONS = <integer>max_iter

[DURING <string list>period_names]

#

Selection of the linear solver for use in solving

linearized Newton iterations

#

LINEAR SOLVER = <string>linear_solver_name

END

END

The Newton solver is an nonlinear equation solver that is an alternative to the default conjugate
gradient (CG) solver. Each iteration of the Newton solver consists of reforming current tangent
stiffness matrix and re-solving the equation set with that current tangent. The Newton solver is
typically significantly more expensive than the CG solver but may be more robust if there is

28

substantial nonlinearity occurring over a time step. The Newton solver may also potentially
prevent overshooting of yielding or other material nonlinearity. If a model has highly nonlinear
materials and is failing to converge with the CG solver the Newton solver may be worth trying.

The convergence criteria and iteration control commands in the Newton solver behave identically
to the equivalent commands in the CG solver. The LINEAR SOLVER specifies the solver to use
during the linearized equation solution step each Newton iteration. The FETI solver is
recommended but any available linear may work.

29

6.2. CONTROL CONTACT : CONTROL SUBSET

BEGIN CONTROL CONTACT

CONTROL SUBSET = ADAGIO|ALL|ARS|JAS|SST

END

By default all implicit contact constraints are enforced simultaneously. The CONTROL SUBSET

option to the control contact solver block is an experimental option for enforcing different types
of constraints at different levels of the multilevel solver. For example the following input will
control the node face (ADAGIO) contact constraints at level one and the analytic rigid surface
contact constraints (ARS) at level two. This means that ARS constraints are found held constant
while ADAGIO constraints are iteratively solved. Then the ARS constraints are updated and
again held constant while the ADAGIO constraints are iteratively solved again.

begin control contact control_al

level = 1

target relative residual = 5.e-04

control subset = ADAGIO

end control contact

begin control contact control_ars

level = 2

target relative residual = 1.e-3

control subset = ARS

end control contact

Use of the CONTROL SUBSET will substantially increase analysis cost, but may lead to more
robust convergence if the model contains potentially conflicting contact constraint types acting on
the same nodes.

30

7. EXTENDED FINITE ELEMENT METHOD

(XFEM)

Warning: This capability is in development, and its behavior may change consid-
erably due to its status as an active research topic.

The XFEM command block may be used to introduce discontinuities in a finite element mesh via
the eXtended Finite Element Method (XFEM). Use cases for XFEM include modeling stationary
or propagating cracks in a finite element mesh, fast mesh generation via XFEM “carving,” and
adding or removing material layers to simulate, e.g., material wear or additive manufacturing
processes. At its simplest, the XFEM provides a framework supporting duplication of mesh
elements and subsequent partitioning and assignation of material on each side of the cut surface to
each duplicate. This duplication procedure is illustrated in Figure 7-1. Piecewise planar element
cuts through both two-dimensional shell and three-dimensional mesh topologies are supported in
the current XFEM implementation. When an element is cut, the necessary quantities on the
duplicated elements are scaled by the volume fraction of the original cut element. The mass,
volume, and the internal force contribution are all scaled by the volume fraction. All other
element quantities are calculated as usual.

Figure 7-1. Example of XFEM element cutting and duplication.

The effective or cut volume of the domain is represented by the XFEM “submesh,” a sub-element
geometry which captures the discontinuity surface within each cut element duplicate. Submesh
topologies for various element types are illustrated in Figure 7-2. The submesh output block,
named <block_name>_submesh, will be created and output along with results for visualization
purposes. Visualization with the submesh block is recommended as it offers an accurate
representation of crack surface and fragment geometries, as well as relevant element and nodal
fields, whereas the XFEM computational elements themselves overlap and are therefore difficult
to visualize.

31

(a) Four-node quadrilateral

(b) Four-node tetrahedral

(c) Eight-node hexahedral

Figure 7-2. Illustration of XFEM submesh topology for various mesh

element topologies.

7.1. GENERAL XFEM COMMANDS

BEGIN XFEM <string>xfem_name

BLOCK = <string list>block_name

INCLUDE ALL BLOCKS

ADD INFINITE PLANE = <real>px <real>py <real>pz

<real>nx <real>ny <real>nz

ADD DISC = <real>px <real>py <real>pz

<real>nx <real>ny <real>nz

<string>radius_function

MECHANICS GROWTH START TIME = <real>time(0.0)

MECHANICS GROWTH METHOD = <string>NOTHING|

MECHANICS FAILURE(NOTHING)

CRITERION = <string>{AVG NODAL|MAX NODAL|

MIN NODAL|ELEMENT|GLOBAL}

VALUE OF <string>variable

{>=|>|=|<|<=} <real>threshold

FAILURE SURFACE EVOLUTION = <string>PLANAR|PIECEWISE LINEAR|

SINGLE CRACK(PLANAR)

ANGLE CHANGE = <string>NONE|STRESS EIGENVECTOR|

ONE RING|LENGTH SCALE(NONE)

CREATE FACES = <string>ON|OFF(ON)

GENERATION BY NUCLEATION = <string>NO|ELEMENT-BASED(NO)

NUCLEATION CRITERION = <string>

{AVG NODAL|MAX NODAL| MIN NODAL|ELEMENT|

GLOBAL} VALUE OF <string>variable

{>=|>|=|<|<=} <real>threshold

CRACK BRANCHING = <string> RESTRICTED|ALLOWED(RESTRICTED)

BRANCHING CRITERION = <string>

{AVG NODAL|MAX NODAL| MIN NODAL|ELEMENT|

GLOBAL} VALUE OF <string>variable

{>=|>|=|<|<=} <real>threshold

PROPAGATION ANGLE LIMIT = <real> angle

32

ANGLE CHANGE LENGTH SCALE OUTER RADIUS = <real>outer_radius

ANGLE CHANGE LENGTH SCALE INNER RADIUS = <real>inner_radius

START TIME = <real>start_time

INITIAL SURFACE COHESIVE = <string>FALSE|TRUE(FALSE)

COHESIVE SECTION = <string>cohesive_section_name

COHESIVE MATERIAL = <string>cohesive_material_name

COHESIVE MODEL = <string>cohesive_model_name

SOLID GROWTH DIRECTION VARIABLE =

<string>direction_field_name(stress)

SHELL GROWTH DIRECTION VARIABLE =

<string>direction_field_name(memb_stress)

VOLUME FRACTION LOWER BOUND = <real>lower_bound(0.0) DELETE|

RETAIN(DELETE)

CALCULATE FRAGMENT IDS = OFF|ON(OFF)

INITIAL CUT WITH {SIDESET|STL}

<string>file_or_surface_name

REMOVE {INTERIOR|EXTERIOR|NOTHING(NOTHING)}

CUT WITH DAMAGE VARIABLE = <string>variable_name

END [XFEM <string>xfem_name]

33

7.2. XFEM FOR FRACTURE AND FRAGMENTATION

The most common application of XFEM is modeling of fracture, fragmentation, and failure in
structures. Currently supported fracture capabilities are

• prescribed, static or stationary cracks,
• prescribed cracks with a specified direction and rate of growth,
• prescribed cracks which are allowed to propagate by mechanics-based growth criteria, and
• cracks which are nucleated and propagated via mechanics-based criteria.

These capabilities are detailed below.

7.2.1. Fixed and Prescribed XFEM Discontinuities

A “fixed” XFEM discontinuity is stationary in both time and space; the failure surface does not
change after initialization. A fixed infinite plane discontinuity can be inserted via the
ADD INFINITE PLANE command, while a disc-shaped cut with a fixed radius may be inserted
via the ADD DISC command. Note that the specified surfaces are used to cut the mesh in the
reference configuration.

A “prescribed” XFEM discontinuity is restricted to propagate along a specific path in time. In
order to prescribe an XFEM discontinuity, a disc must be inserted via the ADD DISC command.
The discontinuity may “grow” by adding a time-varying function at the end of the ADD DISC

command or by mechanics growth, described in Section 7.2.2 below.

7.2.2. Spontaneous Crack Nucleation, Growth, and Branching

The current XFEM implementation enables the natural evolution of fractures in materials based
on mechanics nucleation, growth, and branching criteria.

Crack growth Growth, or propagation, can be enabled via the following command lines:

MECHANICS GROWTH METHOD = MECHANICS FAILURE

CRITERION = <string>{AVG NODAL|MAX NODAL|

MIN NODAL|ELEMENT|GLOBAL}

VALUE OF <string>variable

{>=|>|=|<|<=} <real>threshold

FAILURE SURFACE EVOLUTION = PLANAR|PIECEWISE LINEAR|

SINGLE CRACK(PLANAR)

The CRITERION command line specifies the criterion for propagation or growth of the crack from
element to element. This command is precisely analogous to element death; refer to the
Sierra/SM 4.54 User’s Guide Chapter ?? for additional details. FAILURE SURFACE EVOLUTION

specifies any geometric restrictions on fracture growth:

34

• PLANAR is the default option, which restricts the crack to grow only in the plane in which it
is initialized, preventing the crack from turning or twisting.
• PIECEWISE LINEAR allows a crack to change directions such that it is planar within a

single element; however, this option may lead to a fracture surface which is discontinuous
from element to element.

Mechanics growth can be delayed in the analysis by specifying a start time (≥ 0) in the
MECHANICS GROWTH START TIME command.

The way in which the crack growth angle change is computed can be specified via the
ANGLE CHANGE command line to smooth or regularize sharply varying stress fields in the
neighborhood of crack fronts. Available angle change options are

• STRESS EIGENVECTOR, which calculates the growth angle of the crack from the
maximum principal stress eigenvector in the element to be cut;
• ONE RING, which defines the new failure plane by the maximum principal stress

eigenvector of the average stress in the node-connected neighboring elements (or one-ring)
of the element to be cut; and
• LENGTH SCALE, which computes the crack failure plane as the maximum principal stress

eigenvector of the average stress in elements within a specified radial distance of the
element to be cut. This distance can be specified via the
ANGLE CHANGE LENGTH SCALE OUTER RADIUS command. By specifying
ANGLE CHANGE LENGTH SCALE INNER RADIUS, in addition to including elements
inside a given outer length scale, the growth algorithm will exclude elements within a given
inner radius of the crack front from the direction computation. Because the length scale
entails a computation involving, in general, a number of elements surrounding the crack
front, this option may incur significant additional simulation time within in each load step.

The variable used to calculate the angle change can be specified via

SOLID GROWTH DIRECTION VARIABLE = ...

SHELL GROWTH DIRECTION VARIABLE = ...

for solid and shell elements, respectively. The default variable used for solid elements is “stress,”
while the default variable used for shell elements is “membrane stress.”

Crack nucleation Spontaneous nucleation, or initiation, of cracks may be controlled by the
command lines

GENERATION BY NUCLEATION = <string>NO|ELEMENT-BASED(NO)

NUCLEATION CRITERION = ...

Currently, only element-based nucleation is supported, in which a single element is cut if it
exceeds the user-defined nucleation criterion (which follows the same form as the growth
criterion). Nucleated cracks then grow normally according to the specified mechanics growth
criterion.

Crack branching Branching behavior may also be modeled via the commands

35

CRACK BRANCHING = ALLOWED

BRANCHING CRITERION = ...

Currently, cracks may only branch from a single point on an element edge (i.e., from a virtual
node on the element edge created by the first cut). Examples of eligible and ineligible branching
locations are illustrated in Figure 7-3. All presently cut elements are branching candidates. The
user-defined failure condition is examined for each element, and if the value exceeds the failure
criteria, the stress eigenvectors are calculated and used to determine the possible branching
direction.

Figure 7-3. Example of allowed and restricted branching.

7.2.3. Cohesive Zone Insertion

Cohesive zones can be adaptively inserted between the XFEM discontinuities in order to better
capture fracture patterns, convergence, and energy dissipation. To insert cohesive zones with
XFEM,

• a cohesive section must be specified in the XFEM command block via the
COHESIVE SECTION command line,
• a cohesive material must be specified via the COHESIVE MATERIAL command line, and
• a cohesive model must be specified via the COHESIVE MODEL command line.

In order for the cohesive zones to be inserted with the stress initialized to that of the failing
element, the INITIAL SURFACE COHESIVE = TRUE option must be used.

Warning: Cohesive zone insertion for tetrahedral elements is not yet supported.

36

7.2.4. Other Options

Several miscellaneous or experimental XFEM capabilities are available for fracture and
fragmentation analysis.

Volume Fraction Lower Bound By default, the XFEM implementation in Sierra does not
“clip” or remove elements with arbitrarily small volume fractions. This can create issues with the
conditioning of implicit solves.

The VOLUME FRACTION LOWER BOUND command allows the user to specify a threshold. By
default, when a lower bound is provided with this command, elements whose volume fractions
are below the specified threshold will be removed from the calculation (DELETE). When the
RETAIN option is specified, elements whose volume fractions are below this specified threshold
will be retained, but have their volume fractions are reset to the lower bound specified by the
threshold value. This insures that the smallest volume fraction of any partial element anywhere in
the domain will not be smaller than the threshold.

Warning: The VOLUME FRACTION LOWER BOUND can result in the loss of mass
conservation for an embedded object, whether in the default mode when these small
volume fractions are removed or in the RETAIN mode when mass is added.

XFEM damage-based failure XFEM can also be used to cut the mesh along a specific field
on the mesh (such as a phase field damage variable). The name of this variable is specified via the
CUT WITH DAMAGE VARIABLE command.

Warning: The CUT WITH DAMAGE VARIABLE option is in-development and not
a hardened capability.

Identification of separate XFEM fragments The CALCULATE FRAGMENT IDS command
can be used to output both element and nodal fragment ID fields. Turning this option to ON will
set both the element variable called element_fragment_id as well as the nodal variable called
node_fragment_id at the end of the simulation. Each ID corresponds to a distinct fragment
from the XFEM simulation. Elements and nodes within a fragment will all be assigned the same
fragment ID. Labeling of the fragment IDs is arbitrary, but the numbering always begins with 1
and goes to the total number of fragments in the simulation. Post-processing scripts can be use in
conjunction with these fields to compute quantities such as fragment mass and momentum
distributions.

37

7.3. XFEM CARVING

In addition to modeling fracture and fragmentation, XFEM can also be used for fast mesh
generation or wearing of surfaces via “carving.” The carving procedure is roughly equivalent to
an immersed boundary approach; boundary and contact surfaces are represented by the XFEM
cut surface, and the effective carved element response is computed via XFEM volume fraction
scaling.

The initial mesh may be carved with the command line

INITIAL CUT WITH {SIDESET|STL} = <string>file_or_surface_name

[REMOVE {INTERIOR|EXTERIOR|NOTHING(NOTHING)}]

where STL indicates to carve the mesh with a stereolithography (STL) file [1], while the SIDESET
option indicates to carve with a specified sideset from the input mesh file.

Carved material may be removed after the cut is made via the option
REMOVE {INTERIOR|EXTERIOR}, where the “exterior” consists of all material points lying
outside of the region bounded by the carving surface in the direction of its outward normal vector;
similarly, the “interior” is the region bounded by the carving surface in the direction opposite its
outward normal. As an example, the XFEM command block to cut all blocks with a surface
defined in an STL file file.stl and remove material interior to the surface is the following:

BEGIN XFEM

INCLUDE ALL BLOCKS

INITIAL CUT WITH STL file.stl REMOVE INTERIOR

END [XFEM]

38

7.4. USE OF XFEM WITH EXISTING CAPABILITIES

An XFEM command block may be used in conjunction with a number of other core code
capabilities, as enumerated in [2]. A brief list of compatible capabilities and usage guidelines are
given below.

7.4.1. Contact

BEGIN CONTACT DEFINITION <string>name

...

CONTACT SURFACE <string>name CONTAINS

<string_block_name>_CONTACT_SURFACE

BEGIN INTERACTION DEFAULTS

SELF CONTACT = ON

GENERAL CONTACT = ON

END

...

END [CONTACT DEFINITION <string> name]

Contact may be enforced on a block that has been cut using XFEM, including the cut surface
itself. Contact can be defined using the GENERAL CONTACT = ON command within the
INTERACTION DEFAULTS section of the contact definition. A contact surface called
<string_block_name>_CONTACT_SURFACE is created for each XFEM block; thus, a contact
surface may be defined on an XFEM block by using the CONTACT SURFACE <string>name

CONTAINS <string_block_name>_CONTACT_SURFACE command line. The XFEM contact
surface is also output to the results file as a shell element block for visualization purposes.

7.4.2. CONWEP Blast Pressure

BEGIN BLAST PRESSURE <string> name

BLOCK = <string_block_name>_submesh

...

END [BLAST PRESSURE <string> name]

XFEM can also be used in conjunction with a CONWEP blast pressure. The pressures that are
applied to the cut faces are scaled by the area fraction of that cut face. The pressures are applied
to the face throughout the duration of the blast.

7.4.3. Implicit Dynamics

XFEM may be run in implicit dynamics. If an implicit simulation is run, it is highly
recommended to include an adaptive time stepping block, as shown below. Adaptive time

39

stepping helps to account for the increased complexity of the problem during crack growth. For
additional guidance and command syntax, consult the Sierra/SM 4.54 User’s Guide Chapter ??.

Warning: Convergence of XFEM simulations in implicit dynamics mode is cur-
rently tenuous; robustness issues may occur when using this analysis combination.

40

REFERENCES

[1] 3D Systems, Inc. SLC File Specification, 1994.

[2] Sierra/SolidMechanics Team. Sierra/SolidMechanics VOTD User’s Guide. Technical Report
In draft, Sandia National Laboratories, Albuquerque, NM, 2019.

41

Explicit Only

8. EXPLICIT CONTROL MODES

8.1. LIMITATIONS AND REQUIREMENTS

In explicit dynamic calculations, the Explicit Control Modes method uses a coarse mesh
overlaying the actual problem mesh (called the reference or fine mesh) to increase the critical
time step. The name control mode comes from the implicit multigrid solution algorithm in
Adagio. The Explicit Control Modes algorithm is discussed in [1] and [2].

Warning: Explicit Control Modes is an experimental analysis technique. It has
been shown to be an extremely useful technique on specific problems. However,
it does not interoperate with some features, such as rigid bodies. Contact the Sier-
ra/SM development team for more information on the features that do cooperate
with Explicit Control Modes.

Known Issue: When using Explicit Control Modes, the Lanczos and Power
Method time step estimators cannot yet be used with problems that have contact,
rigid bodies, blocks in the fine mesh that are not controlled by the coarse mesh, or
coarse elements that contain no fine nodes.

In explicit dynamics, nodal accelerations are computed by dividing the residual (external minus
internal) force by the nodal mass. In the Explicit Control Modes algorithm, the reference mesh
residual is mapped to the coarse mesh, and accelerations are computed on the coarse mesh. These
accelerations are then interpolated back to the reference mesh. The portion of the residual with
higher frequency content (i.e., that which is not representable by the basis functions of the coarse
mesh) determines a fine mesh acceleration that is added to the acceleration interpolated from the
coarse mesh.

By computing the acceleration on the coarse mesh, the Explicit Control Modes algorithm allows
for the critical time step to be computed based on the size of the coarse mesh rather than the size
of the reference mesh. A critical time step is estimated based on the coarse mesh. Mass scaling is
applied to the high frequency component of the acceleration (computed on the reference mesh to
increase the time step to the coarse mesh critical time step). Mass scaling introduces error, but the
error only occurs in the high frequency part of the response. In contrast, traditional mass scaling
affects the full spectrum of structural response. Explicit Control Modes is effective in problems in
which the coarse grid represents the frequency range of interest and is significantly coarser than
the reference mesh to maximize the critical time step.

The choice of the degree of refinement in the coarse and reference meshes has a large influence on
the effectiveness of the Explicit Control Modes algorithm. The reference mesh should be created

42

to give a discretization that is appropriate to capture the geometry of the problem with sufficient
refinement to adequately represent gradients in the discretized solution. The coarse mesh should
completely overlay the reference mesh, and it should be coarser than the reference mesh at every
location in the model. All coarse elements need not contain elements in the reference mesh; it is
possible to use a coarse mesh that extends significantly beyond the domain of the reference
mesh.

The user has the freedom to create a coarse mesh that gives an acceptable critical time step
without using an excessively crude discretization. Remember that the reference mesh controls the
spatial discretization, while the coarse mesh controls the temporal discretization of the model.

To use Explicit Control Modes, the user should set up the reference mesh file and the input file as
usual, except that the following additional items must be provided:

• A coarse mesh must be generated, as discussed above. The coarse mesh must be in a
separate file from the reference mesh, which is the real model.
• A second FINITE ELEMENT MODEL command block must be provided in addition to the

standard definition for the reference finite element model in the input file. This command
block is set up exactly like the first FINITE ELEMENT MODEL command block (described
in Sierra/SM 4.54 User’s Guide Section ??) except that the mesh file referenced is the
coarse mesh instead of the reference mesh. Even though the coarse mesh uses no material
models, each block in the coarse mesh must be assigned a material model.
• A CONTROL MODES REGION command block must appear alongside the standard
PRESTO REGION command block within the PRESTO PROCEDURE command block. The
presence of the CONTROL MODES REGION command block instructs Presto to use the
Explicit Control Modes algorithm. The CONTROL MODES REGION command block is
documented in Section 8.2. It contains the same commands used within the standard
PRESTO REGION command block, except that the commands in the
CONTROL MODES REGION command block are used to control the control modes
algorithm and the boundary conditions on the coarse mesh.

43

8.2. CONTROL MODES REGION

BEGIN CONTROL MODES REGION

#

model setup

USE FINITE ELEMENT MODEL <string>model_name

CONTROL BLOCKS [WITH <string>coarse_block] =

<string list>control_blocks

#

time step control

TIME STEP RATIO SCALING = <real>cm_time_scale(1.0)

TIME STEP RATIO FUNCTION = <string>cm_time_func

LANCZOS TIME STEP INTERVAL =

<integer>lanczos_interval

POWER METHOD TIME STEP INTERVAL =

<integer>pm_interval

#

mass scaling

HIGH FREQUENCY MASS SCALING =

<real>cm_mass_scale(1.0)

#

stiffness damping

HIGH FREQUENCY STIFFNESS DAMPING COEFFICIENT =

<real>cm_stiff_damp(0.0)

#

kinematic boundary condition commands

BEGIN FIXED DISPLACEMENT

Parameters for

fixed displacement

END [FIXED DISPLACEMENT]

#

output commands

BEGIN RESULTS OUTPUT <string> results_name

Parameters for

results output

END RESULTS OUTPUT <string> results_name

END [CONTROL MODES REGION]

The CONTROL MODES REGION command block controls the behavior of the control modes
algorithm and is placed alongside a standard PRESTO REGION command block within the
PRESTO PROCEDURE scope. With the exception of the CONTROL BLOCKS command line, all the
commands that can be used in this block are standard commands that appear in the Presto region.
These commands have the same meaning in either context- they apply to the coarse mesh or to the
reference mesh, depending on the region block in which they appear. Sections 8.2.1 through 8.2.3
describe the components of the CONTROL MODES REGION command block.

44

8.2.1. Model Setup Commands

USE FINITE ELEMENT MODEL <string>model_name

CONTROL BLOCKS [WITH <string>coarse_block] =

<string list>control_blocks

The command lines listed above must appear in the CONTROL MODES REGION command block if
Explicit Control Modes is used. The USE FINITE ELEMENT MODEL command line should
reference the finite element model for the coarse mesh. This command line is used in the same
way that the command line is used for the reference mesh [3].

The CONTROL BLOCKS command line provides a list of blocks in the reference mesh controlled
by the coarse mesh. The block names are listed using the standard format for referencing mesh
entities [3]. For example, the block with an ID of 1 would be listed as block_1 in this command.
Multiple CONTROL BLOCKS command lines may be used.

The CONTROL BLOCKS command line does not require the coarse blocks used to control the fine
blocks to be listed. In the following example, blocks 10 and 11 are controlled by the coarse mesh,
but the element blocks in the coarse mesh that control those blocks are not listed:

CONTROL BLOCKS = block_10 block_11

If the CONTROL BLOCKS command line is used in this manner, the search for fine nodes
contained within coarse elements will be conducted for all elements in the coarse mesh. The
coarse block used to control a given set of fine blocks can optionally be specified by using the
CONTROL BLOCKS WITH coarse_block variant of the command. For example, the
command:

CONTROL BLOCKS WITH block_1 = block_10 block_11

would use block 1 on the coarse mesh to control blocks 10 and 11 on the fine mesh. This variant
of the command is necessary when the coarse blocks overlap. It removes any ambiguity about
which coarse elements control which fine nodes. This is particularly useful for contact problems
where the fine block on one side of an interface should be controlled by one block, and the fine
block on the other side of the interface should be controlled by a different block. Only one coarse
block can be listed in a given instance of this command. If there are multiple coarse blocks, they
must be listed in separate commands.

8.2.2. Time Step Control Commands

The time step control commands for Explicit Control Modes are based on the Sierra/SM time step
control commands (consult Sierra/SM 4.54 User’s Guide Chapter ??.

TIME STEP RATIO SCALING = <real>cm_time_scale(1.0)

TIME STEP RATIO FUNCTION = <string>cm_time_func

LANCZOS TIME STEP INTERVAL =

<integer>lanczos_interval

45

POWER METHOD TIME STEP INTERVAL =

<integer>pm_interval

The control modes algorithm computes a node-based time step for the coarse mesh at each time
step and uses this as the default time step. This time step is typically larger than the critical time
step for the fine mesh.

The TIME STEP RATIO SCALING and TIME STEP RATIO FUNCTION command lines allow
the user to control the time step used with explicit control modes. The
TIME STEP RATIO SCALING command specifies a scale factor cm_time_scale, which has a
default value of 1.0. The TIME STEP RATIO FUNCTION command specifies a function
cm_time_func that is used to control the scale factor as a function of time. At any given time, a
scale factor, fts, is computed by multiplying cm_time_scale by the current value of the
function. Both of these commands are optional and one can be used without the other.

The time step ∆t, is computed as a function of fts, as well as of the time step of the fine mesh, ∆t f

and the time step of the coarse mesh, ∆tc.

∆t = ∆t f + fts(∆tc−∆t f) (8.1)

Thus, if the scale factor is zero, the time step of the fine mesh is used, and if it is one, the time
step of the coarse mesh is used.

The nodal time step estimator for the coarse mesh typically works well on problems where the
fine mesh overlaid by the coarse mesh is essentially isotropic. In cases where it is not, such as
when there are significant voids covered by the coarse mesh, the nodal time step can be
non-conservative, resulting in stability problems. The time step control command lines described
above can be used to manually scale down the time step in such scenarios.

Here is an example of stubs for controlling the time step.

Coarse/Fine mesh scaling function.

begin function cm_time_ratio

type is piecewise linear

begin values

0.0 1.0

0.005 1.0

0.01 1.0

end values

end

begin control modes region beamCoarse

use finite element model beamCoarse

control blocks = block_1

filter = mass

time step ratio scaling = 1.0

time step ratio function = cm_time_ratio

high frequency mass scaling = 1.0

end

46

This particular example uses the default parameters. Non-default parameters may be accessed by
changing the corresponding 1.0 values.

Alternatively, either the Lanczos or Power Method global time step estimators can be applied to
the coarse mesh to give an improved estimate of the stability limit. These are invoked using the
LANCZOS TIME STEP INTERVAL or POWER METHOD TIME STEP INTERVAL command lines,
respectively. Only one of these command lines can be used at a time, and both commands specify
an interval at which the global time step estimate is calculated. When the global time step
estimate is calculated, a ratio of the global estimate to the nodal estimate is calculated, and this
ratio is used to scale the nodal estimate in subsequent time steps in which the global estimate is
not computed.

Experience has shown that the time step predicted by the global time step estimators is typically
slightly higher than the actual stability limit. For this reason, it is recommended that a scale factor
of 0.9 be used in conjunction with these estimators. This can be set using the
TIME STEP SCALE FACTOR command line in the TIME CONTROL block as described in the
Sierra/SM 4.54 User’s Guide Section ??.

8.2.3. Mass Scaling Commands

HIGH FREQUENCY MASS SCALING = <real>cm_mass_scale(1.0)

The HIGH FREQUENCY MASS SCALING command line allows the user to control the mass
scaling applied to the high frequency component of the response. The mass scaling factor
required to stably integrate the high frequency response at the time step being used is computed at
every node on the fine mesh. The parameter cm_mass_scale that can optionally be supplied
with this command line is applied as a multiplier to that mass scaling. If that mass scaling
(multiplied by cm_mass_scale) is greater than 1.0, then the scaled mass is used at that node. If
not, the original nodal mass is used.

It may be useful for some models to use this command line to set cm_mass_scale to a value
greater than 1.0 to stabilize the high frequency response. Experience has shown, however, that
this is rarely needed.

It is also possible to request a consistent coarse mass matrix, instead of the default lumped mass
matrix. Here is an example illustrating the syntax.

begin control modes region beamCoarse

use finite element model beamCoarse

control blocks = block_1

coarse mass linear solver = feti

coarse mass matrix = consistent

filter = consistent

time step ratio scaling = 0.2

end

47

8.2.4. Damping Commands

HIGH FREQUENCY STIFFNESS DAMPING COEFFICIENT =

<real>cm_stiff_damp(0.0)

The HIGH FREQUENCY STIFFNESS DAMPING COEFFICIENT command is used to apply
stiffness-proportional damping on the high frequency portion of the response in Explicit Control
Modes. This may help reduce high frequency noise in problems that have abrupt loading such as
that caused by contact. The default value of cm_stiff_damp is 0.0. The value specified for
cm_stiff_damp can be between 0 and 1. It is recommended that small values (around 0.001) be
specified if this option is used.

8.2.5. Kinematic Boundary Condition Commands

BEGIN FIXED DISPLACEMENT

#

Parameters for fixed displacement

#

END FIXED DISPLACEMENT

All types of kinematic boundary conditions can be applied to the coarse mesh. This is done by
inserting a kinematic boundary condition command block in the CONTROL MODES REGION

command block. The mesh entity (node set, surface, or block) to which the boundary condition is
applied must exist on the coarse mesh.

This capability is potentially useful to ensure better enforcement of kinematic boundary
conditions on the fine mesh by applying the same type of boundary condition on the portion of the
coarse mesh that overlays the portion of the fine mesh to which boundary conditions are applied.
For example, if there is a node set on the fine mesh that has a fixed displacement boundary
condition, a node set can be created on the coarse mesh that covers the same physical domain.
The same fixed displacement boundary condition could then be applied to the coarse mesh.

Although the capability to enforce boundary conditions on the coarse mesh is provided, it is not
necessary to do so. It is also often difficult to create a node set on the coarse mesh that matches
the discretization of the node set on the fine mesh. Users are advised to initially prescribe
kinematic boundary conditions only on the fine mesh and only prescribe boundary conditions on
the coarse if the initial results appear questionable.

8.2.6. Output Commands

BEGIN RESULTS OUTPUT <string> results_name

#

Parameters for results output

#

END RESULTS OUTPUT <string> results_name

48

Variables can be output from the coarse mesh just as they can from the fine mesh with Explicit
Control Modes. Because the actual results of interest for the model all reside on the fine mesh, it
is typically not necessary to output results on the coarse mesh. However, this can be helpful for
debugging purposes.

The syntax for the results output for the coarse mesh is identical to that used for output from the
fine mesh [3]. The only thing that differentiates the RESULTS OUTPUT command block for the
coarse mesh from that of the fine mesh is that the results output block for the coarse mesh is put in
the CONTROL MODES REGION command block instead of in the PRESTO REGION command
block. The output files for the coarse and fine mesh must be different from each other, so different
output file names must be used within the output blocks for the coarse and fine meshes.

One of the most useful variables to output from the coarse mesh is the nodal timestep. This
variable is similar in nature to the element timestep, which exists on the fine mesh, but is a
nodal variable rather than an element variable and exists on the coarse mesh. The nodal
timestep reports the critical time step calculated for each node on the coarse mesh. If the coarse
time step is higher than expected, the output from nodal_time_step can be examined to see
which region of the coarse mesh is controlling the time step.

Central difference time integration is performed on the coarse mesh in addition to the fine mesh,
so the displacement, velocity, and acceleration variables can be requested for
visualization on the coarse mesh.

8.2.7. ECM with Lanczos

As the known issue suggests that Lanczos works with ECM. Here’s an example.

begin control modes region beamCoarse

use finite element model beamCoarse

control blocks = block_1

filter = mass

time step ratio scaling = 0.9

high frequency mass scaling = 1.0

lanczos time step interval = 100

end

Assume for clarity that the Lanczos time step size is significantly larger than the element time
step size. Initially the Element time step in Lanczos is used. At the following time
steps, the time step size increases the time step size by a factor of 1.1, the default value of the
time step increase factor described in Sierra/SM 4.54 User’s Guide Section ??. When
the time step size is near to time Time step from Lanczos method, Lanczos time step, a different
time step is used. The maximal time step may depend on time step increase factor

and other Lanczos parameters. To compare to Lanczos with no coarse grid, add to the presto
region block

begin lanczos parameters set1

number eigenvalues = 50

49

eigenvalue convergence tolerance = 1.0e-4

update step interval = 100

vector scale = 1.e-8

debug = on

end lanczos parameters set1

In the case at hand, the ECM increases the time step from 4e−7 to 1.5e−6.

50

8.3. ECM THEORY

Explicit transient dynamics is a well-established capability for modeling large deformations of
structures. It is common practice in explicit transient dynamics to seek a balance between
computational efficiency and accuracy. Mass scaling [4] has traditionally been used as an
approach to increase the critical time step limit associated with the central difference time
integrator. Unfortunately, this has an undesirable side effect of mass damping dynamic modal
response over the entire frequency spectrum. To mitigate this effect, methods have been
developed in which the damping is proportional to the frequency [5]. In Adagio the Explicit
Control Modes algorithm performs an efficient modal decomposition of the frequency spectrum,
allowing mass damping only on the high frequency modes. Examples will be presented that
demonstrate that this approach yields accurate low frequency response, while often using larger
time steps due to the mass scaling the high frequency response.

8.3.1. Introduction

Finite element analysis of transient dynamic problems is a production capability in many
application areas. In these analyses an important question to be addressed by the analyst is the
choice of using an explicit or implicit time integrator. It is well understood that the central
difference explicit time integrator is efficient per time step but is restricted to taking relatively
small, critical (or stable) time steps [6, 7]. An implicit time integrator, specifically the
Hilber–Hughes–Taylor (HHT) time integrator [8], with the proper choice of parameters has no
such stability limit allowing larger time steps but produces a system of equations that need to be
solved every time step. As noted in [8], a consequence of choosing a large time step for the
implicit time integrator is that it produces numerical damping in all frequencies, but
predominantly in the highest frequencies. How much damping and in what modes depends on the
particular problem. Thus, the question of what time integrator to use is much more than one of
efficiency. Certainly, one must know well the class of problems to be solved when making this
choice.

Simulations requiring necessarily finer discretizations to accurately represent modal stiffness and
resolve details in the stress field are amenable to Explicit Control Modes. For the explicit time
integrator, this imposes a critical time step restriction that can be limiting. However for
some—possibly many—analyses the structural response is in the lower frequency spectrum, i.e.,
the influence of the modal content inherent in fine mesh on the low-frequency dynamics is of
interest and not necessarily the high-frequency dynamics themselves. More precisely, spatial
resolution as opposed to temporal resolution is needed for many problems (this premise is one
that we intend to support in the examples).

It seems appropriate, then, to consider an algorithmic approach that can improve the stability limit
of the explicit time integrator. Most importantly, we recognize that this approach needs to be
accurate for low-mode response and competitive with implicit dynamics.

51

8.3.2. Modal Decomposition Approach

The objective of this algorithm is to modally decompose the dynamics (in the context of an
explicit transient dynamics time integrator) into low-frequency and high frequency response.
Having this decomposition may provide options such as integrating the low-frequency modes
with explicit time integration and the high-frequency modes with an implicit time integrator.

The decomposition algorithm is based on applying multigrid concepts within an explicit central
difference time integrator. We will limit the algorithm to consider only one addition level of
coarsening. Thus, in addition to the fine mesh or reference mesh, we introduce a set of coarse
basis functions that will describe the low-mode response.

The vector of external nodal forces on the fine mesh is f ext
f m . Also the vector of internal nodal

forces on the fine mesh f int
f m is a obtained from the divergence of the stress. In this work we

assume that there is no contact, in which case the nodal residual force is

r = f ext
f m − f int

f m.

Let M denote the diagonal, lumped [9], mass matrix for the fine mesh, and let x denote the vector
of displacements on the fine mesh. Expressed in terms of the nodal displacements, the dynamic
equilibrium equations is

Mẍ = r. (8.2)

Let Φ denote an interpolation (prolongation) matrix associated with a coarse space of functions.
The number of rows in Φ equals the number of rows in x or r, while the number of columns in is
typically smaller. The matrix can be obtained from either a coarse finite element mesh or by using
an algebraic approach [10, 11]. Given Φ, the acceleration on the fine mesh can be written as

ẍ = Φq̈+ ẍh f (8.3)

where q is a vector of generalized displacements associated with the low frequency part of the
response, and xh f is a vector of displacements associated with the high frequency part of the
response.

The task now is to derive the equation to accomplish this decomposition making use only of the
residual vector, r, and mass matrix, M, on the fine mesh, recognizing that there are no properties
on the coarse mesh in the usual finite element sense. As in the multigrid method, the modal
stiffness of low-mode response and the corresponding mass matrix is obtained using a restriction
operator of properties/quantities from the fine mesh.

The low and high frequencies are decoupled by imposing the M orthogonality,

q̈TΦT Mẍh f = 0,

of the high and low frequency displacements. The orthogonality condition holds for all q̈ if and
only if

ΦT Mẍh f = 0. (8.4)

Equation (8.4) implies that the high frequency part of the residual is orthogonal to the coarse
space spanned by the columns of Φ. The coarse mesh mass matrix is given by

Mc = Φ
T MΦ.

52

Substitution of equation (8.3) into equation (8.2), pre-multiplying by ΦT and making use of
equation (8.4) leads to the low frequency equilibrium condition

Mcq̈ = ΦT r. (8.5)

This way of obtaining a coarse system from Φ is called Galerkin coarsening [11]. For reference,
the coarse grid stiffness matrix Kc corresponding to the fine mesh tangent stiffness matrix K is
given by

Kc = Φ
T KΦ.

Next the high frequency equilibrium equation is derived. Solving for q̈ in equation (8.5) gives

q̈ = M−1
c Φ

T r. (8.6)

From equation (8.2), equation (8.3), and equation (8.6) determine the high frequency equilibrium
condition

Mẍh f = r−MΦM−1
c Φ

T r. (8.7)

At this point no approximations have been made. To sum up, substituting equation (8.6) and
equation (8.7) into equation (8.3) leads to

ẍ = ΦM−1
c Φ

T r
| {z }

low frequency

+M−1 (r−MΦM−1
c Φ

T r
�

| {z }

high frequency

(8.8)

The lumped mass matrix is required to obtain the most accurate approximation properties for the
explicit central difference time integrator [7, 12]. Thus, given that we are integrating the
low-frequency response with central difference, a lumped representation is needed. It is unclear
that the argument for finite elements and the fine mesh extend to the Galerkin coarse problem.
The lumping is done by applying the restriction operator to the diagonal lumped fine mesh mass
matrix,

Mc = Φ
T MΦ.

8.3.3. Explicit-Explicit Partitioning

First we consider explicit time integration for the low-frequency modes. The critical time step for
integrating these modes is constructed, again via projection of nodal quantities on the fine mesh.
If ∆tcm

cr denotes the critical time step for the coarse mesh, then a node-based estimate [6] is given
by

∆tcm
cr = min

coarse nodes
2

r

ΦT M

ΦT Kmax

where Kmax is a vector that contains the maximum modal stiffness for each node of the fine mesh.
Details of the calculation of the maximum modal stiffness can be found in [6].

Next, we wish to make use of the assumption that the high-frequency dynamics are negligible.
The accelerations represented by the second term in equation (8.8) correspond to those

53

high-frequency modes. The idea is to replace M−1 in the second term of equation (8.8) by M̃−1,
where

M̃ = Mα, (8.9)

for a diagonal matrix α that contains a scale factor for each node of the fine mesh. These scale
factors are greater than 1 wherever the nodal based time step at a fine mesh node is smaller than
the critical time step on the coarse mesh.

αi =

(
Kmax

i

4Mi

(
∆tcm

cr

�2
if 2

q
Mi

Kmax
i
> ∆tcm

cr

1 otherwise
(8.10)

Consequently, the mass scaling produced by equation (8.10) is applied only to the high-frequency
modes that could not otherwise be integrated stably with the central difference time integrator at
the critical time step on the coarse mesh. The net result for the acceleration, ẍ, on the reference
mesh is of the form

ẍ = ΦM−1
c Φ

T r
| {z }

low frequency

+ M̃−1 (r−MΦM−1
c Φ

T r
�

| {z }

mass-damped high frequency

(8.11)

8.3.4. Energy Ratio: a Measure of Approximation

Kinetic energy calculations can be performed for the low frequency and high frequency
contributions separately. Using time integrated acceleration components in (16), the kinetic
energy in the low frequencies is,

KEl f =
1
2

Mkvl f +∆tΦM−1
c Φ

T rk2 (8.12)

Likewise, the kinetic energy in the high frequencies is,

KEh f =
1
2

Mkvh f +∆tM̃−1 (r−MΦM−1
c Φ

T r
�
k2 (8.13)

With the kinetic energy quantities, an energy ratio is computed as follows,

Energy Ratio =
KEl f

KEl f +KEh f

Obviously, the time integrated estimates of the kinetic energies require additional memory yet
they provide a useful measure for the approximations being made with the explicit-explicit modal
filtering. When there is little or no approximation made using a mass-damped high frequency
response the energy ratio is asymptotically approaching unity. In contrast, when the
approximation error is significant, the energy ratio is well below one.

54

REFERENCES

[1] Sierra/SolidMechanics Team. Sierra/SolidMechanics VOTD Theory Manual. Technical
Report In draft, Sandia National Laboratories, Albuquerque, NM, 2019.

[2] B.W. Spencer, M.W. Heinstein, J.D. Hales, K.H. Pierson, and J.R. Overfelt. Multi-length
scale algorithms for failure modeling in solid mechanics. Technical Report
SAND2008-6499, Sandia National Laboratories, Albuquerque, NM, 2008.

[3] Sierra/SolidMechanics Team. Sierra/SolidMechanics VOTD User’s Guide. Technical
Report In draft, Sandia National Laboratories, Albuquerque, NM, 2019.

[4] T. Belytschko, W.K. Liu, and B. Moran. Nonlinear Finite Elements for Continua and

Structures. John Wiley & Sons, 2000.

[5] L. Olovsson, K. Simonsson, and M. Unosson. Selective mass scaling for explicit finite
element analyses. International Journal for Numerical Methods in Engineering, 63(10):
1436–1445, 2005.

[6] M. Heinstein, F. Mello, and C. Dohrmann. A nodal-based stable time step predictor for
transient dynamcis with explicit time integration. Am Soc Mech Eng Press Vessels, Piping

Division, 343:225–229, 1996.

[7] T.J.R. Hughes. The Finite Element Method: Linear static and dynamic finite element

analysis. Dover, 2000. Reprint of “The Finite Element Method”, Prentice-Hall, 1987.

[8] H.M. Hilber, T.J.R. Hughes, and R.L. Talor. Improved numerical dissipation for time
integration algorithms in structural dynamics. Earthquake Engineering and Structural

Dynamics, 5:283–292, 1977.

[9] E. Hinton, T. Rock, and O.C. Zienkiewicz. A note on mass lumped and related processes in
the finite element method. Earthquake Engineering and Structural Dynamics, 4(3):
245–249, 1976.

[10] A. Toselli and O. Widlund. Domain Decomposition Methods – Algorithms and Theory.
Springer Series in Computational Mathematics. Springer, 2005.

[11] A. Brandt. General highly accurate algebraic coarsening. Elect. Trans. Numer. Anal., 10:
1–20, 2000.

[12] R.D. Krieg and S.W. Key. Transient shell response by numerical time integration.
International Journal for Numerical Methods in Engineering, 7:273–286, 1973.

55

Implicit Only

9. EXTERNAL LOADSTEP PREDICTOR

Production-ready loadstep predictor types are available in Sierra/SM [1]. The
LOADSTEP PREDICTOR command block controls the behavior of the predictor that is used to
predict the solution at the beginning of a new load step. This command block is placed in the
SOLVER scope.

The EXTERNAL, EXTERNAL_FIRST and TANGENT predictor types are special use capabilities
currently under development.

BEGIN LOADSTEP PREDICTOR

TYPE = <string>EXTERNAL|EXTERNAL_FIRST|TANGENT

END [LOADSTEP PREDICTOR]

The tangent predictor is selected with the TANGENT option, which is useful in combination with
the tangent preconditioner. This type of predictor uses the tangent preconditioner to estimate the
next load step’s solution.

The other two predictor types use the solution from a file to predict the solution at new load steps.
For instance, the external predictor file can come from the results output of a previous model run
that included the command OUTPUT EXTERNAL PREDICTOR VARIABLES in the output block,
i.e.:

BEGIN RESULTS OUTPUT

OUTPUT EXTERNAL PREDICTOR VARIABLES

END [RESULTS OUTPUT]

If you would like to try the external predictor, please contact Sierra support for more information.

REFERENCES

[1] Sierra/SolidMechanics Team. Sierra/SolidMechanics VOTD User’s Guide. Technical Report
In draft, Sandia National Laboratories, Albuquerque, NM, 2019.

56

10. TOTAL LAGRANGE

Total Lagrangian [1] formulations are written in terms of Lagrangian measures of stress and
strain, where derivatives are taken with respect to the Lagrangian or material coordinates. This
differs from the approach used in most other element formulations in the code including the
uniform gradient hex, which computes derivatives with respect to the Eulerian or spatial
coordinates. The currently implemented finite element topologies for the total Lagrange section
are the 8-noded hexahedron, 20-noded hexahedron, 27-noded hexahedron, 13-noded pyramid,
4-noded tetrahedron, 10-noded tetrahedron, and 15-noded wedge.

BEGIN TOTAL LAGRANGE SECTION <string>section_name

FORMULATION = <string>FULLY_INTEGRATED|

COMPOSITE_TET(FULLY_INTEGRATED)

STRAIN INCREMENTATION = <string>STRONGLY_OBJECTIVE|

LOGARITHMIC_MAPPING(STRONGLY_OBJECTIVE)

CUBATURE DEGREE = <integer>degree

VOLUME AVERAGE J = <string>ON|OFF

END [TOTAL LAGRANGE SECTION <string>section_name]

10.1. FORMULATION

FORMULATION = <string>FULLY_INTEGRATED|

COMPOSITE_TET(FULLY_INTEGRATED)

The FORMULATION command defaults to the FULLY_INTEGRATED formulation for the given
finite element topology. For the 10-noded tetrahedral topology, the COMPOSITE_TET option
exists, which uses a piecewise linear nodal basis instead of the standard quadratic nodal basis. For
more information on the COMPOSITE_TET option please consult the Sierra/SM 4.54 User’s Guide
Chapter ??.

57

10.2. STRAIN INCREMENTATION

STRAIN INCREMENTATION = <string>STRONGLY_OBJECTIVE|

LOGARITHMIC_MAPPING(STRONGLY_OBJECTIVE)

In the total Lagrange formulation, the deformation gradient is always calculated as the derivative
of the current configuration with respect to the reference configuration,

FFFn+1 =
∂xxxn+1

∂XXX
. (10.1)

It follows that the incremental deformation gradient is defined as the deformation gradient
between the configurations at times n and n+1 and can be written in terms of FFFn and FFFn+1,

fff n+1 = FFFn+1FFF−1
n . (10.2)

The STRAIN INCREMENTATION command is then specific to hypoelastic material models, that
is, models that use the rate of deformation to increment the stress. Two approaches are available:
the STRONGLY_OBJECTIVE option in the context of the total Lagrange formulation mirrors what
is found in the SOLID_SECTION as described in [2],

dddn+1 =
1

2∆t
log

(
fff n+1 fff T

n+1

�
; (10.3)

the LOGARITHMIC_MAPPING option is computationally more expensive, but comparatively more
accurate in problems with large rotations,

dddn+1 = sym
1
∆t

log
(

fff n+1

�
(10.4)

58

10.3. CUBATURE DEGREE

CUBATURE DEGREE = <integer>degree

This option effectively determines the number of integration points to be employed during
numerical integration. For hexahedral elements, CUBATURE DEGREE = 3 corresponds to 8
integration points, and for tetrahedral elements, CUBATURE DEGREE = 3 corresponds to 5
integration points. The default is CUBATURE DEGREE = 5 for the FULLY_INTEGRATED
27-noded hexahedron, CUBATURE DEGREE = 3 for all other FULLY_INTEGRATED formulation
elements, and CUBATURE DEGREE = 2 for the COMPOSITE_TET formulation.

The following topology, formulation, and cubature combinations are available:

ELEMENT NUM. CUBATURE
FAMILY NODES FORMULATION DEGREE(S)

hexahedron 8 fully_integrated 3
20 fully_integrated 3
27 fully_integrated 5

pyramid 13 fully_integrated 3
tetrahedron 4 fully_integrated 1, 2, 3

10 fully_integrated 2, 3, 4
tetrahedron 10 composite_tet 2, 3

wedge 15 fully_integrated 3

59

10.4. VOLUME AVERAGE J

VOLUME AVERAGE J = <string>ON|OFF

This command is used to construct a deformation gradient where the dilatational component is
volume-averaged over the element domain. It is applicable for implicit and explicit problems
employing nearly incompressible material response, such as metal plasticity, and may provide
less stiff solutions in that case. In addition, if this command is ON, then the hydrostatic component
of the stress is also volume averaged. The default setting is OFF for the FULLY_INTEGRATED
formulation and ON for the COMPOSITE_TET formulation.

60

REFERENCES

[1] K.-J. Bathe. Finite element formulations for large deformation dynamic analysis.
International Journal for Numerical Methods in Engineering, 9:353–386, 1975.

[2] M.M. Rashid. Incremental kinematics for finite element applications. International Journal

for Numerical Methods in Engineering, 36:3937–3956, 1993. doi.

61

http://dx.doi.org/10.1002/nme.1620362302

11. BOLT

Warning: The Bolt section is known to have limited functionality in implicit anal-
yses.

BEGIN BOLT SECTION <string>section_name

ATTACHMENT RADIUS = <real>radius

SURFACE 1 = <string>surf1

SURFACE 2 = <string>surf2

NORMAL DISPLACEMENT FUNCTION = <string>normFunc

SHEAR DISPLACEMENT FUNCTION = <string>shearFunc

END

The BOLT command block is used to define a two node beam or set of beams representing
individual bolts or other fasteners. This capability is similar to the SPOT WELD capability. The
beam elements should be meshed such that one beam end node is roughly on surface 1 and the
other beam end node is roughly on surface 2. The beam element does not need to be meshed
contiguous with the surface nodes.

The beam element is attached to all nodes and faces within a specified radius of the beam end
nodes given by the ATTACHMENT RADIUS command. To be valid the bolt must find at least one
face and three nodes within this radius on each surface.

The NORMAL DISPLACEMENT FUNCTION and SHEAR DISPLACEMENT FUNCTION define
normal and shear force displacement functions for the bolt. The normal displacement function
defines tensile response in positive x and compressive response in negative x. The shear
displacement function is radially symmetric and only the positive x portion of the function will be
used. The last point on the shear displacement function and the first and last points on the normal
displacement function implicitly define the bolt failure criteria. Once a bolt fails the strength will
ramp down over 10 steps and the bolt will provide zero force thereafter.

The bolt uses the same combined shear/normal mode failure as does the spot weld as defined in
Equation 11.1. un is the bolt normal extension. The maximum value given for un in the normal
displacement curve is uncrit

, but is different for positive and negative displacements. ut is the bolt
shear deformation. The maximum value given for ut in the normal displacement curve is utcrit

.
The value p is a exponent that controls the shape of the failure surface, currently this exponent is
defaulted to 2.

(un/uncrit
)p+ (ut/utcrit

)p < 1.0 . (11.1)

62

The original direction defining normal and shear displacement is defined by the bolt element
orientation. This normal will rotate based on the rotation of attached faces, not rotation of the bolt
element itself.

Table 11-1 describes the output variables available on the bolt elements.

Table 11-1. Bolt Element Output Variables

Name Description

displacement_

normal

Current normal displacement in bolt

displacement_

shear

Current shear displacement in bolt

force_normal Current normal force in bolt
force_shear Current shear force in bolt
bolt_death_

status

One for alive, zero for dead, some value between zero and one when
fading out immediately after hitting the death criteria.

63

12. LINEAR BEAM

Warning: The Linear Beam section is known to have limited functionality in im-
plicit analyses.

BEGIN LINEAR BEAM SECTION <string>section_name

T AXIS = <real>tx <real>ty <real>tz

AREA = <real>area

I11 = <real>i11

I22 = <real>i22

I12 = <real>i12(0.0)

J = <real>J

SHEAR AREA 1 = <real>val(AREA)

SHEAR AREA 2 = <real>val(AREA)

END

The LINEAR BEAM SECTION command block specifies the properties for a linear beam element.
If this command block is referenced in an element block of three-dimensional, two-node elements,
the elements in the block will be treated as beam elements. The name, beam_section_name,
can be used by the SECTION command line in a PARAMETERS FOR BLOCK command block.

The beam geometry properties are defined via areas and moments of inertia for the beam section.
The linear beam will behave as a linear elastic element. If a linear beam has a nonlinear material,
only the elastic constants of that material, such as Young’s modulus and Poisson’s ratio, will
affect the beam behavior.

The beam element is formulated in a local orthogonal RST coordinate system. The R axis of the
beam lies along the beam element. The T axis direction is given in the input deck. If the provided
T axis is not orthogonal to R, the closest vector to T that is orthogonal to R will be used define the
T axis. The S axis is then constructed orthogonal to R and T based on the right hand rule (The
actual method of forming these axes is slightly different from this description.). The T AXIS

command in the linear beam behaves identically to the T AXIS command in the standard beam.
See the BEAM SECTION description in the Sierra/SM 4.54 User’s Guide Section ?? for more
examples and discussion on use of the T AXIS command.

The following cross sectional properties are available for linear beams.

• AREA: Cross sectional area used to define axial and shear properties.
• I11: Bending moment of inertia in the T direction of the beam.
• I22: Bending moment of inertia in the S direction of the beam.

64

• I12: Product of inertial of the beam for asymmetric sections. This value is by default set to
zero.
• J: Polar moment of inertia used to define beam torsional properties.
• SHEAR AREA 1: Area used for shear resistance in the T direction. If unspecified the cross

sectional area AREA will be used.
• SHEAR AREA 2: Area used for shear resistance in the S direction. If unspecified the cross

sectional area AREA will be used.

This linear beam is a Timoshenko (also called a Reissner-Mindlin) shear deformable thick beam.
If the thickness is small relative to the length, it behaves like an Euler-Bernoulli beam. The
pre-integrated element stiffness was taken directly from Reference [1].

Note, linear beam elements do not calculate element stress or stress based quantities. Linear beam
elements generate nodal internal forces however no element specific output quantities are
currently available on linear beam elements.

REFERENCES

[1] J.S. Przemieniecki. Theory of Matrix Structural Analysis. Dover Publications Inc., New
York, NY, 1985.

65

13. CONTACT

This chapter describes contact features that are not fully tested or are still in development or have
usability issues.

13.1. ANALYTIC CONTACT SURFACES

This section describes the input syntax for defining analytic rigid contact surfaces in a Sierra/SM
analysis.

A contact surface can be defined by an analytic surface. An analytic surface is defined by an
algebraic expression, not by a collection of faces derived from elements. For example, an
algebraic expression that defines the surface of a cylinder.

The contact node set can be used in a node to analytic surface interaction. Analytic surface can
only interact with node-based or face-based surfaces, and cannot interact with each other.

Sierra/SM permits the definition of rigid analytic surfaces for use in contact. Contact evaluation
between a deformable body and a rigid analytic surface can be faster than contact evaluation
between two faceted bodies. Therefore, using a rigid analytic surface is more efficient than using
a faceted body to try to approximate a geometric surface.

Several types of analytic surfaces definitions are available.

13.1.1. General Analytic Surfaces

Defining a general analytic body is involved. First the mathematical description of the body must
be input at the sierra scope:

BEGIN ANALYTIC SURFACE <string>geomName

ORIGIN = <real>Ox <real>Oy <real>Oz

RAXIS = <real>Rx <real>Ry <real>Rz

SAXIS = <real>Sx <real>Sy <real>Sz

STARTING POINT = <real>start_r <real>start_s

CIRCLE =

<real>p2r <real>p2s <real>p3r <real> p3s

LINE = <real>p2r <real>p1r

REVOLVE = <real>start_theta <real>end_theta

TRANSLATE = <real>start_t <real> end_t

66

END

The analytic surface is created by defining a two dimensional set of lines and then extruding or
revolving those lines to create a three dimensional surface.

The ORIGIN command defines the XYZ coordinates of the origin of the local two dimensional RS
coordinate system. The RAXIS and SAXIS commands define the R and S axes for the two
dimensional coordinate system. If R and S are not fully orthogonal as input SAXIS will be
orthogonalized against RAXIS. A T axis is also defined that is orthogonal to both R and S and
obeys the right hand rule.

Exactly one STARTING POINT command must be placed in the command block. The starting
point command gives the coordinates for the first RS line segment point. Subsequent lines and
curves are added by providing LINE and CIRCLE commands. The LINE command creates a new
linear line segment from the end of the last line segment or the starting point to the provided
point. The CIRCLE command creates a new curved line segment. The CIRCLE command creates
a circular arc going though the end of the last line segment or starting point and the two provided
points. The circular arc will end at the last provided point p3.

Once all line segments are defined in RS coordinates, those line segments can be turned into a
three dimensional body. The REVOLVE command revolves a set of lines about the R axis. The
start angle and end angle for the revolve are specified in degrees with start_theta and
end_theta. The zero degree line for theta is the S axis. The TRANSLATE commands extrudes
the two dimensional line segments into a three dimensional surface. The extrusion is along the T
axis starting from start_t and ending at end_t. Exactly one REVOLVE or one TRANSLATE
command must be specified in the ANALYTIC SURFACE command block.

The geometry for the rigid body is defined at the BEGIN SIERRA scope. The rigid surface itself
is input into the contact scope via the ANALYTIC GENERAL SURFACE command block inside the
BEGIN CONTACT DEFINITION scope:

BEGIN ANALYTIC GENERAL SURFACE <string>surfName

ANALYTIC SURFACE = <string>geomName

REFERENCE RIGID BODY = <string>rbName

END

The ANALYTIC GENERAL SURFACE command block creates an analytic surface named
surfName. The name surfName can be referenced when defining interactions between contact
surfaces. The geomName string in the ANALYTIC SURFACE command references the name of an
analytic geometry defined via the ANALYTIC SURFACE command block in the sierra scope.

Optionally the analytic surface can be associated with a rigid body, for information on rigid
bodies see the Sierra/SM 4.54 User’s Guide. If an analytic surface is associated with a rigid body,
the surface will translate and rotate along with the rigid body. Additionally any contact forces
applied to the analytic surface will be assembled to the rigid body reference node causing the
rigid body to move.

The VISUALIZE CONTACT FACETS option (See the Sierra/SM 4.54 User’s Guide) is useful to
confirm that analytic rigid surfaces are being defined as expected. When using the visualize facet

67

option, general analytic surfaces will be represented by an approximate faceted surface in the
output meshes.

Example: The example below defines an analytic cylinder. The cylinder is centered at
(0.0, 0.0, 0.0). The center axis of the cylinder lies along the z-axis. The cylinder has a
radius 1.0 and length of 10.0. The cylindrical surface is defined by creating a line in RS space
and then revolving that line about the T axis.

The cylinder is attached to a rigid body block_1000, the analytic cylinder around block_1000

impacts the meshed exterior surface of finite element block block_1.

BEGIN SIERRA

BEGIN ANALYTIC SURFACE axleGeom

ORIGIN = 0.0 0.0 0.0

RAXIS = 1.0 0.0 0.0

SAXIS = 0.0 1.0 0.0

STARTING POINT = -5.0 1.0

LINE = 5.0 1.0

REVOLVE = 0.0 360.0

END

BEGIN RIGID BODY axleRB

END

BEGIN SOLID SECTION axleSect

RIGID BODY = axleSect

END

BEGIN FINITE ELEMENT MODEL mesh1

BEGIN PARAMETERS FOR BLOCK block_1

END

BEGIN PARAMETER FOR BLOCK block_1000

SECTION = axleSect

END

END

BEGIN PRESTO PROCEDURE p1

BEGIN PRESTO REGION r1

BEGIN CONTACT DEFINITION c1

BEGIN ANALYTIC GENERAL SURFACE axleSurf

ANALYTIC SURFACE = axleGeom

REFERENCE RIGID BODY = block_1000

END

CONTACT SURFACE block_1_surf CONTAINS block_1

68

BEGIN OUTPUT OPTIONS

AREA UPDATE FREQUENCY = <integer>numStep(1000)

END

BEGIN ENFORCEMENT OPTIONS

CONTACT FORCE PREDICTOR = OFF|ON(ON)

END

BEGIN INTERACTION

MASTER = axleSurf

SLAVE = block_1_surf

FRICTION MODEL = frictionless

END

END

END

END

END

13.1.2. Plane

BEGIN ANALYTIC PLANE <string>name

NORMAL = <string>defined_direction

POINT = <string>defined_point

REFERENCE RIGID BODY = <string>rb_name

END [ANALYTIC PLANE <string>name]

Analytic planes are not deformable and two analytic planes cannot interact with each other
through contact. The ANALYTIC PLANE command block for defining an analytic plane begins
with the input line shown above:

The string name is a user-selected name for this particular analytic plane. This name is used to
identify the surface in the interaction definitions. The string defined_direction in the
NORMAL command line refers to a vector that has been defined with a DEFINE DIRECTION

command line; this vector defines the outward normal to the plane. The string defined_point

in the POINT command line refers to a point in a plane that has been defined with a
DEFINE POINT command line. The plane is infinite in size. The body the plane is contacting
should initially be on the positive outward normal side of the plane. See the Sierra/SM 4.54
User’s Guide for more information on defining points and directions.

The REFERENCE RIGID BODY command connects the analytic plane to the rigid body block
named by rb_name. If the rigid body block rotates or translates, the analytic contact plane will
rotate and translate with it. The REFERENCE RIGID BODY option only works with the Dash
search option.

69

13.1.3. Cylinder

BEGIN ANALYTIC CYLINDER <string>name

CENTER = <string>defined_point

AXIAL DIRECTION = <string>defined_axis

RADIUS = <real>cylinder_radius

LENGTH = <real>cylinder_length

CONTACT NORMAL = <string>OUTSIDE|INSIDE

END [ANALYTIC CYLINDER <string>name]

Analytic cylindrical surfaces are not deformable; they cannot be moved, and two analytic
cylindrical surfaces will not interact with each other.

The string name is a user-selected name for this particular analytic cylinder. This name is used to
identify the surface in the interaction definitions. The cylindrical surface has a finite length. The
center point of the cylinder and the direction of the radial axis of the cylinder are defined by the
CENTER and AXIAL DIRECTION command lines, respectively. The string defined_point in
the CENTER command line refers to a point that has been defined with a DEFINE POINT

command line; the string defined_axis in the AXIAL DIRECTION command line refers to a
direction that has been defined with a DEFINE DIRECTION command line. See Sierra/SM 4.54
User’s Guide for more information on defining points and directions.

The radius of the cylinder is the real value cylinder_radius specified with the RADIUS
command line, and the length of the cylinder is the real value cylinder_length specified by
the LENGTH command line. The length of the cylinder (cylinder_length) extends a distance
of cylinder_length divided by 2 along the cylinder axis in both directions from the center
point.

The CONTACT NORMAL command defines whether the normal of the contact cylinder points
outward or inward.

CONTACT NORMAL = OUTSIDE | INSIDE

13.1.4. Other Analytic Surface Options

BEGIN OUTPUT OPTIONS

ARS NODAL AREA UPDATE FREQUENCY = <integer>val(1)

CONTACT STATUS TYPE = JAS|DEBUG (JAS)

END

ARS CONTACT OUTPUT = OFF|ON(OFF)

The nodal area update frequency is a performance option to control how often the ARS surface
normals are updated. For a static or semi-static solution increasing this value may increase
performance at the potential trade off of a inaccuracy in frictional quantities.

The CONTACT STATUS TYPE controls if the nodal output variable contact_status is written
based on JAS conventions (0 not on surface, 0.5, on surface not in contact, 1.0 sliding, -1.0
sticking) or some other convention.

70

The ARS CONTACT OUTPUT command controls whether ARS specific detailed output variables
are computed or not.

71

13.2. IMPLICIT SOLVER CONTROL CONTACT OPTIONS

BEGIN CONTROL CONTACT

CONTROL SUBSET = <list>

controlTypes(ADAGIO, ARS, JAS)

END [CONTROL CONTACT]

The CONTROL SUBSET command restricts a control contact block to only apply to some contact
enforcement types. The options to the command are ADAGIO to control kinematic and
augmented Lagrange contact, JAS to control JAS mode contact, and ARS to control analytic rigid
surface contact. By default, the control contact block applies to all three contact types. Use of the
control subset logic may be useful if it is desired to have the different enforcement types use
different control contact option sets.

The CONTROL CONTACT block is described in Sierra/SM 4.54 User’s Guide [1].

The AREA UPDATE FREQUENCY is a performance option used to control how often the analytic
contact surfaces update the local areas and normal directions. Updating these values more
frequency (lower numStep) may lower performance but yield greater accuracy (especially in
derived output quantities such as contact traction).

If the CONTACT FORCE PREDICTOR option is on the previous step contact forces will be used as
an initial guess to the current step contact forces. This could improve results if the contact forces
are stable step to step or make results worse if the contact forces are highly volatile. The default
value for this option is ON as ARS contact is often used to model mostly static contacts.

72

REFERENCES

[1] Sierra/SolidMechanics Team. Sierra/SolidMechanics VOTD User’s Guide. Technical Report
In draft, Sandia National Laboratories, Albuquerque, NM, 2019.

73

14. J-INTEGRALS

Sierra/SM provides a capability to compute the J-integral via a domain integral.

Known Issue: Currently, the J-Integral evaluation capability is based on assump-
tions of elastostatics and a stationary crack, and is only implemented for uniform
gradient hex elements.

J is analogous to G from linear elastic fracture mechanics (−δπ/δa) and is the driving force on the
crack tip of length a [1, 2]. Crack propagation occurs when J(a) ≥ R(a), where R(a) is the
material resistance. For constant R, the resistance is often termed Jc. In the reference
configuration, the vector form of the J-integral in finite deformation [3] is

JJJ =

Z

Γ0

ΣΣΣNNNdA (14.1)

where ΣΣΣ =WIII−FFFT PPP is called the Eshelby energy-momentum tensor [4]. W is the stored energy
density in the reference configuration and FFF and PPP are the deformation gradient and first
Piola-Kirchhoff stress, respectively. Rice [2] realized that because ΣΣΣ is divergence-free in the
absence of body forces, one can examine JJJ in the direction of the defect LLL (unit vector) and obtain
a path-independent integral for traction-free crack faces. J can be written as

J =

Z

Γ0

LLL ·ΣΣΣNNNdA (14.2)

and interpreted as a path-independent driving force in the direction of the defect. We note that one
can also express ΣΣΣ in terms of Σ̄ΣΣ, where Σ̄ΣΣ =WIII−HHHT PPP and HHH = Graduuu. Although ΣΣΣ is symmetric
and Σ̄ΣΣ is not symmetric, they are equivalent when integrated over the body (DivPPP = 000).
Differences in the energy-momentum tensor stem from the functional dependence of the stored
energy function W. ΣΣΣ and Σ̄ΣΣ derive from W(FFF) and W(HHH), respectively. When integrated, both
collapse to the familiar 2-D relation for infinitesimal deformations.

J =

Z

Γ

eee1 ·ΣΣΣnnnds =

Z

Γ

(Wn1−ui,1σi jn j)ds (14.3)

74

14.1. TECHNIQUE FOR COMPUTING J

J is often expressed as a line (2D) or surface (3D) integral on a ring surrounding the crack tip.
Defining a smooth ring over which to compute this surface integral and performing projections of
the required field values onto that ring presents many difficulties in the context of a finite element
code.

To compute the J-integral in a finite element code, it is more convenient to perform a volume
integral over a domain surrounding the crack tip. We can then leverage the information at
integration points rather than rely on less accurate projections. To do this, we follow the method
described in [5]. We replace LLL with a smooth function qqq. On the inner contour of the domain Γ0,
qqq = LLL. On the outer contour of the domain C0, qqq = 000. Because the outer normal of the domain MMM

is equal and opposite of the normal NNN on Γ0, there is a change of sign. For traction-free surfaces,
we can apply the divergence theorem, enforce DivΣ̄ΣΣ = 000, and find that the energy per unit length J̄

is

J̄ = −
Z

Ω0

(Σ̄ΣΣ : Gradqqq)dV. (14.4)

We can also introduce a correction if we seek to consider cases in which the crack faces, A+0 +A−0 ,
or “caps”, S +0 +S −0 , of the domain are not traction free. For example, both cases would be
satisfied for a thumbnail crack in a pressure vessel. The correction

J̄ = −
Z

Ω0

(Σ̄ΣΣ : Gradqqq)dV −
Z

S +0+S −0+A+0+A−0

qqq ·HHHT TTT dA. (14.5)

effectively removes the contribution of the applied tractions and ensures that the integral remains
path independent. We note that the correction is integrated in the reference configuration with
referential traction TTT . When pressure is applied to S +0 , S −0 , A+0 , or A−0 , Sierra employs
Equation (14.5).

We note that all the field quantities are given via simulation and we choose to define qqq on the
nodes of the domain qqqI . We then employ the standard finite element shape functions to calculate
the gradient. We can specify the crack direction LLL or assume that the crack will propagate in the
direction normal to the crack front −MMM. For a “straight” crack front, LLL = −MMM. If SSS is tangent to
the crack front and TTT is normal to the lower crack surface, SSS ×MMM = TTT . We note that for
non-planar, curving cracks, MMM, SSS , and TTT are functions of the arc length S . For ease, we employ
the notation NNN rather than −MMM. For a crack front S 0, we can define the average driving force Javg

as

Javg =
J̄

R

S 0
LLL ·NNNdS

. (14.6)

While the average driving force is useful for interpreting experimental findings and obtaining a
macroscopic representation of the driving force, we also seek to examine the local driving force
J(S). Using the finite element interpolation functions to discretize LLL through the smooth function
qqq, we find qqq = λIqqqI . For a specific node K, we can define |qqqK | = 1 and qqqI = 000 for all other I , K on
S 0. Note that we still need to specify the function qqq in the SSS −TTT plane from the inner contour Γ0

to the outer contour C0. The resulting expression for the approximate, point-wise driving force at

75

node K on the crack front is

JK =
J̄

R

S 0
λKqqqK ·NNNdS

. (14.7)

Again, we note that if the direction of propagation LLL is taken in the direction of the normal NNN, the
denominator is

R

S 0
λKdS . More information regarding the point-wise approximation of JK can be

found in [6, 7].

Additional information on the J Integral capability can be found in [8].

76

14.2. INPUT COMMANDS

Output quantities related to J-integrals may be computed during the analysis by including one or
more J INTEGRAL command blocks in the REGION scope. This block can contain the following
commands:

BEGIN J INTEGRAL <jint_name>

#

Definition of integration domain

BLOCK = <string list>blockNames

REMOVE BLOCK = <string list>removeBlocks

ELEMENT = <int_list>elemNumbers

INCLUDE ALL BLOCKS

#

integral parameter specification commands

CRACK PLANE SIDE SET = <string list>side_sets

CRACK TIP NODE SET = <string list>node_sets

USE SURFACE FOR EDGE DIRECTION = OFF|ON(ON)

CRACK DIRECTION = <real>dir_x

<real>dir_y

<real>dir_z

INTEGRATION RADIUS = <real>int_radius

NUMBER OF DOMAINS = <integer>num_domains

FUNCTION =

PLATEAU|PLATEAU_RAMP|LINEAR(PLATEAU)

SYMMETRY = OFF|ON(OFF)

DEBUG OUTPUT = OFF|ON(OFF) WITH

<integer>num_nodes NODES ON THE CRACK FRONT

#

time period selection commands

ACTIVE PERIODS = <string list>period_names

INACTIVE PERIODS = <string list>period_names

END J INTEGRAL <jint_name>

The J-integral is performed over a domain defined by a set of elements using the standard
element assignment commands. See Sierra/SM 4.54 User’s Guide Section ?? for details.

A set of parameters must be provided to define the crack geometry used in the calculation of the
J-integral. The J-integral command block uses a sideset on one surface of the crack plane behind
the crack tip and a nodeset containing the nodes on the crack tip. Both the
CRACK PLANE SIDE SET and CRACK TIP NODE SET commands are required. These
commands specify the names of the sideset behind the crack tip and the nodeset on the crack tip,
respectively.

By default, the direction of crack propagation is computed from the geometry of the crack plane
and tip, as provided in the crack plane sideset and crack tip nodeset (LLL = NNN). At locations where
the crack intersects a surface, the computed NNN is commonly less accurate. At these locations, the

77

USE SURFACE FOR EDGE DIRECTION = ON command will attempt to improve NNN by
projecting it onto the intersected surface. The default is ON, and
USE SURFACE FOR EDGE DIRECTION = OFF should only be set if the crack tip is known to
intersect the surface at a sharp angle. Alternatively, the CRACK DIRECTION command can be
used to override the computed direction of crack propagation (LLL). This command takes three real
numbers that define the three components of the crack direction vector in the global XYZ
coordinate system.

To fully define the domains used for the domain integrals, the radius of the domains and the
number of domains must also be specified. A series of disc-shaped integration domains are
formed with varying radii going out from the crack tip. The INTEGRATION RADIUS command
specifies the radius of the outermost domain. The number of integration domains is specified
using the NUMBER OF DOMAINS command. The radii of the domains increase linearly going
from the innermost to the outermost domain. The domains will only include elements included in
the overall integration domain defined by the BLOCK command and other related commands.

The weight function qqq used to calculate the J-integral is specified by use of the FUNCTION
command line. The LINEAR function sets the weight function to 1.0 on the crack front Γ0 and 0.0
at the edge of the domain C0, int_radius away from the crack tip. The PLATEAU function,
which is the default behavior, sets all values of the weight function to 1.0 that lie within the
domain of integration and all values outside of the domain are set to 0.0. This allows for
integration over a single ring of elements at the edge of the domain. The third option for the
FUNCTION command is PLATEAU_RAMP, which for a single domain will take on the same values
as the LINEAR function. However, when there are multiple domains over the radius
int_radius, the nth domain will have weight function values of 1.0 over the inner (n-1)
domains and will vary from 1.0 to 0.0 over the outer nth ring of the domain. These functions can
be seen graphically in Figure 14-1.

We note that in employing both the PLATEAU and the PLATEAU_RAMP functions, one is
effectively taking a line integral at finite radius (albeit different radii). In contrast, the LINEAR
option can be viewed as taking the lim Γ0→ 0+. If the model is a half symmetry model with the
symmetry plane on the plane of the crack, the optional SYMMETRY command can be used to
include the symmetry conditions in the formation of the integration domains and in the evaluation
of the integral. The default behavior is for symmetry to not be used.

The user may optionally specify the time periods during which the J-integral is computed. The
ACTIVE PERIODS and INACTIVE PERIODS command lines are used for this purpose. See the
Sierra/SM 4.54 User’s Guide Section ?? for more information about these command lines.

78

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

W
ei

gh
t F

un
ct

io
n

Integration Domains

Linear
Plateau
Plateau Ramp

Crack Front

Figure 14-1. Example weight functions for a J-integral integration

domain. Weight functions shown for domain 5.

79

14.3. OUTPUT

Many variables are generated for output when the computation of the J-integral is requested. The
average value of J for each integration domain is available as a global variable, as described in
Table 14-1. The point-wise value of J at nodes along the crack for each integration domain is
available as a nodal variable, as shown in Table 14-2. Element variables such as the Eshelby
energy-momentum tensor and fields defining the integration domains are also available, as listed
in Table 14-3.

The DEBUG OUTPUT command is useful to generate output data for debugging the J-integral. If
the DEBUG OUTPUT = ON|OFF(OFF) WITH <integer>num_nodes NODES ON THE

CRACK FRONT line command is set to ON, the weight functions, q, will be output for each
node-based J value that is calculated. The user must specify num_nodes, which represents the
number of nodes along the crack front. An internal check is performed during problem
initialization that will verify that the number of nodes specified by the user on the command line
matches the number of nodes associated with the crack front.

Warning: Using the DEBUG OUTPUT command line can potentially result in an
extremely large output file because every node in the integration domain will now
compute and store (NumNodeOnCrackFront+1) ∗NumDomains weight function
vectors. This can also potentially exhaust the available memory on the machine.

80

14.4. REQUIRED DISCRETIZATION

In order to enable the correct construction of the test function qqqI , the hexahedral mesh should be
orthogonal to the crack front. An orthogonal mesh will ensure that the elements are not skewed
along the crack front. Because these elements will experience large deformation during crack-tip
blunting, well-formed elements increase the accuracy of the solution. We note that this capability
is not specific to crack front nodes. Any ellipsoidal surface with a constant bias will generate
skewed elements.

In addition, an orthogonal mesh will ensure that the location of a point-wise surface integral will
be a closest point projection from the crack-tip node. Consequently, any surface integral via a
domain integral at a node along the crack front will be most accurate if the specified radius is a
minimum. In addition to increasing the accuracy of point-wise evaluations of the J-integral, an
orthogonal mesh will also ease the search algorithm for point-wise evaluations. The search is
performed along the normal to the crack front. If the mesh is aligned with the normal, the
specification of qqq is straightforward. Misalignment can result in a “checker boarding” of the
integration domains which presents the possibility that qqqI will always be one and the J-integral
will be zero. Future work may generalize the calculation of JK , but we are currently limited to
hexahedra. Given these requirements, we collaborated with the Cubit team to add the capability to
generate meshes orthogonal to a surface. The Cubit team implemented the command

adjust boundary surface AA snap_to_normal curve A

which enables the generated elements on surface AA to be “snapped” normal to the curve A. For
example, one may choose to sweep adjacent squares along the crack front curve A. For crack
plane surfaces AA and AB joined by the crack front curve A, one would issue the following
commands in Cubit

surface AA AB scheme map

mesh surface AA

node in curve A position fixed

adjust boundary surface AA snap_to_normal curve A

mesh surface AB

node in curve A position fixed

adjust boundary surface AB snap_to_normal curve A

fixed curve A

to obtain an orthogonal mesh. The next step is to sweep that mesh “up” and “down” from the
crack surface. To ensure that Cubit employs a “simple” sweep so that the search is consistent
through the direction of the sweep, we use

volume ABC scheme sweep source surface AA target

surface AC

propagate_bias autosmooth_target off sweep_smooth

linear

sweep_transform translate

for volume ABC. Because proper mesh construction ensures accuracy and smoothness in JK , we
encourage analysts to use the snap_to_normal and autosmooth_target off options.

81

14.5. RESULTS AND HISTORY OUTPUT

This section lists output variables for J-Integral.

• Table 14-1 Global Variables for J-Integral
• Table 14-2 Nodal Variables for J-Integral
• Table 14-3 Element Variables for J-Integral

Table 14-1. Global Variables for J-Integral

Variable Name Type Comments

j_average_

<jint_name>

Real[] Average value of the J-integral over the
crack. Array sized to number of integration
domains and numbered from inner to outer
domain. <jint_name> is the name of the
J INTEGRAL block.

Table 14-2. Nodal Variables for J-Integral

Variable Name Type Comments

j_<jint_name> Real[] Point-wise value of J-integral along crack.
Array sized to number of integration do-
mains and numbered from inner to outer do-
main. <jint_name> is the name of the
J INTEGRAL block.

Table 14-3. Element Variables for J-Integral

Variable Name Type Comments

energy_

momentum_

tensor

FullTen36 Energy momentum tensor

integration_

domains_

<jint_name>

Integer[] Flag indicating elements in integration do-
mains. Set to 1 if in domain, 0 otherwise.
Array sized to number of domains and num-
bered from inner to outer domain. <jint_
name> is the name of the J INTEGRAL

block.

82

REFERENCES

[1] J.D. Eshelby. The force on an elastic singularity. Philosophical Transactions of the Royal

Society of London A, 244:87–112, 1951. URL
http://dx.doi.org/10.1098/rsta.1951.0016.

[2] J.R. Rice. A path independent integral and the approximate analysis of stress concentration
by notches and cracks. Journal of Applied Mechanics, 35:379–386, 1968.

[3] G.A. Maugin. Material Inhomogeneities in Elasticity. Chapman & Hall/CRC, New York,
1993.

[4] J.D. Eshelby. Energy relations and the energy-momentum tensor in continuum mechanics. In
M. Kannien, editor, Inelastic Behavior of Solids, pages 77–114. McGraw-Hill, New York,
1970.

[5] F.Z. Li, C.F. Shih, and A. Needleman. A comparison of methods for calculating energy
release rates. Engineering Fracture Mechanics, 21:405–421, 1985. URL
http://dx.doi.org/10.1016/0013-7944(85)90029-3.

[6] C.F. Shih, B. Moran, and T. Nakamura. Energy release rate along a three-dimensional crack
front in a thermally stressed body. International Journal of Fracture, 30:79–102, 1986. URL
http://dx.doi.org/10.1007/BF00034019.

[7] ABAQUS. Theory Manual, volume Version 6.7. Hibbitt, Karlsson and Sorensen, Providence,
RI, 2007.

[8] Y. Ohashi, J.W. Foulk, and A.J. Lindblad. Verification of J integral capability in sierra
mechanics. Technical Report SAND2012-8720, Sandia National Laboratories, Albuquerque,
NM, 2012.

83

http://dx.doi.org/10.1098/rsta.1951.0016
http://dx.doi.org/10.1016/0013-7944(85)90029-3
http://dx.doi.org/10.1007/BF00034019

15. NONLOCAL REGULARIZATION

Known Issue: Each nonlocal block must be uniquely paired with a material. A
single material cannot have local and nonlocal blocks. Future work will generalize
the methodology.

Using material models that employ strain softening to capture the micromechanics of the failure
process will result in mesh-dependent solutions. Fundamentally, the partial differential equation is
changing character and the problem becomes ill-posed (for both elliptic and hyperbolic systems).
There are multiple methodologies to regularize the solution and nonlocality has been employed to
converge to a single solution from a multiplicity of solutions.

15.1. VARIATIONAL NONLOCAL METHOD

In the vein of nonlocality, a variational nonlocal method was derived such that one can identify
the state variable that controls softening Z and pose a variational principle such that the stored
energy is dependent on a nonlocal state variable Z̄. At a point, a Lagrange multiplier enforces
Z̄ = Z. When we minimize and discretize, however, we derive an L2 projection for the “coarser” Z̄

and the balance of linear momentum for the “fine” scale. If we assume that the basis functions for
the coarser discretization D are constant and discontinuous, we obtain the nonlocal Z̄ as a simple
volume average of Z.

Z̄ =
1

R

D
dV

Z

D

ZdV (15.1)

In this particular case, less is more. We do not want to recover the mesh-dependent solution
inherent in Z with a Z̄. Instead, we seek to specify an additional discretization (length scale)
independent of the discretization for Z. Because Z̄ is just an average, we can consider a coarse
domain to be a patch of fine scale elements having volume V that is consistent with a prescribed
length scale l where V = l3. For example, one might correlate the mesh dependence in the solution
with scalar damage φ. The variational nonlocal method would construct a φ̄ for each nonlocal
domain D. The stress would then evolve from φ̄ and not φ.

Domain decomposition algorithms are invoked to construct coarse scale domains of common
volume. For parallel execution, each processor (having nonlocal element blocks) is partitioned
during initialization. Nonlocal averages are calculated on the processor and no communication is
necessary between processors.

84

Warning: Because nonlocal domains are initially decomposed on each processor,
nonlocal geometries will not a) be consistent with different parallel decompositions
and b) admit rebalancing. No infrastructure exists to maintain the character of the
nonlocal domains during rebalancing.

85

15.2. NONLOCAL PARTITIONING

Because communication in parallel processing scales with the surface area of the domain, we
believed that software designed with the intent of limiting communication would be ideal for
application to nonlocal regularization. Hence, graph-based (METIS, Zoltan Hypergraph) and
geometric (Zoltan Recursive Coordinate Bisection, Zoltan Recursive Inertial Bisection)
decomposition algorithms were implemented and available for the analyst. Figure 15-1 illustrates
the Zoltan partitioning methodologies for a circular region surrounding a sharp crack tip. We note
that non-contiguous domains can occur in graph-based methodologies. For these reasons,
ZOLTAN_RCB was selected to be the default partitioning scheme.

Zoltan RCB Zoltan RIB Zoltan Hypergraph

Figure 15-1. Illustration of 400 nonlocal partitions at a sharp crack

tip using Zoltan Recursive Coordinate Bisection (RCB), Zoltan Re-

cursive Inertial Bisection (RIB), and Zoltan Hypergraph partition-

ing methodologies. Note that Zoltan Hypergraph can generate

non-contiguous domains. The default partitioning methodology in

Sierra is Zoltan RCB.

Initial findings employing geometric partitioning illustrated a sensitivity to domain shape. A
re-examination of Figure 15-1 will reveal that the aspect ratios of the domains are significant.
Because we are aligning the evolution of a nonlocal variable with the nonlocal domain shape,
domains of increasing aspect ratio result in anisotropic evolution. Although other researchers
have developed methods for domain decomposition that focus on domain shape [1], we gravitated
towards clustering algorithms and the resulting isotropy [2]. Figure 15-2 illustrates the mesh,
grid, and result of k-means clustering, a centroid Voronoi Tessellation (CVT). Given a body on
processor with mesh size h, we overlay a grid with uniform cell size c. We then find points both
inside (red) and outside (blue) the body. After calculating the number of nonlocal volumes N for a
body of volume B through N = B/l3, we seed the centroids of the nonlocal domains through
Zoltan RCB. K-means clustering of points inside the body evolves the locations of the centroids
via Lloyd’s algorithm. The algorithm will converge to a CVT, independent of the FE
discretization. The tolerance for convergence tol is specified as a fraction of the cell size c. The
nonlocal domains are then populated by each element’s proximity to the nearest CVT centroid.
The resulting nonlocal domains are illustrated in Figure 15-2. We note that the nonlocal domain

86

size is only illustrative. Nonlocality in damage, for example, would require a smaller length scale
l resulting in a finer discretization of Voronoi polygons.

initial

mesh

nolocal

domains

(CVTs)

uniform

grid for

k-means

clustering

grid points

inside body

grid points

outside body

Figure 15-2. Nonlocal domains derive from a Centroidal Voronoi

Tessellation (CVT). A partitioned mesh for parallel processing with

element size h determines the boundaries of a uniform grid with cell

size c. K-means clustering evolves a set of N centroids into a CVT.

87

15.3. COMMAND SUMMARY

In the specification of the block, one can invoke nonlocality in a state variable Z through

begin parameters for block block_1

material ductile_metal

solid mechanics use model elasto_thermo_visco_poro_plasticity

section = solid_1

NONLOCAL REGULARIZATION ON <string>varName WITH LENGTH SCALE =

<real>length [AND STAGGERING]

NONLOCAL REGULARIZATION PARTITIONING SCHEME =

METIS|ZOLTAN_HYPERGRAPH|ZOLTAN_RCB|ZOLTAN_RIB|KMEANS (ZOLTAN_RCB)

#

Options for k-means clustering

#

NONLOCAL REGULARIZATION KMEANS CELL SIZE = <real>cell_size

NONLOCAL REGULARIZATION KMEANS MAXIMUM ITERATIONS = <int>max_iter

NONLOCAL REGULARIZATION KMEANS TOLERANCE = <real>tol

end parameters for block block_1

where the varName is the state variable Z to be averaged and length defines the nonlocal
volume V = length3. The k-means clustering employs a uniform grid having a size cell_size
and tolerance for convergence tol. The maximum number of iterations for k-means clustering is
given by max_iter. One can output the partitions through the NONLOCAL_ELEMENT_DOMAIN
element variable. The output of element variables is described in the Sierra/SM 4.54 User’s Guide
Section ??. In addition, each partition and its volume is noted in the log file. The nonlocal
variable Z̄ can be output through the element variable NONLOCAL_varName_AVERAGE while the
local variable Z is output through varName. We remind the reader that material points contain
both Z and Z̄. The energy, stress, and tangent depends on Z̄. The constitutive update evolves Z.
This process, however, is not employed when using AND STAGGERING. In this specific case,
local variables are averaged after each time step tn and used as the initial conditions for tn+1.
Strictly speaking, AND STAGGERING approximates the variational nonlocal method. A
fundamental assumption of the nonlocal method is that one is employing a constitutive model in
which the state variable update is separate from the evaluation of the energy, stress, or tangent.
Currently, only one model in LAMÉ, HYPERELASTIC_DAMAGE, separates these functions. All
the other constitutive models, however, update the internal state variables and the stress
simultaneously. In an attempt to employ the majority of models that do not adhere to this
separation, the AND STAGGERING option was implemented and does regularize the failure
process. This approximation to the nonlocal method is more accurate for small time steps and
may require limited hourglass viscosity to stabilize the evolved perturbations (post bifurcation) in
uniform-gradient elements. Although we initially envisioned the AND STAGGERING option to be
most applicable to explicit dynamics, simulations with nonlocal damage evolution for implicit
dynamics have illustrated mesh-independent solutions.

Warning: The tangent generated in Adagio currently derives from Z and is local.
Future development will implement a nonlocal, finite-difference tangent.

88

Warning: Element death for nonlocal domains is work in progress. Additionally
this capability will not function with ’death on inversion’.

89

15.4. USAGE GUIDELINES

The nonlocal length scale length l is a material parameter that will set the length scale over
which localization will occur. Although the parameterization of l is indirect, it will control the
dissipation and should have an experimental basis.

For a typical application, the analyst might

1. Identify a constitutive model that captures the failure process. This might include a local
damage model or any model that employs strain softening to facilitate strain localization.

2. Conduct mesh-dependent simulations with bulk elements of size h to understand potential
paths for crack initiation and growth in specimen geometries targeted for parameterizing
constitutive model parameters.

3. Invoke nonlocality through a nonlocal length scale l. Mesh-independent solutions stem
from resolved nonlocal domains where l > 3h. The nonlocal domain size should be small
compared to the relevant dimensions (features) of the body.

4. Specify KMEANS partitioning. Choose the cell size c such that it is small compared to the
nonlocal length scale. We recommend 1

20 <
c
l
< 1

10 for the clustering algorithm to sample
between ∼ 1000 and ∼ 8000 points per nonlocal domain and obtain a converged CVT.
Please note that memory requirements will scale geometrically with the cell size. One can
easily run out of memory on a cluster given decrements in the cell size. Candidate values
for convergence and the maximum number of iterations are 0.02 and 256, respectively.
Because the clustering process is only performed during the initialization of the simulation,
decreased tolerances and increased iterations are not cost prohibitive.

5. Inspect the character of the nonlocal volumes through NONLOCAL_ELEMENT_DOMAIN and
determine whether or not there are sufficient nonlocal volumes per partition for parallel
processing. Because the nonlocal domains are formed on processor, processor boundaries
represent nonlocal domain boundaries. One can enable greater smoothness in the nonlocal
response through the mitigation of processor boundaries.

6. Incorporate nonlocality into the fitting process. The fitting process may not be unique in
that the same far-field response might be obtained from multiple combinations of both l and
the material parameters that govern the failure process.

7. Understand the impact of l. If l is too large, the failure process will be “lumped” over a
large region resulting in a non-smooth response. Please consider refitting model parameters
with smaller values of l (and h) to obtain the localized nature of the failure process.

8. Explore component or system level geometries with nonlocality. Refine the mesh to ensure
that the far-field predictions are indeed mesh independent and that the process zone that
evolves from the given micromechanics is resolved.

9. Reflect on the fields employed for model parameterization and the fields evolving in
component and system level models. Contrast the evolution of local field variables
governed by the mesh discretization with the nonlocal variable governed by the CVT
discretization. If possible, align field evolution in component/system geometries with field

90

evolution in specimen geometries. Disparities may drive the need for additional calibration
experiments.

Although these usage guidelines have not focused on incorporating stochastic processes, one may
sample distributions in material parameters. The inclusion of a method for regularization enables
such findings in that the mesh-dependence associated with fracture/failure is not convoluted with
a stochastic representation of the micro mechanical process.

91

REFERENCES

[1] H. Meyerhenke, B. Monien, and T. Sauerwald. A new diffusion-based multilevel algorithm
for computing graph partitions. Journal of Parallel Distributed Computing, (69):750–761,
2009.

[2] J. Burkardt, M. Gunzburger, J. Peterson, and R. Brannon. User manual and supporting
information for library of codes for centroidal voronoi point placement and associated zeroth,
first, and second moment determination. Technical Report SAND2002-0099, Sandia National
Laboratories, Albuquerque, NM, 2002.

92

Explicit Only

16. POD

Proper Orthogonal Decomposition (POD) and Explicit Control Modes (ECM, refer to
Chapter 7.4.3) should have almost the same name according to the rule

The name of a method should describe what is done, not how it is done.

A difference from ECM is that POD does not require a coarse finite element mesh. POD is
intended for explicit analyses in which the time step is too small, and constructing a coarser mesh
for ECM is unfeasible.

Warning: POD is an experimental analysis technique.

16.1. TIME STEP CONTROL COMMANDS

The larger the time step is, the greater the mass scaling. Part of the Cylinder With Legs test input
file invokes POD and controls the way that it works.

BEGIN PARAMETERS PRESTO REGION

#USER TIME STEP = 1.2e-08

END PARAMETERS PRESTO REGION

BEGIN PROPER ORTHOGONAL DECOMPOSITION

NUMBER OF POD MODES = 21

SNAPSHOTS INTERVAL = 405

POD MODES COMPUTATION TIME STEP = 1.e-4

ENERGY PERCENTAGE = 99.999

POD FILTER = On

MODE REFRESH = Off

#USER FILTER TIME STEP = 1.2327e-08

USER FILTER TIME STEP = 6.1635e-08 #5X

END PROPER ORTHOGONAL DECOMPOSITION

The USER TIME STEP overrides the element time step, including any increase in the time step
due to POD.

The initialization needs the NUMBER OF POD MODES for post-processing. It is the number of
fields to allocate that will store POD modes. The way that POD is set up at this time, this is also
the number of snapshots and the number of eigenvalue eigenvector pairs.

93

SNAPSHOTS INTERVAL is the number of time steps taken between snapshots used to build the
correlation matrix. It is not the number of time steps between adding a POD vector.

POD MODES COMPUTATION TIME STEP is the time at which Adagio POD is activated.

ENERGY PERCENTAGE is percentage that the sum of the eigenvalues used for the ECM/POD run
accounts for with respect to the sum of the total eigenvalue spectrum. It is related to the kinetic
energy of the system, but is not the ECM energy percentage [1].

POD FILTER activates the high frequency mass scaling. If OFF, then the simulation is
equivalent to a simulation without ECM/POD.

MODE REFRESH This refreshes the number of POD modes throughout the simulation.

USER FILTER TIME STEP This is the user defined time step.

In theory the Lanczos algorithm provides the time step, but this has not been implemented.

The Plastic Cylinder test of POD activates the MODE REFRESH.

MODE REFRESH=ON

Snapshots are stored throughout the simulation. At every
POD MODES COMPUTATION TIME STEP, 10−4 seconds here, the POD modes are updated using
the new information.

94

REFERENCES

[1] G.J. de Frias, W. Aquino, K.H. Pierson, M.W. Heinstein, and B.W. Spencer. A multiscale
mass scaling approach for explicit time integration using proper orthogonal decomposition.
International Journal for Numerical Methods in Engineering, 97(11):799–818, 2014. doi:
10.1002/nme.4608.

95

17. RKPM

Warning: RKPM is a capability still in the development stages. This capability is
not yet recommended for general use.

17.1. FORMULATION

This chapter describes the Reproducing Kernel Particle Method (RKPM) capability. RKPM is a
meshfree method that can be constructed such that the approximation can be tailored for arbitrary
order of completeness and smoothness [1, 2], using only a scattered set of points. This method
reduces the tie between quality of the discretization and quality of the approximation, and is
particularly effective for large deformation problems. Currently the RKPM formulation in
Sierra/SM uses a Lagrangian description, and is a robust method for modeling large deformation
problems where traditional FEM methods may experience mesh distortion issues. Additionally,
under the appropriate formulation, it is also effective at modeling extremely large deformation
problems such as fragment/impact/penetration, which is a long term goal of the
implementation.

The discrete description of a solid is achieved through a set of nodes, and needs no other
information such as a mesh. Each node is associated with a shape function with compact support,
with overlap over neighboring nodes naturally determining connectivity. The RKPM shape
functions are constructed as follows.

Let the closed domain Ω̄ ⊂ Rd with dimension d be discretized by a set of NP nodes
{xxxI |xxxI ∈ Ω̄}NP

I=1. The nth order RK approximation of a function u(xxx) in Ω̄ denoted by uh(xxx) is
constructed by the product of a kernel function Φa(xxx− xxxI) with compact support measure a, and a
correction function composed of a linear combination of basis functions in the following form
[1]:

uh(xxx) =
NPX

I=1







X

|α|≤n

(xxx− xxxI)
αbα(xxx)






Φa(xxx− xxxI)uI ≡

NPX

I=1

ΨI(xxx)uI . (17.1)

Here we have introduced the multi-index notation α = (α1,α2, . . . ,αd) with the length of α defined
as |α| =

Pd
i=1αi, xxxα ≡ x

α1
1 · x

α2
2 · . . . · x

αd

d , xxxαI ≡ x
α1
I1 · x

α2
I2 · . . . · x

αd

Id , bα = bα1α2···αd
,

Dα ≡ ∂α1
1 ∂
α2
2 · · ·∂

αd

d /∂x1
α1∂x2

α2 · · ·∂xd
αd , and uI are the coefficients of approximation. The term

{(xxx− xxxI)α}|α|≤n is the set of basis functions, and {bα(xxx)}|α|≤n are coefficients of those basis
functions. The kernel function Φa(xxx− xxxI) determines the smoothness of the approximation
functions, for example, a cubic b-spline function gives C2 continuity. The type of kernel function

96

φa can be chosen by the user. The subscript "a" denotes a measure of influence of the kernel
function. The measure is normalized by the minimum nodal spacing, such that a = 1 gives the
nodal spacing. The details on how to select values of this parameter are given in Section 17.4.

The set of coefficients {bα(xxx)}|α|≤n are determined by meeting the reproducing conditions

NPX

I=1

ΨI(xxx)xxxαI = xxxα, |α| ≤ n. (17.2)

With {bα(xxx)}|α|≤n obtained from (17.2), the RK shape functions are obtained as

uh(xxx) =
NPX

I=1

ΨI(xxx)uI (17.3)

where

ΨI(xxx) = HHH(000)T MMM−1(xxx)HHH(xxx− xxxI)Φa(xxx− xxxI) (17.4)

MMM(xxx) =
NPX

I=1

HHH(xxx− xxxI)HHH
T (xxx− xxxI)Φa(xxx− xxxI). (17.5)

Here the vector HHHT (xxx− xxxI) is the corresponding row vector of {(xxx− xxxI)α}|α|≤n and MMM(xxx) is the
moment matrix. In this construction, the reproducing conditions (17.2) are met provided the
moment matrix (17.5) is invertible, and this requires (n+d)!/n!d! non-collinear points under the
cover Φa so that the reproducing equations are linearly independent [2]. By direct differentiation,
the shape functions also satisfy the property

NPX

I=1

DβΨI(xxx)xxxαI = Dβxxx
α, |α| ≤ n. (17.6)

where β is a multi-index.

97

17.2. DOMAIN INTEGRATION

Domain integration for meshfree methods is most straightforwardly accomplished using Gaussian
quadrature over background cells. However due to the complexity of the shape functions, high
order quadrature must be employed to ensure sufficient accuracy of the solution [3]. Thus
alternative approaches have been proposed to avoid the bottleneck of domain integration, and
have been adopted in Sierra/SM. The most effective approach is the stabilized conforming nodal
integration (SCNI) method [4, 5], which has been implemented into Sierra/SM as the primary and
preferred domain integration method for Lagrangian analysis. This method employs nodal
integration, where derivatives evaluated at the nodes are smoothed over conforming nodal
representative domains. The strain smoothing serves to both circumvent zero-energy modes
associated with nodal integration, as well as provide accuracy by providing linear exactness
(passes the patch test) in the Galerkin approximation. The conforming cells required for strain
smoothing are the elements in the original mesh before it is converted to a particle description.
This approach ensures stability and accuracy with optimal convergence, and is also efficient as it
employs nodal integration.

While SCNI is an extremely effective technique for Lagrangian analysis, in the presence of
fragmentation and material separation the construction of conforming cells is prohibitively
expensive. To plan for these future capabilities in Sierra/SM, stabilized non-conforming nodal
integration (SNNI) has been implemented, where the conforming condition is relaxed and strains
are smoothed over simple box cells constructed around the nodes. This techniques ensures
reasonable stability and accuracy, but can suffer from convergence issues due to the failure of the
patch test resulting from the relaxation of conforming conditions. The general framework of
variationally consistent (VC) integration has been introduced [3] which can restore exactness in
the Galerkin approximation, and has been employed for the enhancement of SNNI. The resulting
VC-SNNI method (see Section 17.4) performs nearly identically to SCNI, and has been
implemented into Sierra/SM.

SCNI and SNNI suppress zero energy modes associated with directly integrating shape functions
at nodal points. However spurious low energy oscillatory modes can still exist in both methods
when the surface area to volume ratio is small, or when the discretization is fine. To alleviate this
issue, an additional stabilization technique has been proposed [6, 7], where the oscillatory modes
are penalized in a form which maintains the accuracy of SCNI when it is employed. It is
implemented into Sierra/SM and the user can choose to use it by specifying a stabilization
coefficient.

98

17.3. KINEMATICS FOR RKPM IN SIERRA

For time tn to time tn+1, objective strain measures are computed with respect to tn+1/2

following [8]. With generalized increments ∆dddn = dddn+1−dddn and ∆vvvn = vvvn+1− vvvn , the incremental
deformation gradient GGGI at node I and its rate HHHI are computed as

GGGI = DDDIAAA
−1
I

HHHI = LLLIAAA
−1
I +

1
2 DDDILLL

−1
I

AAAI = III+ 1
2 DDDI

(17.7)

where

(DI)i j =
NPP

J=1
ΨJ, j(xI)∆dJi

(LI)i j =
NPP

J=1
ΨJ, j(xI)∆vJi

(17.8)

Kinematic quantities of interest are the strain increment γγγI and at node I, strain rate γ̇γγI and at
node I, and deformation gradient FFF I at node I:

γγγI =
1
2

(
GGGI +GGGT

I

�

γ̇γγI =
1
2

(
HHHI +HHHT

I

�

(FI)i j =
NPP

J=1
ΨJ, j(xI)dn+1

Ji

(17.9)

With the Cauchy stress increment ∆σσσI computed by LAMÉ based on these quantities, the update
to stress σσσn+1

I at node I is performed as

σσσn+1
I = QIσσσ

n
I QT

I +∆σσσI

QQQI = III+
(
III− 1

2ωωωI

�−1
ωωωI

ωωωI =
1
2

(
GGGI −GGGT

I

�
(17.10)

where QQQI is the rotation matrix computed at node I, and ωωωI is the matrix containing the spin
tensor computed at node I.

99

17.4. INPUT FORMAT

The following parameters can be defined from the input deck:

BEGIN RKPM SECTION <string> section_name

SUPPORT SIZE = <real> normalized_support

BASIS ORDER = <real>order

KERNEL TYPE = <real>kernel_type

KERNEL SHAPE = <string>SPHERE | BOX

INTEGRATION METHOD = <string>SCNI | SNNI | NSNI | VCSNNI

STABILIZATION COEFFICIENT = <real> coefficient

FORMULATION = <string> LAGRANGIAN| SEMI-LAGRANGIAN

QUASI LINEAR = <string>OFF|ON (OFF)

QUASI LINEAR COEFFICIENT = <real>quasi_linear_coefficient

QUASI LINEAR distance = <real>quasi_linear_distance

FRICTIONAL KERNEL CONTACT = <string> OFF|ON (OFF)

FRICTIONAL COEFFICIENT = <real> friction_coefficient

END RKPM SECTION <string> section_name

• Support Size: This parameter defines the support size of the kernel functions; it controls the
locality of the approximation functions. It is a normalized value with respect to the distance
to the closest neighboring nodes, and should be greater than 1.5, because of the strain
smoothing employed in SCNI and SNNI. For order of approximation (see below) higher
than 1, the support size also needs to be increased by unity for each order. For example a
normalized support size of 1.6 would be acceptable for linear basis, 2.6 for quadratic basis,
3.6 for cubic basis, and so on. Note that because of the possibility of non-uniform nodal
spacing, larger values may be required in more non-uniform discretizations.
• Basis Order: This parameters controls what order of polynomial the approximation space is

built upon. RKPM is constructed to reproduce any polynomial function of a given order
exactly in the entire domain. The order of reproduction dictates at what rate the solution
will converge in the energy norm. A higher basis order will yield better accuracy and faster
convergence, but will also increase computational expense.
• Kernel Type: The approximation functions are built from a kernel function and a correction

function. The correction function is automatically calculated to meet the required
reproducing conditions, but the kernel function can be chosen by the user. The smoothness
of the kernel function directly dictates the smoothness of the approximation field. In this
implementation, different orders of B-Splines are used. This parameter can be chosen
between 1 (linear B-Spline, C0 continuity) and 5 (quintic B-Spline, C4 continuity). In
problems where the solution is known to be smooth, higher order continuity is more
desirable.
• Integration Method: Several RKPM integration schemes are under development in

Sierra/SM. Currently, Stabilized Conforming Nodal Integration (SCNI) is the best option.
In this case, a conforming mesh is necessary to construct the integration cells. If such
information is not available (when the capabilities of the code are extended), Stabilized
Non-Conforming Nodal Integration (SNNI) or its VC counterpart, VC-SNNI, can be used
instead. For more details, see section 17.2.

100

• Stabilization Coefficient: This is an optional parameter, and should stay in the range
between 0 and 1. If omitted, no additional stabilization is performed. If a coefficient is
specified it will be used to perform additional stabilization. If it is set to 0.0, the result will
be the same as unstabilized, but the additional stabilization routines will still be called,
adding significant computational expense. Therefore, if no stabilization is required, this
parameter should be omitted.
• Formulation: Not implemented yet. For now, any RKPM analysis is ran using the

Lagrangian description. A semi-Lagrangian formulation is planned for future development.
The semi-Lagrangian formulation is better suited to simulations involving large
deformations and material failure.

17.4.1. Converting a mesh to particles

The recommended way to load an RKPM model is to read in a standard hexahedron and/or
tetrahedron element mesh and convert the elements to particles at initialization in the region scope
using the BEGIN CONVERSION TO PARTICLES AT INITIALIZATION (see also the Particle
Section command block in Sierra/SM 4.54 User’s Guide Chapter ?? and the Peridynamics
Chapter):

BEGIN CONVERSION TO PARTICLES AT INITIALIZATION

BLOCK = <string list>block_names

SECTION = <string>particle_section

END [CONVERSION TO PARTICLES AT INITIALIZATION]

where the BLOCK command specifies which blocks are converted to particles, and SECTION

specifies the peridynamics section.

An alternative way to convert an original mesh to particles is to use the spheregen.py routine.
The following command will convert an ExodusII file, e.g., myfile.g to
myfile.sphere.g:

spheregen.py --nodes_as_attr myfile.g

Here, the --nodes_as_attr option embeds the original node locations into the sphere mesh as
attributes, which is required for RKPM. The sphere mesh, myfile.sphere.g, should then be
specified as the mesh file in the Sierra/SM input deck. In this implementation, the RKPM nodes
are located at the center points of each element constituting the original mesh of the solid. Only
the SNNI integration technique is supported for this option.

101

REFERENCES

[1] Wing Kam Liu, Sukky Jun, and Yi Fei Zhang. Reproducing kernel particle methods.
International Journal for Numerical Methods in Engineering, 20(8-9):1081–1106, 1995.

[2] Jiun-Shyan Chen, Chunhui Pan, Cheng-Tang Wu, and Wing Kam Liu. Reproducing kernel
particle methods for large deformation analysis of non-linear structures. Computer Methods

in Applied Mechanics and Engineering, 139(1):195–227, 1996.

[3] Jiun-Shyan Chen, Michael Hillman, and Marcus Rüter. An arbitrary order variationally
consistent integration for galerkin meshfree methods. International Journal for Numerical

Methods in Engineering, 95(5):387–418, 2013.

[4] Jiun-Shyan Chen, Cheng-Tang Wu, Sangpil Yoon, and Yang You. A stabilized conforming
nodal integration for galerkin mesh-free methods. International Journal for Numerical

Methods in Engineering, 50(2):435–466, 2001.

[5] Jiun-Shyan Chen, Sangpil Yoon, and Cheng-Tang Wu. Non-linear version of stabilized
conforming nodal integration for galerkin mesh-free methods. International Journal for

Numerical Methods in Engineering, 53(12):2587–2615, 2002.

[6] J.S. Chen, W. Hu, M.A. Puso, Y. Wu, and X. Zhang. Strain smoothing for stabilization and
regularization of galerkin meshfree methods. In Meshfree Methods for Partial Differential

Equations III, pages 57–75. Springer, 2007.

[7] M.A. Puso, J.S. Chen, E. Zywicz, and W. Elmer. Meshfree and finite element nodal
integration methods. International Journal for Numerical Methods in Engineering, 74(3):
416–446, 2008.

[8] Thomas J.R. Hughes and James Winget. Finite rotation effects in numerical integration of
rate constitutive equations arising in large-deformation analysis. International Journal for

Numerical Methods in Engineering, 15(12):1862–1867, 1980.

102

18. MATERIAL MODELS

This chapter describes materials available in Sierra that are currently under development.

18.1. ELASTIC ORTHOTROPIC MODEL

BEGIN PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC

#

Elastic constants

YOUNGS MODULUS = <real>youngs_modulus

POISSONS RATIO = <real>poissons_ratio

SHEAR MODULUS = <real>shear_modulus

BULK MODULUS = <real>bulk_modulus

LAMBDA = <real>lambda

TWO MU = <real>two_mu

#

required parameters

E11 = <real>e11

E22 = <real>e22

E33 = <real>e33

NU12 = <real>nu12

NU13 = <real>nu13

NU23 = <real>nu23

G12 = <real>g12

G13 = <real>g13

G23 = <real>g23

COORDINATE SYSTEM = <string>coordinate_system_name

#

optional parameters

ANGLE_1_ABSCISSA = <real>angle_1_abscissa

ANGLE_2_ABSCISSA = <real>angle_2_abscissa

ANGLE_3_ABSCISSA = <real>angle_3_abscissa

ROTATION_AXIS_1 = <real>rotation_axis_1

ROTATION_AXIS_2 = <real>rotation_axis_2

ROTATION_AXIS_3 = <real>rotation_axis_3

ANGLE_1_FUNCTION = <string>angle_1_function_name

ANGLE_2_FUNCTION = <string>angle_2_function_name

ANGLE_3_FUNCTION = <string>angle_3_function_name

THERMAL_STRAIN_11_FUNCTION =

<string>thermal_strain_11_function_name

103

THERMAL_STRAIN_22_FUNCTION =

<string>thermal_strain_22_function_name

THERMAL_STRAIN_33_FUNCTION =

<string>thermal_strain_33_function_name

END [PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC]

The elastic orthotropic model is a Kirchhoff linear elastic constitutive relation that is useful for
modeling polymer matrix composite structures undergoing small strains. Required inputs are

1. two of the five general elastic material constants,
2. directional properties, and
3. the coordinate system.

The following is a brief description of each input.

• See Section ?? for more information on elastic constants input.
• In each material direction, moduli E11, E22, and E33 are defined with the E11, E22, and
E33 command lines, Poisson’s ratios ν12, ν13, and ν23 are given by the NU12, NU13, and
NU23 command lines, and shear moduli G12, G13, and G23 are defined using command lines
G12, G13, and G23.
• Principal material direction specification requires a user specified coordinate system given

by the COORDINATE SYSTEM command line, as detailed in the Sierra/SM 4.54 User’s
Guide Section ??. The material orientation may then be specified using one of the
following approaches:

1. Three spatially varying, ordered Euler angle functions are given in terms of global
coordinates (X, Y, Z = 1, 2, 3) for rotations about a corresponding local axis:

– The rotation angle function abscissas x1, x2, and x3, corresponding to the global
system (X, Y, Z) = (1, 2, 3), are defined with the ANGLE_1_ABSCISSA,
ANGLE_2_ABSCISSA, and ANGLE_3_ABSCISSA command lines, respectively.

– The axes of rotation i, j, and k are defined with the ROTATION_AXIS_1,
ROTATION_AXIS_2, and ROTATION_AXIS_3 command lines, respectively.

– The rotation angle functions θi(x1), θ j(x2), and θk(x3) are defined with the
ANGLE_1_FUNCTION, ANGLE_2_FUNCTION, and ANGLE_3_FUNCTION

command lines, respectively. Angles are specified in degrees. Section ?? in the
Sierra/SM 4.54 User’s Guide provides additional details about defining functions.

The rotation axis and angle are applied successively in order (1, 2, 3), or (X, Y, Z);
that is, each sequential Euler angle rotation defines a new coordinate system in which
the subsequent rotation axis and angle are defined.

2. Alternatively, the angles and axes may be defined directly at each element integration
point using INITIAL CONDITION command blocks, as described in the Sierra/SM
4.54 User’s Guide Section ??. Angles may be specified in degrees using the variables
ANGLE_1, ANGLE_2, and ANGLE_3, while axes are given by AXIS_1, AXIS_2, and
AXIS_3.

3. A final option is to initialize the rotation tensor to correspond to the local coordinate
system defined in the COORDINATE SYSTEM command line.

The resulting material directions may be visualized by requesting the element fields
MATERIAL_DIRECTION_1, MATERIAL_DIRECTION_2, and MATERIAL_DIRECTION_3 in

104

the results output block.
• Functions to describe normal thermal engineering strains along the principal material

directions are given by the THERMAL_STRAIN_11_FUNCTION,
THERMAL_STRAIN_22_FUNCTION, and THERMAL_STRAIN_33_FUNCTION command
lines. See the Sierra/SM 4.54 User’s Guide Section ?? for guidance on defining functions.

Warning: The ELASTIC_ORTHOTROPIC model has not been tested in conjunction
with the control stiffness implicit solver block.

Output variables available for this model are listed in Table 18-1.

105

Table 18-1. State Variables for ELASTIC ORTHOTROPIC Model (Sec-

tion 18.1)

Index Name Variable Description

1 Q_XX X component of the material 11 unit vector
2 Q_YY Y component of the material 22 unit vector
3 Q_ZZ Z component of the material 33 unit vector
4 Q_XY Y component of the material 11 unit vector
5 Q_YZ Z component of the material 22 unit vector
6 Q_ZX X component of the material 33 unit vector
7 Q_YX X component of the material 22 unit vector
8 Q_ZY Y component of the material 33 unit vector
9 Q_XZ Z component of the material 11 unit vector
10 ANGLE_1 Rotation angle about axis 1 (degrees)
11 ANGLE_2 Rotation angle about axis 2 (degrees)
12 ANGLE_3 Rotation angle about axis 3 (degrees)
13 AXIS_1 First axis of rotation
14 AXIS_2 Second axis of rotation
15 AXIS_3 Third axis of rotation
16 TH_STR_XX Thermal stretch ratio in material 11 direction
17 TH_STR_YY Thermal stretch ratio in material 22 direction
18 TH_STR_ZZ Thermal stretch ratio in material 33 direction
19 MAT_STRAIN_XX Green Lagrange strain in material 11 direction
20 MAT_STRAIN_YY Green Lagrange strain in material 22 direction
21 MAT_STRAIN_ZZ Green Lagrange strain in material 33 direction
22 MAT_STRAIN_XY Green Lagrange strain in material 12 direction
23 MAT_STRAIN_YZ Green Lagrange strain in material 23 direction
24 MAT_STRAIN_ZX Green Lagrange strain in material 31 direction
25 MAT_STRESS_XX 2nd P-K stress in material 11 direction
26 MAT_STRESS_YY 2nd P-K stress in material 22 direction
27 MAT_STRESS_ZZ 2nd P-K stress in material 33 direction
28 MAT_STRESS_XY 2nd P-K stress in material 12 direction
29 MAT_STRESS_YZ 2nd P-K stress in material 23 direction
30 MAT_STRESS_ZX 2nd P-K stress in material 31 direction
31 MAT_LOG_STRAIN_XX Log (Hencky) strain in material 11 direction
32 MAT_LOG_STRAIN_YY Log (Hencky) strain in material 22 direction
33 MAT_LOG_STRAIN_ZZ Log (Hencky) strain in material 33 direction
34 MAT_LOG_STRAIN_XY Log (Hencky) strain in material 12 direction
35 MAT_LOG_STRAIN_YZ Log (Hencky) strain in material 23 direction
36 MAT_LOG_STRAIN_ZX Log (Hencky) strain in material 31 direction
37 MAT_CAUCHY_STRESS_XX Cauchy stress in material 11 direction
38 MAT_CAUCHY_STRESS_YY Cauchy stress in material 22 direction
39 MAT_CAUCHY_STRESS_ZZ Cauchy stress in material 33 direction
40 MAT_CAUCHY_STRESS_XY Cauchy stress in material 12 direction
41 MAT_CAUCHY_STRESS_YZ Cauchy stress in material 23 direction
42 MAT_CAUCHY_STRESS_ZX Cauchy stress in material 31 direction106

18.2. ELASTIC ORTHOTROPIC DAMAGE MODEL

BEGIN PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_DAMAGE

#

Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

#

Required parameters

#

E11 = <real> E11

E22 = <real> E22

E33 = <real> E33

NU12 = <real> ν12

NU13 = <real> ν13

NU23 = <real> ν23

G12 = <real> g12

G13 = <real> g13

G23 = <real> g23

ALPHAD = <real> αd

BETAD = <real> βd

GAMMA0 = <real> γ0

J1 = <real> j1

J2 = <real> j2

J3 = <real> j3

CN11 = <real> cn11

CN22 = <real> cn22

CN33 = <real> cn33

CS12 = <real> cs12

CS13 = <real> cs13

CS23 = <real> cs23

COORDINATE SYSTEM = <string> coordinate_system_name

#

Optional parameters

#

ANGLE_1_ABSCISSA = <real>angle_1_abscissa

ANGLE_2_ABSCISSA = <real>angle_2_abscissa

ANGLE_3_ABSCISSA = <real>angle_3_abscissa

ROTATION_AXIS_1 = <real>rotation_axis_1

ROTATION_AXIS_2 = <real>rotation_axis_2

ROTATION_AXIS_3 = <real>rotation_axis_3

ANGLE_1_FUNCTION = <string>angle_1_function_name

ANGLE_2_FUNCTION = <string>angle_2_function_name

107

ANGLE_3_FUNCTION = <string>angle_3_function_name

E11 FUNCTION = <string>func_name

E22 FUNCTION = <string>func_name

E33 FUNCTION = <string>func_name

NU12 FUNCTION = <string>func_name

NU13 FUNCTION = <string>func_name

NU23 FUNCTION = <string>func_name

G12 FUNCTION = <string>func_name

G13 FUNCTION = <string>func_name

G23 FUNCTION = <string>func_name

END [PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_DAMAGE]

The elastic orthotropic damage model is an empirically based constitutive relation that is useful
for modeling polymer matrix composite structures. Refer to SAND2013-7257 for a full
description of the material model theory and usage.

The command block for an elastic orthotropic damage material starts with the line:

BEGIN PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_DAMAGE

and terminates with the line:

END [PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_DAMAGE]

In the above command block, the required inputs are: two of the five general elastic material
constants, directional properties, and the coordinate system. The following is a brief description
of each input.

• The density of the material is defined with the DENSITY command line.
• The Biot’s coefficient of the material is defined with the BIOTS COEFFICIENT command

line.
• Any two of the following elastic constants are required:

• Young’s modulus is defined with the YOUNGS MODULUS command line.
• Poisson’s ratio is defined with the POISSONS RATIO command line.
• The bulk modulus is defined with the BULK MODULUS command line.
• The shear modulus is defined with the SHEAR MODULUS command line.
• Lambda is defined with the LAMBDA command line.

• The directional moduli E11, E22, and E33 are defined with the E11, E22, and E33 command
lines.
• The directional Poisson’s ratios ν12, ν13, and ν23 are defined with the NU12, NU13, and
NU23 command lines.
• The directional shear moduli G12, G13, and G23 are defined with the G12, G13, and G23

command lines.
• The specification of the principal material directions begins with the selection of a user

specified coordinate system given by the COORDINATE SYSTEM command line (see below).

108

• The damage surface evolution terms are given with the ALPHAD and BETAD command
lines.
• The initial damage threshold is defined with the GAMMA0 command line.
• The directional damage surface coefficients with the J1, J2 and J3 command lines.
• The directional normal crack closure coefficients defined with the CN11, CN22 and CN33

command lines.
• The directional shear crack closure coefficients are defined with the CS12, CS13 and CS23

command lines.
• For material orientation definition instructions see the Sierra/SM 4.54 User’s Guide

Chapter ??.

Warning: The ELASTIC_ORTHOTROPIC_DAMAGE model has not been tested in
conjunction with the control stiffness implicit solver block.

109

18.3. ELASTIC ORTHOTROPIC FAIL MODEL

BEGIN PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_FAIL

#

Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

Required parameters

#

E11 = <real>e11

E22 = <real>e22

E33 = <real>e33

NU12 = <real>nu12

NU13 = <real>nu13

NU23 = <real>nu23

G12 = <real>g12

G13 = <real>g13

G23 = <real>g23

#

COORDINATE SYSTEM = <string>coordinate_system_name

#

Normal thresholds

#

TENSILE_MATRIX_STRENGTH_11 = <real>f1mp

COMPRESSIVE_MATRIX_STRENGTH_11 = <real>f1mn

TENSILE_FIBER_STRENGTH_11 = <real>f1fp

COMPRESSIVE_FIBER_STRENGTH_11 = <real>f1fn

TENSILE_MATRIX_STRENGTH_22 = <real>f2mp

COMPRESSIVE_MATRIX_STRENGTH_22 = <real>f2mn

TENSILE_FIBER_STRENGTH_22 = <real>f2fp

COMPRESSIVE_FIBER_STRENGTH_22 = <real>f2fn

TENSILE_MATRIX_STRENGTH_33 = <real>f3mp

COMPRESSIVE_MATRIX_STRENGTH_33 = <real>f3mn

TENSILE_FIBER_STRENGTH_33 = <real>f3fp

COMPRESSIVE_FIBER_STRENGTH_33 = <real>f3fn

#

Shear thresholds

#

SHEAR_MATRIX_STRENGTH_12 = <real>s12m

SHEAR_FIBER_STRENGTH_12 = <real>s12f

SHEAR_MATRIX_STRENGTH_23 = <real>s23m

110

SHEAR_FIBER_STRENGTH_23 = <real>s23f

SHEAR_MATRIX_STRENGTH_13 = <real>s13m

SHEAR_FIBER_STRENGTH_13 = <real>s13f

#

Fracture parameters

#

TENSILE_FRACTURE_ENERGY_11 = <real>gi1p

COMPRESSIVE_FRACTURE_ENERGY_11 = <real>gi1n

TENSILE_FRACTURE_ENERGY_22 = <real>gi2p

COMPRESSIVE_FRACTURE_ENERGY_22 = <real>gi2n

TENSILE_FRACTURE_ENERGY_33 = <real>gi3p

COMPRESSIVE_FRACTURE_ENERGY_33 = <real>gi3n

SHEAR_FRACTURE_ENERGY_12 = <real>gii12

SHEAR_FRACTURE_ENERGY_23 = <real>gii23

SHEAR_FRACTURE_ENERGY_13 = <real>gii13

CHARACTERISTIC_LENGTH = <real>l_star

#

Damage evolution parameters

#

MAXIMUM_COMPRESSIVE_DAMAGE_11 = <real>dmax1n

MAXIMUM_COMPRESSIVE_DAMAGE_22 = <real>dmax2n

MAXIMUM_COMPRESSIVE_DAMAGE_33 = <real>dmax3n

COMPRESSION_COUPLING_FACTOR_11 = <real>a1pn

COMPRESSION_COUPLING_FACTOR_22 = <real>a2pn

COMPRESSION_COUPLING_FACTOR_33 = <real>a3pn

TENSILE_DAMAGE_MODULUS_11 = <real>k1p

COMPRESSIVE_DAMAGE_MODULUS_11 = <real>k1n

TENSILE_DAMAGE_MODULUS_22 = <real>k2p

COMPRESSIVE_DAMAGE_MODULUS_22 = <real>k2n

TENSILE_DAMAGE_MODULUS_33 = <real>k3p

COMPRESSIVE_DAMAGE_MODULUS_33 = <real>k3n

SHEAR_DAMAGE_MODULUS_12 = <real>k12

SHEAR_DAMAGE_MODULUS_23 = <real>k23

SHEAR_DAMAGE_MODULUS_13 = <real>k13

HARDENING_EXPONENT_11 = <real>n11

HARDENING_EXPONENT_22 = <real>n22

HARDENING_EXPONENT_33 = <real>n33

HARDENING_EXPONENT_12 = <real>n12

HARDENING_EXPONENT_23 = <real>n23

HARDENING_EXPONENT_13 = <real>n13

#

Optional parameters follow

Orientation Parameters

#

ANGLE_1_ABSCISSA = <real>angle_1_abscissa

ANGLE_2_ABSCISSA = <real>angle_2_abscissa

ANGLE_3_ABSCISSA = <real>angle_3_abscissa

111

ROTATION_AXIS_1 = <real>rotation_axis_1

ROTATION_AXIS_2 = <real>rotation_axis_2

ROTATION_AXIS_3 = <real>rotation_axis_3

ANGLE_1_FUNCTION = <string>angle_1_function_name

ANGLE_2_FUNCTION = <string>angle_2_function_name

ANGLE_3_FUNCTION = <string>angle_3_function_name

#

Coefficient of thermal expansion functions

#

THERMAL_STRAIN_11_FUNCTION = <string>cte11_function_name

THERMAL_STRAIN_22_FUNCTION = <string>cte22_function_name

THERMAL_STRAIN_33_FUNCTION = <string>cte33_function_name

#

Temperature dependent property functions

#

E11_FUNCTION = <string>e11_function_name

E22_FUNCTION = <string>e22_function_name

E33_FUNCTION = <string>e33_function_name

NU12_FUNCTION = <string>nu12_function_name

NU23_FUNCTION = <string>nu23_function_name

NU13_FUNCTION = <string>nu13_function_name

G12_FUNCTION = <string>g12_function_name

G23_FUNCTION = <string>g23_function_name

G13_FUNCTION = <string>g13_function_name

#

Strain rate dependent parameters

#

REFERENCE_STRAIN_RATE = <real>epsdot0

ELASTIC_RATE_COEFFICIENT_11 = <real>ce11

ELASTIC_RATE_COEFFICIENT_22 = <real>ce22

ELASTIC_RATE_COEFFICIENT_33 = <real>ce33

ELASTIC_RATE_COEFFICIENT_12 = <real>ce12

ELASTIC_RATE_COEFFICIENT_23 = <real>ce23

ELASTIC_RATE_COEFFICIENT_13 = <real>ce13

FIBER_STRENGTH_RATE_COEFFICIENT_11 = <real>cf11

FIBER_STRENGTH_RATE_COEFFICIENT_22 = <real>cf22

FIBER_STRENGTH_RATE_COEFFICIENT_33 = <real>cf33

FIBER_STRENGTH_RATE_COEFFICIENT_12 = <real>cf12

FIBER_STRENGTH_RATE_COEFFICIENT_23 = <real>cf23

FIBER_STRENGTH_RATE_COEFFICIENT_13 = <real>cf13

MATRIX_STRENGTH_RATE_COEFFICIENT_11 = <real>cm11

MATRIX_STRENGTH_RATE_COEFFICIENT_22 = <real>cm22

MATRIX_STRENGTH_RATE_COEFFICIENT_33 = <real>cm33

MATRIX_STRENGTH_RATE_COEFFICIENT_12 = <real>cm12

MATRIX_STRENGTH_RATE_COEFFICIENT_23 = <real>cm23

MATRIX_STRENGTH_RATE_COEFFICIENT_13 = <real>cm13

END [PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_FAIL]

112

The elastic orthotropic fail model is an empirically based constitutive relation that is useful for
modeling polymer matrix composite structures. Refer to the SAND report by English [1] for a
full description of the material model theory and usage.

This model has identical input requirements to the Elastic Orthotropic Model detailed in
Section 18.1, supplemented with additional parameters for failure modeling. The following is a
brief description of additional inputs required for the Elastic Orthotropic Fail Model.

• The strengths for each component of damage are given by the commands:
Normal thresholds

TENSILE_MATRIX_STRENGTH_11 = <real>f1mp

COMPRESSIVE_MATRIX_STRENGTH_11 = <real>f1mn

TENSILE_FIBER_STRENGTH_11 = <real>f1fp

COMPRESSIVE_FIBER_STRENGTH_11 = <real>f1fn

TENSILE_MATRIX_STRENGTH_22 = <real>f2mp

COMPRESSIVE_MATRIX_STRENGTH_22 = <real>f2mn

TENSILE_FIBER_STRENGTH_22 = <real>f2fp

COMPRESSIVE_FIBER_STRENGTH_22 = <real>f2fn

TENSILE_MATRIX_STRENGTH_33 = <real>f3mp

COMPRESSIVE_MATRIX_STRENGTH_33 = <real>f3mn

TENSILE_FIBER_STRENGTH_33 = <real>f3fp

COMPRESSIVE_FIBER_STRENGTH_33 = <real>f3fn

Shear thresholds

SHEAR_MATRIX_STRENGTH_12 = <real>s12m

SHEAR_FIBER_STRENGTH_12 = <real>s12f

SHEAR_MATRIX_STRENGTH_23 = <real>s23m

SHEAR_FIBER_STRENGTH_23 = <real>s23f

SHEAR_MATRIX_STRENGTH_13 = <real>s13m

SHEAR_FIBER_STRENGTH_13 = <real>s13f

• The fracture energies (energy per unit area) for each plane of damage are given by the
commands:

Fracture parameters

TENSILE_FRACTURE_ENERGY_11 = <real>gi1p

COMPRESSIVE_FRACTURE_ENERGY_11 = <real>gi1n

TENSILE_FRACTURE_ENERGY_22 = <real>gi2p

COMPRESSIVE_FRACTURE_ENERGY_22 = <real>gi2n

TENSILE_FRACTURE_ENERGY_33 = <real>gi3p

COMPRESSIVE_FRACTURE_ENERGY_33 = <real>gi3n

SHEAR_FRACTURE_ENERGY_12 = <real>gii12

SHEAR_FRACTURE_ENERGY_23 = <real>gii23

SHEAR_FRACTURE_ENERGY_13 = <real>gii13

CHARACTERISTIC_LENGTH = <real>l_star

The total energy density dissipated (the area under the stress-strain curve) is given by the
fracture energy divided by the characteristic length l_star.
• The maximum allowable damage values under compression on each plane are given by the

commands:
MAXIMUM_COMPRESSIVE_DAMAGE_11 = <real>dmax1n

MAXIMUM_COMPRESSIVE_DAMAGE_22 = <real>dmax2n

113

MAXIMUM_COMPRESSIVE_DAMAGE_33 = <real>dmax3n

• The proportion of tensile damage translating to compressive damage for each of the
orthotropic planes are given by the commands:

COMPRESSION_COUPLING_FACTOR_11 = <real>a1pn

COMPRESSION_COUPLING_FACTOR_22 = <real>a2pn

COMPRESSION_COUPLING_FACTOR_33 = <real>a3pn

• The slopes of the matrix mode damage portion of the stress-strain curve, or damage moduli
terms, are given by the commands:

TENSILE_DAMAGE_MODULUS_11 = <real>k1p

COMPRESSIVE_DAMAGE_MODULUS_11 = <real>k1n

TENSILE_DAMAGE_MODULUS_22 = <real>k2p

COMPRESSIVE_DAMAGE_MODULUS_22 = <real>k2n

TENSILE_DAMAGE_MODULUS_33 = <real>k3p

COMPRESSIVE_DAMAGE_MODULUS_33 = <real>k3n

SHEAR_DAMAGE_MODULUS_12 = <real>k12

SHEAR_DAMAGE_MODULUS_23 = <real>k23

SHEAR_DAMAGE_MODULUS_13 = <real>k13

• Small nonlinearity in the matrix mode damage evolution can be added using the hardening
exponents for each of the orthotropic planes via the commands:

HARDENING_EXPONENT_11 = <real>n11

HARDENING_EXPONENT_22 = <real>n22

HARDENING_EXPONENT_33 = <real>n33

HARDENING_EXPONENT_12 = <real>n12

HARDENING_EXPONENT_23 = <real>n23

HARDENING_EXPONENT_13 = <real>n13

• Strain rate dependence is defined by the commands:
REFERENCE_STRAIN_RATE = <real>epsdot0

ELASTIC_RATE_COEFFICIENT_11 = <real>ce11

ELASTIC_RATE_COEFFICIENT_22 = <real>ce22

ELASTIC_RATE_COEFFICIENT_33 = <real>ce33

ELASTIC_RATE_COEFFICIENT_12 = <real>ce12

ELASTIC_RATE_COEFFICIENT_23 = <real>ce23

ELASTIC_RATE_COEFFICIENT_13 = <real>ce13

FIBER_STRENGTH_RATE_COEFFICIENT_11 = <real>cf11

FIBER_STRENGTH_RATE_COEFFICIENT_22 = <real>cf22

FIBER_STRENGTH_RATE_COEFFICIENT_33 = <real>cf33

FIBER_STRENGTH_RATE_COEFFICIENT_12 = <real>cf12

FIBER_STRENGTH_RATE_COEFFICIENT_23 = <real>cf23

FIBER_STRENGTH_RATE_COEFFICIENT_13 = <real>cf13

MATRIX_STRENGTH_RATE_COEFFICIENT_11 = <real>cm11

MATRIX_STRENGTH_RATE_COEFFICIENT_22 = <real>cm22

MATRIX_STRENGTH_RATE_COEFFICIENT_33 = <real>cm33

MATRIX_STRENGTH_RATE_COEFFICIENT_12 = <real>cm12

MATRIX_STRENGTH_RATE_COEFFICIENT_23 = <real>cm23

MATRIX_STRENGTH_RATE_COEFFICIENT_13 = <real>cm13

The rate dependence is calculated with respect to the reference strain rate epsdot0. The
rate coefficients for the purely empirical rate equation in each material direction are given

114

for elastic moduli and failure parameters by the scalar values of the elastic rate coefficients
ceij and fiber and matrix strength rate coefficients cfij and cmij.

Warning: The ELASTIC_ORTHOTROPIC_FAIL model has not been tested in con-
junction with the control stiffness implicit solver block.

Output variables available for this model are listed in the Elastic Orthotropic Model in
Tables 18-1 and 18-2.

Warning: Strongly rate-dependent models may fare poorly in implicit quasistatic
solution. In implicit analyses the rate term used to evaluate the current load step is
the rate seen by the model in the previous load step. This may cause the solution to
oscillate between high- and low-rate equilibrium states from step to step.

115

Table 18-2. Additional State Variables for ELASTIC ORTHOTROPIC

FAIL Model (Section 18.3). Other state variables associated with the

Elastic Orthotropic Model are listed in Table 18-1.

Index Name Variable Description

43 R1MP Damage evolution variable 11, matrix, tension
44 R1FP Damage evolution variable 11, fiber, tension
45 R1MN Damage evolution variable 11, matrix, compression
46 R1FN Damage evolution variable 11, fiber, compression
47 R2MP Damage evolution variable 22, matrix, tension
48 R2FP Damage evolution variable 22, fiber, tension
49 R2MN Damage evolution variable 22, matrix, compression
50 R2FN Damage evolution variable 22, fiber, compression
51 R3MP Damage evolution variable 33, matrix, tension
52 R3FP Damage evolution variable 33, fiber, tension
53 R3MN Damage evolution variable 33, matrix, compression
54 R3FN Damage evolution variable 33, fiber, compression
55 D1MP Normal damage 11, matrix, tension
56 D1FP Normal damage 11, fiber, tension
57 D1MN Normal damage 11, matrix, compression
58 D1FN Normal damage 11, fiber, compression
59 D2MP Normal damage 22, matrix, tension
60 D2FP Normal damage 22, fiber, tension
61 D2MN Normal damage 22, matrix, compression
62 D2FN Normal damage 22, fiber, compression
63 D3MP Normal damage 33, matrix, tension
64 D3FP Normal damage 33, fiber, tension
65 D3MN Normal damage 33, matrix, compression
66 D3FN Normal damage 33, fiber, compression
67 D12M Shear damage 12, matrix
68 D12F Shear damage 12, fiber
69 D23M Shear damage 23, matrix
70 D23F Shear damage 23, fiber
71 D13M Shear damage 13, matrix
72 D13F Shear damage 13, fiber
73 ORTHOTROPIC_DAMAGE_XX Effective and active normal damage 11
74 ORTHOTROPIC_DAMAGE_YY Effective and active normal damage 22
75 ORTHOTROPIC_DAMAGE_ZZ Effective and active normal damage 33
76 ORTHOTROPIC_DAMAGE_XY Effective and active shear damage 12
77 ORTHOTROPIC_DAMAGE_YZ Effective and active shear damage 23
78 ORTHOTROPIC_DAMAGE_ZX Effective and active shear damage 31

116

18.4. ELASTIC ORTHOTROPIC SHELL MODEL

BEGIN PARAMETERS FOR MODEL ELASTIC_ORTHOTROPIC_SHELL

#

required parameters

#

YOUNGS MODULUS RR = <real> ERR

YOUNGS MODULUS SS = <real> ES S

YOUNGS MODULUS TT = <real> ETT

POISSONS RATIO RS = <real> νRS

POISSONS RATIO ST = <real> νS T

POISSONS RATIO TR = <real> νTR

SHEAR MODULUS RS = <real> GRS

SHEAR MODULUS RT = <real> GRT

SHEAR MODULUS ST = <real> GS T

END [PARAMETERS FOR ELASTIC_ORTHOTROPIC_SHELL]

The ELASTIC ORTHOTROPIC SHELL model describes the linear elastic response of an
orthotropic material where the planar orientation of the principal material directions can be
arbitrary. This material uses the shell section orthotropic alignment commands described in the
Sierra/SM 4.54 User’s Guide Section ?? to define the local RST coordinate system.

The general 3D response of an orthotropic material is given above. For the shell model, the ABC
coordinate system is replaced with the RST coordinate system. For plane stress the stiffness is
calculated with the constraint that σTT = 0. From this constraint the thickness strain, which is
used to calculate the thickness change for the shell, is

εTT = −
1

1− νRS νS R

[(νRT + νRS νS T)εRR+ (νS T + νS RνRT)εS S] (18.1)

and results in the following stiffness







σRR

σS S

σRS

σS T

σTR







=

















C̄RRRR C̄RRS S 0 0 0

C̄RRS S C̄S S S S 0 0 0

0 0 2GRS 0 0

0 0 0 2GS T 0

0 0 0 0 2GTR























εRR

εS S

εTT

εRS

εS T

εTR







(18.2)

where

C̄RRRR =
ER

1− νRS νS R
; C̄S S S S =

ES

1− νRS νS R
; C̄RRS S =

νS RER

1− νRS νS R
=
νRS ES

1− νRS νS R
(18.3)

In the above command blocks, all the following are required inputs.

117

• Young’s modulus of the orthogonal R, S, and T axes are defined with the
YOUNGS MODULUS RR, YOUNGS MODULUS SS and YOUNGS MODULUS TT command
lines.
• POISSONS RATIO RS defines the strain in the S direction when the material is pulled in

the R direction
• POISSONS RATIO ST defines the strain in the T direction when the material is pulled in

the S direction
• POISSONS RATIO TR defines the strain in the R direction when the material is pulled in

the T direction
• The shear moduli in each of shear directions are defined with the SHEAR MODULUS RS,
SHEAR MODULUS RT, and SHEAR MODULUS ST command lines.

Error messages for the ELASTIC ORTHOTROPIC SHELL model concern input that results in a
non-positive definite stiffness. The error messages, and their meanings, are

Model parameters chosen so that determinant of stiffness < 0

1− ν2RS

ES

ER

− ν2S T

ET

ES

− ν2TR

ER

ET

−2νRS νS TνTR < 0

Model parameters chosen so that RS sub-determinant of stiffness < 0

1− ν2RS

ES

ER
< 0

Model parameters chosen so that ST sub-determinant of stiffness < 0

1− ν2S T

ET

ES

< 0

Model parameters chosen so that TR sub-determinant of stiffness < 0

1− ν2TR

ER

ET
< 0

Warning: In previous releases the ELASTIC_ORTHOTROPIC_SHELL model re-
quired input parameter POISSONS RATIO SR, which could have led to an incon-
sistent set of parameters. The model also previously did not require YOUNGS_

MODULUS_TT, POISSONS RATIO ST, or POISSONS RATIO TR, which are now
required parameters in the current version.
For backward compatibility only, the original input syntax remains valid. However,
the new behavior of the model is to ignore any input value of νS R and compute
it automatically as νS R = νRS (ES S /ERR). If ETT is not input, it is computed as
(ETT = (ERR+ES S)/2 by default. If no value is input for νS T or νTR, it will default
to zero.
For best results all required values should be input in future usages of this model.

118

18.5. KARAGOZIAN AND CASE CONCRETE MODEL

BEGIN PARAMETERS FOR MODEL KC_CONCRETE

#

Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

#

#

COMPRESSIVE STRENGTH = <real>compressive_strength

FRACTIONAL DILATANCY = <real>omega

HARDEN-SOFTEN FUNCTION = <string>harden_soften_function_name

LAMBDAM = <real>lambda_m

LAMBDAZ = <real>lambda_z

MAXIMUM AGGREGATE SIZE = <real>max_aggregate_size

ONE INCH = <real>one_inch

PRESSURE FUNCTION = <string>pressure_function_name

RATE SENSITIVITY FUNCTION = <string>rate_function_name

SINGLE RATE ENHANCEMENT = <enum>TRUE|FALSE

TENSILE STRENGTH = <real>tensile_strength

UNLOAD BULK MODULUS FUNCTION = <string>bulk_function_name

END PARAMETERS FOR MODEL KC_CONCRETE

The Karagozian & Case (or K&C) concrete model is an inelasticity model appropriate for
approximating the constitutive behavior of concrete. Coupled with appropriate elements for
capturing the embedded deformation of reinforcing steel, the K&C concrete model can be used
effectively for simulating the mechanical response of reinforced concrete structures. The K&C
model has several useful characteristics for estimating concrete response, including
strain-softening capabilities, some degree of tensile response, and a nonlinear stress-strain
characterization that robustly simulates the behavior of plain concrete. This model is described in
detail in [2].

In the above command blocks:

• Consult the Sierra/SM 4.54 User’s Guide Chapter ?? for more information on elastic
constants input.
• The compressive strength for a uniaxial compression test is defined with the
COMPRESSIVE STRENGTH command line.
• The tensile strength for the uniaxial tension test is defined with the TENSILE STRENGTH

command line.
• The abscissa of the hardening/softening curve where this curve takes on the value of one is

119

termed Lambda-M, and it is defined with the LAMBDAM command line (see [2], pg. B-3).
• The abscissa of the hardening/softening curve where this curve takes on the value of zero

after its peak value has been attained is termed Lambda-Z, and it is defined with the
LAMBDAZ command line. This parameter should satisfy LAMBDAZ > LAMBDAM
(see [2], pg. B-3). This input is Sierra-specific, and differs from the previous PRONTO3D
definitions.
• The SINGLE RATE ENHANCEMENT parameter indicates whether the rate enhancement of

the model should be independent of the sign of the deformation. If this parameter is set to
TRUE, the same enhancement function is used for both compression and tension. If it is set
to FALSE, the enhancement function must assign values for both positive and negative
values of strain rate (see [2], pg. B-5). This parameter is also Sierra-specific, and is
different from the previous PRONTO3D definitions.
• The FRACTIONAL DILATANCY is an estimate of the size of the plastic volume strain

increment relative to that corresponding to straining in the hydrostatic plane. This value
normally ranges from 0.3 to 0.7, and a value of one-half is commonly used in practice.
• The MAXIMUM AGGREGATE SIZE parameter provides an estimate of the largest length

dimension for the aggregate component of the concrete mix. The American Concrete
Institute code [3] includes specifications for maximum aggregate size that are based on
member depth and clear spacing between adjacent reinforcement elements. This parameter
is also useful in modifying the post-peak fall-off of both compressive and tensile behaviors.
A large aggregate size (e.g. 2.5 inches) may result in a rapid drop after reaching peak stress.
A small aggregate size (e.g. 0.5 inches) may result in a gradual decline after reaching peak
stress.

Warning: Simulations utilizing the K&C model can be subject to damage-failure
waves wherein the initiation of element damage can cause a rapid chain reaction of
damage that propagates through the entire simulation within a few time steps. This
damage- failure wave could be caused by a too-sudden drop in element strength
after failure. One method to stabilize the simulation is to lower the value used
for MAXIMUM AGGREGATE SIZE, allowing for a more gradual post-peak element
strength decline.

• The parameter ONE INCH provides for conversion to units other than the pounds/inch
system commonly used in U.S. concrete venues. This parameter should be set to the
equivalent length in the system used for analysis. If centimeters are to be used, for example,
then ONE INCH = 2.54.

The following functions describe the evolution of material coefficients in this model:

• The function characterizing the enhancement of strength with strain rate is described via the
RATE SENSITIVITY FUNCTION (see [2], pg. B-3).

120

Warning: The RATE SENSITIVITY FUNCTION command should be used with
caution. The implementation appears to overestimate concrete strength in tension,
and users are cautioned to provide rate sensitivity function values that have the
value of 1.0 for positive (tensile) values of strain rate. These values correspond to
no additional strength in tension due to strain rate, and are both physically realistic
and conservative.

• The function describing the relationship between pressure and volumetric strain is
described via the PRESSURE FUNCTION.
• The function characterizing the relationship between bulk modulus and volumetric strain

during unloading is described via the UNLOAD BULK MODULUS FUNCTION.
• The function describing the hardening and softening functions function eta as a function of

the material parameters lambda (see LAMBDAM and LAMBDAZ) is defined via the
HARDEN-SOFTEN FUNCTION (see [2], pg. B-3). The HARDEN-SOFTEN FUNCTION

dictates damage accrual. ETA is a function of LAMBDA. At LAMBDA = ETA = 0, the material
is undamaged. At ETA(LAMBDA) = 1, damage = 1; the concrete has reached maximum
stress and cannot support more. At ETA(LAMBDA) = 0 (after ETA(LAMBDA) = 1), damage is
approaching 2; the concrete is mostly rubble/cracked. At damage = 2, the concrete has fully
become rubble/cracked.

The above-listed functions are calculated as follows. The HARDEN-SOFTEN FUNCTION is
referenced in (see [2], pg. B-3).

RATE SENSITIVITY FUNCTION CALCULATIONS

#

Equation Constants

#

delta = 1/(1+8*fpc/1450) fpc in psi

beta = 10**(6*delta-2)

difmax = beta*(300/1e-6)**(1/3)

alpha = 1/(5+9*fpc/1450) fpc in psi

gamma = 10**(6.156*alpha-2)

difmaxc = gamma*(300/(30e-6)**(1/3))

#

Value Calculations

#

-30.e5 difmax

-3.0e2 difmax

-100.0 beta*(100/1e-6)**(1/3)

-10.00 beta*(10/1e-6)**(1/3)

-1.000 (1/1e-6)**delta

-0.100 (0.1/1e-6)**delta

-0.010 (0.01/1e-6)**delta

0.000 1.0

0.010 (0.01/30e-6)**(1.026*alpha)

0.100 (0.1/30e-6)**(1.026*alpha)

1.000 (1/30e-6)**(1.026*alpha)

121

30.00 gamma*(30/30e-6)**(1/3)

100.0 gamma*(100/30e-6)**(1/3)

300.0 difmaxc

30.e5 difmaxc

PRESSURE FUNCTION CALCULATIONS

#

Equation Constants

#

bulk0 = MATERIAL BULK MODULUS

p2 = bulk0*0.15e-2

#

Value Calculations

volume strain vs pressure

0.0 0.0

0.15e-2 p2

0.27e-2 p2*1.53

0.43e-2 p2*2.18

0.6e-2 p2*2.74

0.8e-2 p2*3.13

0.197e-1 p2*5.13

0.89e-1 p2*21.7

0.1e1 p2*221.9

0.1e4 p2*221.9

UNLOAD BULK MODULUS FUNCTION CALCULATIONS

#

Equation Constants

#

bulk0 = MATERIAL BULK MODULUS

#

Value Calculations

volume strain vs bulk modulus

0.0 bulk0

0.15e-2 bulk0

0.27e-2 min(10*bulk0,

bulk0*(1+10*(0.27e-2 - 0.15e-2)))

0.43e-2 min(10*bulk0,

bulk0*(1+10*(0.43e-2 - 0.15e-2)))

0.60e-2 min(10*bulk0,

bulk0*(1+10*(0.6e-2 - 0.15e-2)))

0.80e-2 min(10*bulk0,

bulk0*(1+10*(0.8e-2 - 0.15e-2)))

0.197e-1 min(10*bulk0,

bulk0*(1+10*(0.197e-1 - 0.15e-2)))

0.89e-1 min(10*bulk0,

122

bulk0*(1+10*(0.89e-1 - 0.15e-2)))

0.1e1 min(10*bulk0,

bulk0*(1+10*(0.1e1 - 0.15e-2)))

0.1e4 min(10*bulk0,

bulk0*(1+10*(0.1e1 - 0.15e-2)))

The following are sample values for a concrete with a compressive strength of 7000 psi (base
units inch-pounds):

RATE SENSITIVITY FUNCTION SAMPLE VALUES

-30.e5 9.4873

-3.0e2 9.4873

-100.0 6.5781

-10.00 3.0533

-1.000 1.0201

-0.100 1.0190

-0.010 1.0179

0.000 1.0

0.010 1.1310

0.100 1.1874

1.000 1.2468

30.00 1.3399

100.0 2.0015

300.0 2.8867

30.e5 2.8867

PRESSURE FUNCTION SAMPLE VALUES

0.0 0.0

0.15e-2 3974

0.27e-2 6080

0.43e-2 8664

0.6e-2 10889

0.8e-2 12439

0.197e-1 20387

0.89e-1 86239

0.1e1 881861

0.1e4 881861

UNLOAD BULK MODULUS FUNCTION SAMPLE VALUES

0.0 2649423

.15e-2 2649423

.27e-2 2681216

.43e-2 2723607

.60e-2 2768647

.80e-2 2821636

.197e-1 3131618

123

.89e-1 4967669

.1e1 26494234

.1e4 26494234

HARDEN-SOFTEN FUNCTION SAMPLE VALUES

(for most concrete strengths)

(damage parameter d also shown for reference)

0 0.0 # --> d=0

8e-06 0.85 # --> d=0.25

2.4e-05 0.97 # --> d=0.6

4e-05 0.99 # --> d=0.8333333333

5.6e-05 1.0 # --> d=1

7.2e-05 0.99 # --> d=1.125

8.8e-05 0.97 # --> d=1.222222222

.00032 0.5 # --> d=1.70212766

.00052 0.1 # --> d=1.805555556

.00057 0.0 # --> d=1.821086262

1.00056 0.0 # --> d=1.999888013

10.00056 0.0 # --> d=1.9999888

1e+10 0.0 # --> d=2

124

18.6. KAYENTA MODEL

Note, many parameters of this model are undocumented.

BEGIN PARAMETERS FOR MODEL KAYENTA

B0 = <real> b0

B1 = <real> b1

B2 = <real> b2

B3 = <real> b3

B4 = <real> b4

G0 = <real> g0

G1 = <real> g1

G2 = <real> g2

G3 = <real> g3

G4 = <real> g4

RJS = <real> rjs

RKS = <real> rks

RKN = <real> rkn

A1 = <real> a1

A2 = <real> a2

A3 = <real> a3

A4 = <real> a4

P0 = <real> p0

P1 = <real> p1

P2 = <real> p2

P3 = <real> p3

CR = <real> cr

RK = <real> rk

RN = <real> rn

HC = <real> hc

CTPSF = <real> ctpsf

CUTPS = <real> cutps

CUTI1 = <real> cuti1

T1 = <real> t1

T2 = <real> t2

T3 = <real> t3

T4 = <real> t4

T5 = <real> t5

T6 = <real> t6

T7 = <real> t7

J3TYPE = <real> j3type

A2PF = <real> a2pf

A4PF = <real> a4pf

CRPF = <real> crpf

RKPF = <real> rkpf

FAIL0 = <real> fail0

FAIL1 = <real> fail1

125

FAIL2 = <real> fail2

FAIL3 = <real> fail3

FAIL4 = <real> fail4

FAIL5 = <real> fail5

FAIL6 = <real> fail6

FAIL7 = <real> fail7

FAIL8 = <real> fail8

FAIL9 = <real> fail9

PEAKI1I = <real> peaki1i

STRENI = <real> streni

FSLOPEI = <real> fslopei

PEAKI1F = <real> peaki1f

STRENF = <real> strenf

FSLOPEF = <real> fslopef

SOFTENING = <real> softening

IEOSID = <real> ieosid

DILATLIM = <real> dilatlim

NU = <real> nu

YSLOPEI = <real> yslopei

YSLOPEF = <real> yslopef

CKN01 = <real> ckn01

VMAX1 = <real> vmax1

SPACE1 = <real> space1

SHRSTIFF1 = <real> shrstiff1

CKN01 = <real> ckn02

VMAX1 = <real> vmax2

SPACE1 = <real> space2

SHRSTIFF1 = <real> shrstiff2

CKN01 = <real> ckn03

VMAX1 = <real> vmax3

SPACE1 = <real> space3

SHRSTIFF1 = <real> shrstiff3

END [PARAMETERS FOR MODEL KAYENTA]

Kayenta is an outgrowth of the Brannon-Fossum-Strack isotropic geomaterial model that includes
features and fitting functions appropriate to a broad class of materials including rocks, rock-like
engineered materials (such as concretes and ceramics), and metals. Fundamentally, Kayenta is a
computational framework for generalized plasticity models. As such, it includes a yield surface,
but the term “yield” is generalized to include any form of inelastic material response including
micro-crack growth and pore collapse. Kayenta supports optional anisotropic elasticity associated
with ubiquitous joint sets. Kayenta supports optional deformation-induced anisotropy through
kinematic hardening (in which the initially isotropic yield surface is permitted to translate in
deviatoric stress space to model Bauschinger effects). The governing equations are otherwise
isotropic. Because Kayenta is a unification and generalization of simpler models, it can be run
using as few as 2 parameters (for linear elasticity) to as many as 40 material and control
parameters in the exceptionally rare case when all features are used. Isotropic damage is modeled
through loss of stiffness and strength. If ever you are unsure of the value of a parameter, leave it

126

unspecified so that Kayenta can use an appropriate default. See [4] for a full description of the
model, inputs, and output variables.

The command block for a Kayenta material starts with the line:

BEGIN PARAMETERS FOR MODEL KAYENTA

and terminates with the line:

END [PARAMETERS FOR MODEL KAYENTA]

In the above command blocks:

• The following are valid parameters for the Kayenta material model. If ever you are unsure
of the value of a parameter, leave it unspecified so that Kayenta can use an appropriate
default.
• The initial elastic bulk modulus is defined with the B0 command line.
• The high pressure coefficient in nonlinear elastic bulk modulus function is defined with

the B1 command line.
• The curvature parameter in nonlinear elastic bulk modulus function is defined with the
B2 command line.
• The coefficient in nonlinear elastic bulk modulus to allow for plastic softening is defined

with the B3 command line.
• The power in bulk modulus softening is defined with the B4 command line.
• The initial elastic shear modulus is defined with the G0 command line.
• The coefficient in shear modulus hardening is defined with the G1 command line.
• The curvature parameter in shear modulus hardening is defined with the G2 command

line.
• The coefficient in shear modulus softening is defined with the G3 command line.
• The power in shear modulus softening is defined with the G4 command line.
• The joint spacing is defined with the RJS command line.
• The joint shear stiffness is defined with the RKS command line.
• The joint normal stiffness is defined with the RKN command line.
• The constant term for meridional profile function of ultimate shear limit surface is

defined with the A1 command line.
• The curvature decay parameter in the meridional profile function is defined with the A2

command line.
• The parameter in the meridional profile function is defined with the A3 command line.
• The high-pressure slope parameter in meridional profile function is defined with the A4

command line.
• One third of the elastic limit pressure parameter at onset of pore collapse is defined with

the P0 command line.
• One third of slope of porosity vs pressure crush curve at elastic limit is defined with the
P1 command line.
• The parameter for hydrostatic crush curve is defined with P2 command line.

127

• The asymptote of the plastic volumetric strain for hydrostatic crush is defined with the P3
command line.
• The parameter for porosity affecting shear strength is defined with the CR command line.
• The triaxial extension strength to compression strength ratio is defined with the RK

command line.
• The initial shear yield offset [non negative] is defined with the RN command line.
• The kinematic hardening parameter is defined with the HC command line.
• The tension cut-off value of I1 is defined with the CUTI1 command line.
• The tension cut-off value of principal stress is defined with the CUTPS command line.
• The relaxation time constant 1 is defined with the T1 command line.
• The relaxation time constant 2 is defined with the T2 command line.
• The parameter no longer in use. [set to zero] is defined with the T3 command line.
• The parameter no longer in use. [set to zero] is defined with the T4 command line.
• The relaxation time constant 5 (stress). is defined with the T5 command line.
• The relaxation time constant 6 (time). is defined with the T6 command line.
• The relaxation time constant 7 (1/stress). is defined with the T7 command line.
• The type of 3rd deviatoric stress invariant function is defined with the J3TYPE command

line.
• The potential function parameter 1 (default=A2) is defined with the A2PF command line.
• The potential function parameter 2 (default=A4) is defined with the A4PF command line.
• The potential function parameter 3 (default=CR) is defined with the CRPF command line.
• The potential function parameter 4 (default=RK) is defined with the RKPF command line.
• The failed speed is defined with the FSPEED command line.
• The peak I1 hydrostatic tension strength is defined with the PEAKI1I command line.
• The peak (high pressure) shear strength is defined with the STRENI command line.
• The initial slope of limit surface at PEAKI1I is defined with the FSLOPEI command line.
• PEAKI1F is the same as PEAKI1I, but for failed limit surface.
• STRENF is the same as STRENI, but for failed limit surface.
• FSLOPEF is the same as FSLOPEI, but for failed limit surface.
• The SOFTENING command line allows transition of limit surface from intact description

to failed description.
• The amount of time that passes with the stress state at the limit surface before the limit

surface collapses (i.e., softens) is defined with the TFAIL command line.
• The upper limit on plastic volume strain is defined with the DILATLIM command line.

128

18.7. SHAPE MEMORY ALLOY

BEGIN PARAMETERS FOR MODEL SHAPE_MEMORY_ALLOY

#

Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

Thermoelastic properties of two crystallographic phases

#

ELASTIC MODULUS AUSTENITE = <real> EA

POISSON RATIO AUSTENITE = <real> νA

CTE AUSTENITE = <real> αA

ELASTIC MODULUS MARTENSITE = <real> EM

POISSON RATIO MARTENSITE = <real> νM

CTE MARTENSITE = <real> αM

#

Phase diagram parameters

#

MARTENSITE START = <real> Ms

MARTENSITE FINISH = <real> M f

AUSTENITE START = <real> As

AUSTENITE FINISH = <real> A f

STRESS INFLUENCE COEFF MARTENSITE = <real> CM

STRESS INFLUENCE COEFF AUSTENITE = <real> CA

#

Transformation strain magnitude parameters

#

H_MIN = <real> Hmin

H_SAT = <real> Hsat

KT = <real> k

SIGMA_CRITICAL = <real> σcrit

#

Calibration parameters

#

N1 = <real> n1

N2 = <real> n2

N3 = <real> n3

N4 = <real> n4

SIGMA STAR = <real> σ∗

T0 = <real> θ0
#

129

Initial phase conditions

#

XI0 = <real> ξ (t = 0) (0.0)

PRESTRAIN_DIRECTION = <int> nps (0)

PRESTRAIN_MAGNITUDE = <real> ||εtri j (t = 0) ||(0.0)
#

END [PARAMETERS FOR MODEL SHAPE_MEMORY_ALLOY]

The shape memory alloy (SMA) model is used to describe the thermomechanical response of
intermetallics (e.g. NiTi, NiTiCu, NiTiPd, NiTiPt) that can undergo a reversible, diffusionless,
solid-to-solid martensitic transformation. Specifically, the materials have a high-symmetry
(typically cubic) austenitic crystallographic structure at high temperature and/or low stress. At
lower-temperatures and/or high stress the crystallographic structure is transformed to a lower
symmetry (typically orthorhombic or monoclinic) martensitic phase. The change in structure and
symmetry may be taken advantage of to produce large inelastic strains of ≈ 1-8%. Importantly,
this class of materials differentiates itself from TRIP steels in that the transformation is reversible

and a variety of thermomechanical loading paths have been conceived of to take advantage of this
behavior. A notable application of these materials is as an actuator in smart, morphing
structures.

Phenomenologically, the macroscopic behavior of SMAs is typically discussed in effective
stress-temperature space via a phase diagram like in Figure 18-1. The four lines denoted
Ms, M f , As, and A f indicate the martensitic start, martensitic finish, austenitic start, and
austenitic finish transformation surfaces. Forward transformation (from an austenitic to a
martensitic state) is described by the martensitic start and finish surfaces. Specifically, the former
refers to the thermomechanical conditions at which transformation will initiate while the latter
corresponds to complete transformation. The difference between the two surfaces is associated
with internal hardening effects due to microstructure (i.e. texture, back stresses). Transformation
from martensite to austenite is referred to as reverse and is characterized by the austenitic start
and finish surfaces. Detailed discussion of the crystallography and phenomenology may be found
in [5, 6]1.

Two responses characteristic of SMAs may also be represented via the phase diagram. These are
the actuation response and the pseudoelastic (often referred to as superelastic in the literature)
responses. The first (actuation) is indicated by path “A” in Figure 18-1. In this case, a mechanical
bias load is applied to the SMA and the material is then thermally cycled through forward and
reverse transformation. The resulting transformation first produces and then removes the large
transformation strains of SMAs and is commonly used for (surprisingly) actuation applications.
At higher temperatures (T > A f), mechanical loading may be used induce forward and, upon
unloading, reverse transformation as indicated in path “B” of Figure 18-1. Through such a cycle,
a distinctive flag shape in the stress strain response is observed through which large amounts of
energy may be dissipated while producing no permanent deformations. As such, this loading path

1In the martensitic configuration, the crystallographic structure can either self-accommodate in a twinned configu-
ration producing no macroscopic inelastic strain or an internal or external stress field may be used to detwin the
microstructure thereby producing the desired inelastic strain. For simplicity, this distinction is bypassed in this
brief text and the interested reader should consult the referenced works.

130

temperature

st
re
ss

MsMf As Af

Martensite

Austenite

(B)(B)

(A)(A)

Figure 18-1. Representative phase diagram of shape memory alloys

highlighting characteristic loading paths ((A) and (B)), transforma-

tion surfaces, and phases.

is often considered for vibration isolation or damping applications.

In LAMÉ, the response of SMAs is described by the phenomenological model of Lagoudas and
coworkers [7]. This model was motivated by actuator applications and it describes the inelastic
deformation associated with martensitic transformation through two internal state variables – the
scalar martensitic volume fraction, ξ, and tensorial transformation strain tensor, εtri j. Before
proceeding it should be noted that the structural response of SMA specimens and components
exhibit a rate dependency associated with the strong thermomechanical coupling of SMAs.
Specifically, the transformation process gives off/absorbs large amounts of energy via the latent

heat of transformation. The rate dependence observed is a result of the characteristic time scale
associated with thermal transport of this heat. In pure mechanical analyses (like Sierra/SM), this
means quasistatics loadings are typically considered (a strain rate of ≈ 1x10−4 and/or
heating/cooling rate of ≈ 2◦C/min). Formulations accounting for the full coupling have been
developed but require more complex implementations.

To begin, the model assumes an additive decomposition of the total, elastic, thermal, and
transformation deformation (strain) rates respectively denoted by Di j, De

i j, Dth
i j and Dtr

i j producing
a total deformation rate of the form,

Di j = De
i j+Dth

i j +Dtr
i j. (18.4)

With respect to the thermoelastic deformations, it is noted that the different crystallographic
phases have different thermoelastic constants. Previous studies have demonstrated that a rule of
mixtures on the compliance and other material properties of the form,

131

Si jkl = S
A
i jkl+ ξ

(
S

M
i jkl−SA

i jkl

�
= SA

i jkl+ ξ∆Si jkl, (18.5)

αi j = α
Aδi j+ ξ

(
αMδi j−αAδi j

�
= αAδi j+ ξ∆αδi j, (18.6)

in which Si jkl and αi j are the current effective compliance and coefficient of thermal expansion
and the superscripts “A” and “M” denote thermoelastic properties in the austenitic and martensitic
configuration. The symbol “∆” is used to indicate the difference in a property between the
martensitic and austenitic phases while δi j is the Kronecker delta. Isotropy is assumed for all
these properties and the compliances are determined via the definition of elastic moduli and
Poisson’s ratio of the two phases – EA, EM, νM, and νM. The two Poisson ratios are often the
same and take typical values for metals (νA ≈ νM ≈ 0.3) while the elastic moduli can differ by a
factor of more than two. For instance the austenitic modulus of NiTi is typically given as ≈ 70
GPa while the martensitic one is ≈ 30 GPa2. Importantly, this difference means that the
thermoelastic properties and corresponding deformations vary with transformation. As such, the
corresponding rates of deformation are given as,

De
i j = ξ̇∆Si jklσkl+Si jkl

◦
σkl, (18.7)

Dth
i j = ξ̇∆αδi j (θ− θ0)+αδi jθ̇, (18.8)

where θ and θ0 are the current and reference temperature and σi j is the symmetric Cauchy stress.
Note, in using the SMA model a temperature field must be defined. The stress rate may then be
shown to be,

◦
σi j= Ci jkl

(
Dkl−αδkl

˙theta− ξ̇ (∆Sklmnσmn+∆αδkl (θ− θ0))−Dtr
kl

�
, (18.9)

with Ci jkl being the current stiffness tensor defined as Ci jkl = S
−1
i jkl.

To describe the transformation strain evolution, it is assumed that these deformations evolve with
(and only with) the martensitic volume fraction, ξ. The corresponding flow rule is given as,

Dtr
i j = ξ̇Λi j, (18.10)

and Λi j is the transformation direction tensor assumed to be of the form,

Λi j =

(
Hcur (σ̄vM) 3

2
si j

σ̄vM
ξ̇ ≥ 0

εtr−rev
i j

ξrev ξ̇ < 0
. (18.11)

In (18.11), Hcur is the transformation strain magnitude that is dependent on the von Mises
effective stress, σ̄vM, and si j is the deviatoric stress. With forward transformation defined in this

2Given the lower symmetry of the martensitic phase the determination of an isotropic elastic modulus can vary with
characterization methodology. In this case, the apparent elastic modulus measured from macroscopic thermoelastic
tests should be used.

132

way, it is assumed that deformation is shear-based and follows a J2 like flow direction. For
reverse transformation (ξ̇ < 0), the postulated form is utilized to ensure complete recovery of
transformation strains with martensitic volume fraction. In other words, all transformation strain
components are zero-valued at ξ = 0. Without enforcing this condition in this way,
non-proportional loading paths could be constructed producing a non-zero transformation strain
when the material is austenitic. The transformation strain at load reversal, εtr−rev

i j , and martensitic
volume fraction at load reversal, ξrev, are then tracked (via the implementation) and used for this
purpose.

The transformation strain magnitude, Hcur, is a function of the von Mises effective stress (σ̄vM)
and is introduced to incorporate detwinning effects without introducing an additional internal
state variable complicating the model. Specifically, at low stress values, this function returns a
minimum value. If the microstructure is self-accommodated this value will be zero. A decaying
exponential is used such that as the stress increases the value of the strain magnitude becomes that
of the maximum value incorporating both crystallographic and texture effects. The given
functional form is,

Hcur =

�
Hmin σ̄vM ≤ σcrit

Hmin+ (Hsat−Hmin)
(
1− exp(−k (σ̄vM −σcrit))

�
σ̄vM > σcrit

, (18.12)

where Hmin, Hsat, k, and σcrit are model parameters giving the minimum transformation strain
magnitude, maximum transformation strain magnitude, exponential fitting parameter governing
the transition zone, and critical stress values (in some ways analogous to the detwinning stress).

The evolution of martensitic transformation process is governed by a transformation function
serving an analogous role to the yield function in plasticity. This function is given by,

f
(
σi j, θ, ξ

�
= ±φ

(
σi j, θ, ξ

�
− σ̄

(
σi j

�
, (18.13)

with φ begin the thermodynamic driving force for transformation and σ̄ the critical value. The ±
is used to denote either forward (+) or reverse (−) transformation. This transformation function
and the associated forms are derived from continuum thermodynamic considerations and the
details of that process are neglected here for brevity but may be found in [7]. The functional
forms of these variables are given as,

φ
(
σi j, θ, ξ

�
= σi jΛi j+

1
2
σi j∆Si jklσkl+σi j∆αδi j (θ− θ0)+ρ∆s0θ−ρ∆u0− f t (ξ) ,

σ̄
(
σi j

�
= σ0+Dσi jΛi j, (18.14)

in which ρ∆s0 and ρ∆u0 are the differences in reference entropy and internal energy of the two
phases, D is a calibration parameter intended to capture variations in dissipation with stress, and
f t (ξ) is the hardening function. With respect to this latter term, empirical observations were used
to arrive at a postulated form of,

f t (ξ) =

� 1
2a1 (1+ ξn1 − (1− ξ)n2)+a3 ξ̇ ≥ 0
1
2a2 (1+ ξn3 − (1− ξ)n4)−a3 ξ̇ < 0

, (18.15)

133

with a1, a2, and a3 being fitting parameters and n1, n2, n3, and n4 are exponents fit to match the
smooth transformation from elastic to inelastic deformations at the start of forward, end of
forward, start of reverse, and end of reverse transformation respectively.

Before proceeding, one final note should be given in regards to calibration. Specifically, some of
the model parameters just listed (a1, a2, a3, D, σ0, ρ∆s0 and ρ∆u0) are not easily identified or
conceptualized in terms of common thermomechanical experiments. Some easily identifiable
parameters (Ms, M f , As, and A f), however, are not evident in the theoretical formulation.
Conditions associated with these terms and some physical constraints may be used to determine
the model parameters in terms of these more accessible properties. These relations are,

ρ∆s0 =
−2

(
CMCA

�h

Hcur (σ)+σ∂H
cur

∂σ
+σ

(
1

EM − 1
EA

�i

CM +CA
|σ=σ∗ , (18.16)

D =

(
CM −CA

�h

Hcur (σ)+σ∂H
cur

∂σ
+σ

(
1

EM − 1
EA

�i

(
CM +CA

��
Hcur (σ)+σ∂H

cur

∂σ

� |σ=σ∗ , (18.17)

a1 = ρ∆s0
(

M f −Ms

�
, a2 = ρ∆s0

(
As−A f

�
, (18.18)

a3 = −
a1

4

�

1+
1

n1+1
− 1

n2+1

�

+
a2

4

�

1+
1

n3+1
− 1

n4+1

�

, (18.19)

ρ∆u0 =
ρ∆s0

2

(
Ms+A f

�
, σ0 =

ρ∆s0

2

(
Ms−A f

�
−a3, (18.20)

in which σ∗ is the scalar stress measure in which the calibration is performed at. For additional
discussion on the characterization of SMAs and calibration of this model, the user is referred
to [8, 9].

In the command blocks that define the Shape Memory Alloy model:

• See the Sierra/SM 4.54 User’s Guide Section ?? for more information on elastic constants
input. Although the thermoelastic constants of the phases are defined separately, the
definition of these constants in this form is necessary for the global solver. Typical values of
the phases should be applied.

• The isotropic elastic moduli of the austenitic (EA) and martensitic phases (EM) are defined
with the ELASTIC MODULUS AUSTENITE and ELASTIC MODULUS MARTENSITE

command lines, respectively. Note, alternative elastic constants (e.g. bulk or shear moduli)
may not be used.

• The isotropic Poisson’s ratio of the austenitic (νA) and martensitic phases (νM) are defined
with the POISSON RATIO AUSTENITE and POISSON RATIO MARTENSITE command
lines, respectively. Note, alternative elastic constants (e.g. lame constant) may not be used.

• The isotropic coefficient of thermal expansion of the austenitic (αA) and martensitic phases
(αM) are defined with the CTE AUSTENITE and CTE MARTENSITE command lines,
respectively. Note, given the phase and history dependence of the material thermal
expansion, the use of artificial or thermal strain functions may not lead to desired results.
The use of these constants in encouraged instead.

134

• The zero stress, smooth transformation temperatures corresponding to the start and end of
forward transformation (martensitic start Ms and finish M f , respectively) and start and end
of reverse transformation (austenitic start As and finish A f , respectively) are given by the
(in order) command lines MARTENSITE START, MARTENSITE FINISH,
AUSTENITE START, and AUSTENITE FINISH.

• The stress influence coefficients giving the slope of the forward and reverse transformation
surfaces (CM and CA, respectively) are given by the
STRESS INFLUENCE COEFF MARTENSITE and
STRESS INFLUENCE COEFF AUSTENITE, respectively.

• The stress dependence of the transformation strain magnitude requires four coefficients.
These are the minimum transformation strain magnitude (Hmin), the saturation (or
maximum) magnitude (Hsat), exponential fitting coefficient (k), and critical effective stress
value below which the magnitude is minimum (σcrit). These parameters are defined via the
H_MIN, H_SAT, KT, and SIGMA_CRITICAL command lines, respectively.

• The smooth hardening fitting constants n1, n2, n3, and n4 correspond to the degree of
smoothness (essentially how gradual the transformation is) of the martensitic start,
martensitic finish, austenitic start, and austenitic finish transformation surfaces. They are
given by the N1, N2, N3, and N4 command lines, respectively, and should take values
0 < ni ≤ 1.

• The stress level of transformation at which calibration is performed is denoted by σ∗ and
given by the command line SIGMA STAR. For thermally induced transformation this
corresponds to the bias stress level while in pseudo-elastic loadings it corresponds to the
stress level at which the material is roughly evenly split between martensite and austenite.

• The zero-strain reference temperature is denoted θ0 and prescribed via the T0 command
line.

• Three optional parameters describing the initial state of the material may be input. These
parameters are intended for the case in which the material is initially martensite to allow for
initial heating and transformation recovery. The first is the initial martensitic volume
fraction, ξ (t = 0), input via the XI0 command line. If this parameter is not specified the
default value is 0.0 representative of an austenitic material. A value between 0.0 and 1.0
may be entered to initialize the material to partially (or fully) martensitic. Corresponding
initial transformation strains may be entered via the PRESTRAIN_DIRECTION (nps) and

PRESTRAIN_MAGNITUDE

�

||εtri j (t = 0) ||
�

commands. The first (an integer between one and

three) gives the direction of transformation (in global Cartesian space) and the magnitude of
the inelastic strain in that direction is given by a fraction (between 0 and 1) of Hsat via the
second PRESTRAIN_MAGNITUDE line. As the transformation strain tensor is deviatoric, the
other two directions are specified by preserving that the tensor be trace less. Note, the
PRESTRAIN_DIRECTION and PRESTRAIN_MAGNITUDE cannot be specified without a
non-zero XI0 definition.

• Thermal strains functions and commands in Sierra should not be used in conjunction with
the shape_memory_alloy model.

135

Output variables available for this model are listed in Table 18-3.

Table 18-3. State Variables for SHAPE MEMORY ALLOY Model (Sec-

tion 18.7)

Name Description

MVF martensitic volume fraction, ξ
TransStrain transformation strain tensor, εtri j

136

18.8. LINEAR ELASTIC

BEGIN PARAMETERS FOR MODEL LINEAR_ELASTIC

#

Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

END [PARAMETERS FOR MODEL LINEAR_ELASTIC]

The LINEAR_ELASTIC material is used for modeling infinitesimal strain elastic response.
Generally this model is used for code verification work when comparing to infinitesimal strain
solutions. This differs slightly from the standard ELASTIC model which is formulated for general
finite strain.

137

18.9. ELASTIC THREE-DIMENSIONAL ANISOTROPIC

MODEL

BEGIN PARAMETERS FOR MODEL ELASTIC_3D_ANISOTROPIC

#

Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

Material coordinates system definition

#

COORDINATE SYSTEM = <string> coordinate_system_name

DIRECTION FOR ROTATION = <real> 1|2|3

ALPHA = <real> α1 (degrees)

SECOND DIRECTION FOR ROTATION = <real> 1|2|3

SECOND ALPHA = <real> α2 (degrees)

#

Required parameters

#

STIFFNESS MATRIX 11 = <real> C11

STIFFNESS MATRIX 22 = <real> C22

STIFFNESS MATRIX 33 = <real> C33

STIFFNESS MATRIX 12 = <real> C12

STIFFNESS MATRIX 13 = <real> C13

STIFFNESS MATRIX 23 = <real> C23

STIFFNESS MATRIX 44 = <real> C44

STIFFNESS MATRIX 55 = <real> C55

STIFFNESS MATRIX 66 = <real> C55

STIFFNESS MATRIX 45 = <real> C45

STIFFNESS MATRIX 46 = <real> C46

STIFFNESS MATRIX 56 = <real> C56

STIFFNESS MATRIX 14 = <real> C14

STIFFNESS MATRIX 15 = <real> C15

STIFFNESS MATRIX 16 = <real> C16

STIFFNESS MATRIX 24 = <real> C24

STIFFNESS MATRIX 25 = <real> C25

STIFFNESS MATRIX 26 = <real> C26

STIFFNESS MATRIX 34 = <real> C34

STIFFNESS MATRIX 35 = <real> C35

STIFFNESS MATRIX 36 = <real> C36

#

138

Thermal strain functions

#

THERMAL STRAIN 11 FUNCTION = <real> ǫth11(θ)
THERMAL STRAIN 22 FUNCTION = <real> ǫth22(θ)
THERMAL STRAIN 33 FUNCTION = <real> ǫth33(θ)
THERMAL STRAIN 12 FUNCTION = <real> ǫth12(θ)
THERMAL STRAIN 23 FUNCTION = <real> ǫth23(θ)
THERMAL STRAIN 13 FUNCTION = <real> ǫth13(θ)
#

END [PARAMETERS FOR MODEL ELASTIC_3D_ANISOTROPIC]

The ELASTIC 3D ANISOTROPIC model is an extension of the ELASTIC model which allows
for full anisotropy in both the material stiffness and thermal expansion. Each stiffness component
is labeled with i and j indices which correspond to the components of stress and strain vectors in
contracted notation,











σ11

σ22

σ33

σ12

σ23

σ13











=











C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





















ǫmech
11
ǫmech

22
ǫmech

33
ǫmech

12
ǫmech

23
ǫmech

13











,

where the stress and strain components are with respect to principle material directions. The
thermal strains are defined in a similar manner,

ǫ = ǫmech+ ǫth, ǫth = [ǫth11(θ)ǫth22(θ)ǫth33(θ)ǫth12(θ)ǫth23(θ)ǫth13(θ)]T .

In a finite strain situation, the anisotropic model is formulated in a hypoelastic manner with a
constitutive equation of

σ̇i j =Ci jkl

�

Dkl−Dth
kl

�

,

where Dkl and Dth
kl are the total and thermal strain rates, respectively, and the components of the

fourth order stiffness tensor Ci jkl are related to the contracted notation by

[C] =











C1111 C1122 C1133 C1112 C1123 C1113

C1122 C2222 C2233 C2212 C2223 C2213

C1133 C2233 C3333 C3312 C3323 C3313

C1112 C2212 C3312 C1212 C1223 C1213

C1123 C2223 C3323 C1223 C2323 C2313

C1113 C2213 C3313 C1213 C2313 C1313











.

139

18.10. J2 PLASTICITY

BEGIN PARAMETERS FOR MODEL J2_PLASTICITY

#

Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

Yield surface parameters

#

YIELD STRESS = <real> σy

BETA = <real> β (1.0)

#

Hardening model

#

HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |

FLOW_STRESS | DECOUPLED_FLOW_STRESS | CUBIC_HERMITE_SPLINE |

JOHNSON_COOK | POWER_LAW_BREAKDOWN

#

Linear hardening

#

HARDENING MODULUS = <real> H′

#

Power-law hardening

#

HARDENING CONSTANT = <real> A

HARDENING EXPONENT = <real> n (0.5)

LUDERS STRAIN = <real> εL (0.0)

#

Voce hardening

#

HARDENING MODULUS = <real> A

EXPONENTIAL COEFFICIENT = <real> n

#

Johnson-Cook hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE CONSTANT = <real> C

REFERENCE RATE = <real> ε̇0

#

Power law breakdown hardening

#

140

HARDENING FUNCTION = <string>hardening_function_name

RATE COEFFICIENT = <real> g

RATE EXPONENT = <real> m

#

User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name

#

Spline based hardening curve

#

CUBIC SPLINE TYPE = <string>

CARDINAL PARAMETER = <real> val

KNOT EQPS = <real_list> vals

KNOT STRESS = <real_list> vals

#

#

Following Commands Pertain to Flow_Stress Hardening Model

#

- Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE |

USER_DEFINED

#

Specifications for Linear, Power-law, and Voce same as above

#

User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name

#

- Rate dependence

#

RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

#

Specifications for Johnson-Cook, Power-law-breakdown

same as before EXCEPT no need to specify a

hardening function

#

User defined rate multiplier

#

RATE MULTIPLIER FUNCTION = <string> rate_mult_function_name

#

- Temperature dependence

#

TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

141

Johnson-Cook temperature dependence

#

MELTING TEMPERATURE = <real> θmelt
REFERENCE TEMPERATURE = <real> θref
TEMPERATURE EXPONENT = <real> M

#

User-defined temperature dependence

TEMPERATURE MULTIPLIER FUNCTION = <string>temp_mult_function_name

#

#

Following Commands Pertain to Decoupled_Flow_Stress Hardening Model

#

- Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED

#

Specifications for Linear, Power-law, and Voce same as above

#

User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_function_name

#

- Rate dependence

#

YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

#

Specifications for Johnson-Cook, Power-law-breakdown same as before

EXCEPT no need to specify a hardening function

AND should be preceded by YIELD

#

As an example for Johnson-Cook yield rate dependence,

#

YIELD RATE CONSTANT = <real> Cy

YIELD REFERENCE RATE = <real> ε̇
y
0

#

User defined rate multiplier

#

YIELD RATE MULTIPLIER FUNCTION = <string>yield_rate_mult_function_name

#

HARDENING_RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

#

Syntax same as for yield parameters but with a HARDENING prefix

#

- Temperature dependence

#

142

YIELD TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

Johnson-Cook temperature dependence

#

YIELD MELTING TEMPERATURE = <real> θ
y
melt

YIELD REFERENCE TEMPERATURE = <real> θ
y
ref

YIELD TEMPERATURE EXPONENT = <real> My

#

User-defined temperature dependence

YIELD TEMPERATURE MULTIPLIER FUNCTION = <string>yield_temp_mult_fun_name

#

HARDENING TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

Syntax for hardening constants same as for yield but

with HARDENING prefix

#

END [PARAMETERS FOR MODEL J2_PLASTICITY]

The J2 plasticity model is a generic implementation of a von Mises yield surface with kinematic
and isotropic hardening features. Unlike similar models (e.g. Elastic-Plastic, Elastic-Plastic
Power Law) more general, in-development isotropic hardening models are implemented that
enable greater flexibility in definition and the possibilities of limited rate and/or temperature
dependence. Note, although some testing exists, these feature remain “in-development”.

As is common to other plasticity models in Lamé, the J2 plasticity model is an isotropic,
hypoelastic formulation. As such, the total rate of deformation is additively decomposed into an
elastic and plastic part such that

Di j = De
i j+D

p
i j. (18.21)

The objective stress rate, depending only on the elastic deformation, may then be written as,

◦
σi j= Ci jklD

e
kl, (18.22)

where Ci jkl is the fourth-order elastic, isotropic stiffness tensor.

The yield surface for the J2 plasticity model, f , may be written,

f
(
σi j,αi j, ε̄

p, ˙̄εp, θ
�
= φ

(
σi j,αi j

�
− σ̄

(
ε̄p, ˙̄εp, θ

�
, (18.23)

in which αi j, ε̄
p, ˙̄εp, and θ are the kinematic backstress, equivalent plastic strain, equivalent

plastic strain rate, and absolute temperature, respectively, while φ and σ̄ are generically the
effective stress and flow stress. Broadly speaking, the effective stress encapsulates directional and

143

kinematic effects while the flow stress gives the size of the current yield surface. It should also be
noted that writing the yield surface in this way splits the dependence on the state variables
between the effective stress and flow stress functions.

As the current model is for J2 plasticity, the effective stress is given as,

φ2 (σi j,αi j

�
=

3
2

(
si j−αi j

�(
si j−αi j

�
, (18.24)

with si j being the deviatoric stress defined as si j = σi j− (1/3)σkkδi j. For the flow stress, a general
representation of the form,

σ̄
(
ε̄p, ˙̄εp, θ

�
= σyσ̂y

(
˙̄εp
�
σ̆y (θ)+K

(
ε̄p
�
σ̂h

(
˙̄εp
�
σ̆h (θ) , (18.25)

is allowed. In this fashion, the effects of isotropic hardening (K (ε̄p)), rate (σ̂y,h), and temperature
(σ̆y,h) are decomposed although separate temperature and rate dependencies may be specified for
yield (subscript “y”) and hardening (“h”). Such an assumption is an extension of the
multiplicative decomposition of the Johnson-Cook model [10, 11]. It should be noted that not all
such effects need to be included and the default assumption of the hardening classes is that the
response is rate and temperature independent. The following section on plastic hardening will go
into more detail on possible choices for functional representations.

An associated flow rule is utilized such that the plastic rate of deformation is normal to the yield
surface and is given by,

Ḋ
p
i j = γ̇

∂φ

∂σi j
, (18.26)

where γ̇ is the consistency multiplier enforcing f = 0 during plastic deformation. Given the form
of f , it can also be shown that γ̇ = ˙̄εp.

In the command blocks that define the J2 plasticity model:

• See the Sierra/SM 4.54 User’s Guide Section ?? for more information on elastic constants
input.

• The reference nominal yield stress, σ̄, is defined with the YIELD STRESS command line.

• The beta parameter defines if hardening is isotropic. Consult the Sierra/SM 4.54 User’s
Guide chapter on Material Models for more information on the beta parameter.

• The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

• The hardening modulus for a linear hardening model is defined with the
HARDENING MODULUS command line.

• The hardening constant for a power law hardening model is defined with the
HARDENING CONSTANT command line.

144

• The hardening exponent for a power law hardening model is defined with the
HARDENING EXPONENT command line.

• The Lüders strain for a power law hardening model is defined with the LUDERS STRAIN

command line.

• The hardening function for a user defined hardening model is defined with the
HARDENING FUNCTION command line.

• The shape of the spline for the spline based hardening is defined by the
CUBIC SPLINE TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS

command lines.

• The isotropic hardening model for the flow stress hardening model is defined with the
ISOTROPIC HARDENING MODEL command line.

• The function name of a user-defined isotropic hardening model is defined via the
ISOTROPIC HARDENING FUNCTION command line.

• The optional rate multiplier for the flow stress hardening model is defined with the
RATE MULTIPLIER command line.

• The optional temperature multiplier for the flow stress hardening model is defined via the
TEMPERATURE MULTIPLIER command line.

• The function name of a user-defined temperature multiplier is defined with the
TEMPERATURE MULTIPLIER FUNCTION command line.

• For a Johnson-Cook temperature multiplier, the melting temperature, θmelt, is defined via
the MELTING TEMPERATURE command line.

• For a Johnson-Cook temperature multiplier, the reference temperature, θref, is defined via
the REFERENCE TEMPERATURE command line.

• For a Johnson-Cook temperature multiplier, the temperature exponent, M, is defined via the
TEMPERATURE EXPONENT command line.

• The optional rate multiplier for the yield stress for the decoupled flow stress hardening
model is defined with the YIELD RATE MULTIPLIER command line.

• The optional rate multiplier for the hardening for the decoupled flow stress hardening
model is defined with the HARDENING RATE MULTIPLIER command line.

• The optional temperature multiplier for the yield stress for the decoupled flow stress
hardening model is defined with the YIELD TEMPERATURE MULTIPLIER command line.

• The optional temperature multiplier for the hardening for the decoupled flow stress
hardening model is defined via the HARDENING TEMPERATURE MULTIPLIER command
line.

Output variables available for this model are listed in Table 18-4.

145

Table 18-4. State Variables for J2 PLASTICITY Model (Section 18.10)

Name Description

EQPS equivalent plastic strain, ε̄p

EQDOT equivalent plastic strain rate, ˙̄εp

SEFF effective stress, φ

146

18.11. KARAFILLIS BOYCE PLASTICITY MODEL

BEGIN PARAMETERS FOR MODEL KARAFILLIS_BOYCE_PLASTICITY

#

Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

Yield surface parameters

#

YIELD STRESS = <real> σy

A = <real> a (4.0)

C = <real> c (0.0)

COEFF = <real> C (2.0/3.0)

ALPHA 1 = <real> c1 (1.0)

ALPHA 2 = <real> c2 (1.0)

GAMMA 1 = <real> c1 (1.5)

GAMMA 2 = <real> c2 (1.5)

GAMMA 3 = <real> c3 (1.5)

#

Hardening model

#

HARDENING MODEL = LINEAR | POWER_LAW | USER_DEFINED |

CUBIC_HERMITE_SPLINE

#

Linear hardening

#

HARDENING MODULUS = <real> H’

#

Power law hardening

#

HARDENING CONSTANT = <real> A

HARDENING EXPONENT = <real> n (0.5)

#

User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name

#

Spline based hardening curve

#

CUBIC SPLINE TYPE = <string>

CARDINAL PARAMETER = <real> val

147

KNOT EQPS = <real_list> vals

KNOT STRESS = <real_list> vals

#

Material coordinates system definition

#

COORDINATE SYSTEM = <string> coordinate_system_name

DIRECTION FOR ROTATION = <real> 1|2|3

ALPHA = <real> α1 (degrees)

SECOND DIRECTION FOR ROTATION = <real> 1|2|3

SECOND ALPHA = <real> α2 (degrees)

END [PARAMETERS FOR MODEL KARAFILLIS_BOYCE_PLASTICITY]

The Karafillis and Boyce model [12] is an anisotropic plasticity model. The stress is transformed,
based on the anisotropy, and the transformed stress is used in the yield function. The transformed
stress, using Voigt notation in the material coordinate system, is given by

s′ = C : σσσ

[C] =C











1 β1 β2 0 0 0
β1 α1 β3 0 0 0
β2 β3 α2 0 0 0
0 0 0 γ1 0 0
0 0 0 0 γ2 0
0 0 0 0 0 γ3











where the terms βk are

β1 =
α2−α1−1

2

β2 =
α1−α2−1

2

β3 =
1−α1−α2

2

The response is isotropic if α1 = α2 = 1, γ1 = γ2 = γ3 = 1.5, and C = 2/3.

The principal stresses of the transformed stress, s′, are used in the yield function

148

φ = {(1− c)φ1+ cφ2}1/a

φ1 =
1
2

�

|s1− s2|a+ |s2− s3|a+ |s3− s1|a
�

φ2 =
3a

2a+2

�

|s1|a+ |s2|a+ |s3|a
�

The exponent, a, is similar to the exponent in the Hosford plasticity model and the constant, c (not
to be confused with C above), is a parameter that provides a mixture of two yield functions.

In the command blocks that define the Hosford plasticity model:

• Consult the Sierra/SM 4.54 User’s Guide Chapter ?? for more information on elastic
constants input.
• The reference nominal yield stress, σ̄, is defined with the YIELD STRESS command line.
• The exponent for the yield surface description, a, is defined with the A command line.
• The coefficient C in the stress transformation is defined with the COEFF command line.
• The term α1 in the stress transformation is defined with the ALPHA 1 command line.
• The term α2 in the stress transformation is defined with the ALPHA 2 command line.
• The term γ1 in the stress transformation is defined with the GAMMA 1 command line.
• The term γ2 in the stress transformation is defined with the GAMMA 2 command line.
• The term γ3 in the stress transformation is defined with the GAMMA 3 command line.
• The type of hardening law is defined with the HARDENING MODEL command line, other

hardening commands then define the specific shape of that hardening curve.
• The hardening modulus for a linear hardening model is defined with the
HARDENING MODULUS command line.
• The hardening constant for a power law hardening model is defined with the
HARDENING CONSTANT command line.
• The hardening exponent for a power law hardening model is defined with the
HARDENING EXPONENT command line.
• The hardening function for a user defined hardening model is defined with the
HARDENING FUNCTION command line.
• The shape of the spline for the spline based hardening is defined by the
CUBIC SPLINE TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS

command lines.

Output variables available for this model are listed in Table 18-5.

149

Table 18-5. State Variables for KARAFILLIS_BOYCE_PLASTICITY

Model

Index Name Variable Description

1 EQPS equivalent plastic strain, ε̄p

150

18.12. CAZACU PLASTICITY MODEL

BEGIN PARAMETERS FOR MODEL CAZACU_PLASTICITY

#

Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

Yield surface parameters

#

YIELD STRESS = <real> σy

A = <real> a (1.0)

#

tension/compression asymmetry

#

RATIO = <real> r

#

Hardening model

#

HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |

FLOW_STRESS | DECOUPLED_FLOW_STRESS | CUBIC_HERMITE_SPLINE |

JOHNSON_COOK | POWER_LAW_BREAKDOWN

#

Linear hardening

#

HARDENING MODULUS = <real> H′

#

Power-law hardening

#

HARDENING CONSTANT = <real> A

HARDENING EXPONENT = <real> n (0.5)

LUDERS STRAIN = <real> εL (0.0)

#

Voce hardening

#

HARDENING MODULUS = <real> A

EXPONENTIAL COEFFICIENT = <real> n

#

Johnson-Cook hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE CONSTANT = <real> C

151

REFERENCE RATE = <real> ε̇0

#

Power law breakdown hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE COEFFICIENT = <real> g

RATE EXPONENT = <real> m

#

User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name

#

Spline based hardening curve

#

CUBIC SPLINE TYPE = <string>

CARDINAL PARAMETER = <real> val

KNOT EQPS = <real_list> vals

KNOT STRESS = <real_list> vals

#

#

Following Commands Pertain to Flow_Stress Hardening Model

#

- Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE |

USER_DEFINED

#

Specifications for Linear, Power-law, and Voce same as above

#

User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name

#

- Rate dependence

#

RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

#

Specifications for Johnson-Cook, Power-law-breakdown

same as before EXCEPT no need to specify a

hardening function

#

User defined rate multiplier

#

RATE MULTIPLIER FUNCTION = <string> rate_mult_function_name

#

- Temperature dependence

152

#

TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

Johnson-Cook temperature dependence

#

MELTING TEMPERATURE = <real> θmelt
REFERENCE TEMPERATURE = <real> θref
TEMPERATURE EXPONENT = <real> M

#

User-defined temperature dependence

TEMPERATURE MULTIPLIER FUNCTION = <string>temp_mult_function_name

#

#

Following Commands Pertain to Decoupled_Flow_Stress Hardening Model

#

- Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED

#

Specifications for Linear, Power-law, and Voce same as above

#

User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_function_name

#

- Rate dependence

#

YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

#

Specifications for Johnson-Cook, Power-law-breakdown same as before

EXCEPT no need to specify a hardening function

AND should be preceded by YIELD

#

As an example for Johnson-Cook yield rate dependence,

#

YIELD RATE CONSTANT = <real> Cy

YIELD REFERENCE RATE = <real> ε̇
y
0

#

User defined rate multiplier

#

YIELD RATE MULTIPLIER FUNCTION = <string>yield_rate_mult_function_name

#

HARDENING_RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

#

153

Syntax same as for yield parameters but with a HARDENING prefix

#

- Temperature dependence

#

YIELD TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

Johnson-Cook temperature dependence

#

YIELD MELTING TEMPERATURE = <real> θ
y
melt

YIELD REFERENCE TEMPERATURE = <real> θ
y
ref

YIELD TEMPERATURE EXPONENT = <real> My

#

User-defined temperature dependence

YIELD TEMPERATURE MULTIPLIER FUNCTION = <string>yield_temp_mult_fun_name

#

HARDENING TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

Syntax for hardening constants same as for yield but

with HARDENING prefix

#

END [PARAMETERS FOR MODEL CAZACU_PLASTICITY]

The Cazacu plasticity model is an isotropic plasticity model that accounts for tension/compression
asymmetry in yield.. This model is used primarily for modeling the plastic deformation of HCP
metals which can show significant tension/compression asymmetry. As is common to other
plasticity models in Lamé, the Cazacu plasticity model uses a hypoelastic formulation. As such,
the total rate of deformation is additively decomposed into an elastic and plastic part such that

Di j = De
i j+D

p
i j. (18.27)

The objective stress rate, depending only on the elastic deformation, may then be written as,

◦
σi j= Ci jklD

e
kl, (18.28)

where Ci jkl is the fourth-order elastic, isotropic stiffness tensor.

The yield surface for the Cazacu plasticity model, f , may be written,

f
(
σi j, ε̄

p, ˙̄εp
�
= φ

(
σi j

�
− σ̄

(
ε̄p, ˙̄εp

�
, (18.29)

in which ε̄p and ˙̄εp are the equivalent plastic strain and equivalent plastic strain rate respectively,
while φ and σ̄ are generically the effective stress and flow stress. Broadly speaking, the flow

154

stress gives the size of the current yield surface. For the Cazacu plasticity model, the effective
stress is given as,

φ
(
σi j

�
=

n

h(a,k)
h

(|s1| − ks1)a+ (|s2| − ks2)a+ (|s3| − ks3)a
io1/a

(18.30)

with si being the principal deviatoric stresses, k and a are model parameters describing
asymmetry in tension/compression along with the shape of the yield surface. The function h(a,k)
is a normalizing factor that is set so that the effective stress for a uniaxial stress state is σ

h =
3a

((2(1− k))a+2(1+ k)a)
(18.31)

The parameter k is calculated from the tension/compression asymmetry. The ratio of the yield
stress in tension to the yield stress in compression is

r = σT
y /σ

C
y (18.32)

The value of k is

k =
1−h(r)
1+h(r)

; h(r) =

�
2a−2ra

(2r)a−2

�1/a

(18.33)

An associated flow rule is utilized such that the plastic rate of deformation is normal to the yield
surface and is given by,

Ḋ
p
i j = γ̇

∂φ

∂σi j

, (18.34)

where γ̇ is the consistency multiplier enforcing f = 0 during plastic deformation. Given the form
of f , it can also be shown that γ̇ = ˙̄εp, i.e. the consistency parameter is equal to the rate of the
equivalent plastic strain.

In the command blocks that define the Cazacu plasticity model:

• See the Sierra/SM 4.54 User’s Guide Section ?? for more information on elastic constants
input.

• The reference nominal yield stress, σ̄, is defined with the YIELD STRESS command line.

• The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

• The hardening modulus for a linear hardening model is defined with the
HARDENING MODULUS command line.

• The hardening constant for a power law hardening model is defined with the
HARDENING CONSTANT command line.

155

• The hardening exponent for a power law hardening model is defined with the
HARDENING EXPONENT command line.

• The Lüders strain for a power law hardening model is defined with the LUDERS STRAIN

command line.

• The hardening function for a user defined hardening model is defined with the
HARDENING FUNCTION command line.

• The shape of the spline for the spline based hardening is defined by the
CUBIC SPLINE TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS

command lines.

• The isotropic hardening model for the flow stress hardening model is defined with the
ISOTROPIC HARDENING MODEL command line.

• The function name of a user-defined isotropic hardening model is defined via the
ISOTROPIC HARDENING FUNCTION command line.

• The optional rate multiplier for the flow stress hardening model is defined with the
RATE MULTIPLIER command line.

• The optional temperature multiplier for the flow stress hardening model is defined via the
TEMPERATURE MULTIPLIER command line.

• The function name of a user-defined temperature multiplier is defined with the
TEMPERATURE MULTIPLIER FUNCTION command line.

• For a Johnson-Cook temperature multiplier, the melting temperature, θmelt, is defined via
the MELTING TEMPERATURE command line.

• For a Johnson-Cook temperature multiplier, the reference temperature, θref, is defined via
the REFERENCE TEMPERATURE command line.

• For a Johnson-Cook temperature multiplier, the temperature exponent, M, is defined via the
TEMPERATURE EXPONENT command line.

• The optional rate multiplier for the yield stress for the decoupled flow stress hardening
model is defined with the YIELD RATE MULTIPLIER command line.

• The optional rate multiplier for the hardening for the decoupled flow stress hardening
model is defined with the HARDENING RATE MULTIPLIER command line.

• The optional temperature multiplier for the yield stress for the decoupled flow stress
hardening model is defined with the YIELD TEMPERATURE MULTIPLIER command line.

• The optional temperature multiplier for the hardening for the decoupled flow stress
hardening model is defined via the HARDENING TEMPERATURE MULTIPLIER command
line.

Output variables available for this model are listed in Table 18-6.

156

Table 18-6. State Variables for CAZACU PLASTICITY Model (Sec-

tion 18.12)

Name Description

EQPS equivalent plastic strain, ε̄p

EQDOT equivalent plastic strain rate, ˙̄εp

SEFF effective stress, φ

157

18.13. CAZACU ORTHOTROPIC PLASTICITY MODEL

BEGIN PARAMETERS FOR MODEL CAZACU_ORTHOTROPIC_PLASTICITY

#

Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

Yield surface parameters

#

YIELD STRESS = <real> σy

A = <real> a (4.0)

#

tension/compression asymmetry

#

KP = <real> k′

KPP = <real> k′′

#

orthotroppic parameters

#

CP11 = <real> c′11
CP22 = <real> c′22
CP33 = <real> c′33
CP12 = <real> c′12
CP23 = <real> c′23
CP31 = <real> c′31
CP44 = <real> c′44
CP55 = <real> c′55
CP66 = <real> c′66
CPP11 = <real> c′′11
CPP22 = <real> c′′22
CPP33 = <real> c′′33
CPP12 = <real> c′′12
CPP23 = <real> c′′23
CPP31 = <real> c′′31
CPP44 = <real> c′′44
CPP55 = <real> c′′55
CPP66 = <real> c′′66
#

Hardening model

#

HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED |

158

FLOW_STRESS | DECOUPLED_FLOW_STRESS | CUBIC_HERMITE_SPLINE |

JOHNSON_COOK | POWER_LAW_BREAKDOWN

#

Linear hardening

#

HARDENING MODULUS = <real> H′

#

Power-law hardening

#

HARDENING CONSTANT = <real> A

HARDENING EXPONENT = <real> n (0.5)

LUDERS STRAIN = <real> εL (0.0)

#

Voce hardening

#

HARDENING MODULUS = <real> A

EXPONENTIAL COEFFICIENT = <real> n

#

Johnson-Cook hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE CONSTANT = <real> C

REFERENCE RATE = <real> ε̇0

#

Power law breakdown hardening

#

HARDENING FUNCTION = <string>hardening_function_name

RATE COEFFICIENT = <real> g

RATE EXPONENT = <real> m

#

User defined hardening

#

HARDENING FUNCTION = <string>hardening_function_name

#

Spline based hardening curve

#

CUBIC SPLINE TYPE = <string>

CARDINAL PARAMETER = <real> val

KNOT EQPS = <real_list> vals

KNOT STRESS = <real_list> vals

#

#

Following Commands Pertain to Flow_Stress Hardening Model

#

- Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE |

159

USER_DEFINED

#

Specifications for Linear, Power-law, and Voce same as above

#

User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>iso_hardening_fun_name

#

- Rate dependence

#

RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

#

Specifications for Johnson-Cook, Power-law-breakdown

same as before EXCEPT no need to specify a

hardening function

#

User defined rate multiplier

#

RATE MULTIPLIER FUNCTION = <string> rate_mult_function_name

#

- Temperature dependence

#

TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

Johnson-Cook temperature dependence

#

MELTING TEMPERATURE = <real> θmelt
REFERENCE TEMPERATURE = <real> θref
TEMPERATURE EXPONENT = <real> M

#

User-defined temperature dependence

TEMPERATURE MULTIPLIER FUNCTION = <string>temp_mult_function_name

#

#

Following Commands Pertain to Decoupled_Flow_Stress Hardening Model

#

- Isotropic Hardening model

#

ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED

#

Specifications for Linear, Power-law, and Voce same as above

#

User defined hardening

#

ISOTROPIC HARDENING FUNCTION = <string>isotropic_hardening_function_name

160

#

- Rate dependence

#

YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

#

Specifications for Johnson-Cook, Power-law-breakdown same as before

EXCEPT no need to specify a hardening function

AND should be preceded by YIELD

#

As an example for Johnson-Cook yield rate dependence,

#

YIELD RATE CONSTANT = <real> Cy

YIELD REFERENCE RATE = <real> ε̇
y
0

#

User defined rate multiplier

#

YIELD RATE MULTIPLIER FUNCTION = <string>yield_rate_mult_function_name

#

HARDENING_RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |

USER_DEFINED | RATE_INDEPENDENT (RATE_INDEPENDENT)

#

Syntax same as for yield parameters but with a HARDENING prefix

#

- Temperature dependence

#

YIELD TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

Johnson-Cook temperature dependence

#

YIELD MELTING TEMPERATURE = <real> θ
y
melt

YIELD REFERENCE TEMPERATURE = <real> θ
y
ref

YIELD TEMPERATURE EXPONENT = <real> My

#

User-defined temperature dependence

YIELD TEMPERATURE MULTIPLIER FUNCTION = <string>yield_temp_mult_fun_name

#

HARDENING TEMPERATURE MULTIPLIER = JOHNSON_COOK | USER_DEFINED |

TEMPERATURE_INDEPENDENT (TEMPERATURE_INDEPENDENT)

#

Syntax for hardening constants same as for yield but

with HARDENING prefix

#

END [PARAMETERS FOR MODEL CAZACU_ORTHOTROPIC_PLASTICITY]

The orthotropic Cazacu plasticity model is an extension of the tension/compression asymmetry

161

model of Cazacu to account for orthotropic response. As is common to other plasticity models in
Lamé, the Cazacu plasticity model uses a hypoelastic formulation. As such, the total rate of
deformation is additively decomposed into an elastic and plastic part such that

Di j = De
i j+D

p
i j. (18.35)

The objective stress rate, depending only on the elastic deformation, may then be written as,

◦
σi j= Ci jklD

e
kl, (18.36)

where Ci jkl is the fourth-order elastic, isotropic stiffness tensor.

The yield surface for the orthotropic Cazacu plasticity model, f , may be written,

f
(
σi j, ε̄

p, ˙̄εp
�
= φ

(
σi j

�
− σ̄

(
ε̄p, ˙̄εp

�
, (18.37)

in which ε̄p and ˙̄εp are the equivalent plastic strain and equivalent plastic strain rate respectively,
while φ and σ̄ are generically the effective stress and flow stress. Broadly speaking, the flow
stress gives the size of the current yield surface. For the orthotropic Cazacu plasticity model, the
effective stress is given as,

φ2 (σi j

�
=

n

h(a,k′,k′′,c′i j,c
′′
i j)
h(
|s′1| − k′s′1

�a
+
(
|s′2| − k′s′2

�a
+
(
|s′3| − k′s′3

�a

(18.38)

+
(
|s′′1 | − k′′s′′1

�a
+
(
|s′′2 | − k′′s′′2

�a
+
(
|s′′3 | − k′′s′′3

�a
io1/a

with s′i and s′′i being the principal transformed stresses, and k′, k′′ and a are model parameters
describing the asymmetry in tension/compression along with the general shape of the yield
surface. The transformed stresses, which account for the anisotropy, are given by

s′i j =C′i jklskl ; s′′i j =C′′i jklskl (18.39)

In matrix notation in the material coordinate system, these transformations are







s′11
s′22
s′33
s′12
s′23
s′31







=











c′11 c′12 c′31 0 0 0
c′12 c′22 c′23 0 0 0
c′31 c′23 c′33 0 0 0
0 0 0 c′44 0 0
0 0 0 0 c′55 0
0 0 0 0 0 c′66

















s11

s22

s33

s12

s23

s31







(18.40)

and

162







s′′11
s′′22
s′′33
s′′12
s′′23
s′′31







=











c′′11 c′′12 c′′31 0 0 0
c′′12 c′′22 c′′23 0 0 0
c′′31 c′′23 c′′33 0 0 0
0 0 0 c′′44 0 0
0 0 0 0 c′′55 0
0 0 0 0 0 c′′66

















s11

s22

s33

s12

s23

s31







(18.41)

The c′i j and c′′i j are model parameters governing the anisotropy. The normalizing coefficient, h,
depends on the model parameters and is computed so that the effective stress for a uniaxial stress
state is σ.

An associated flow rule is utilized such that the plastic rate of deformation is normal to the yield
surface and is given by,

Ḋ
p
i j = γ̇

∂φ

∂σi j
, (18.42)

where γ̇ is the consistency multiplier enforcing f = 0 during plastic deformation. Given the form
of f , it can also be shown that γ̇ = ˙̄εp, i.e. the consistency parameter is equal to the rate of the
equivalent plastic strain.

In the command blocks that define the orthotropic Cazacu plasticity model:

• See the Sierra/SM 4.54 User’s Guide Section ?? for more information on elastic constants
input.

• The reference nominal yield stress, σ̄, is defined with the YIELD STRESS command line.

• The type of hardening law is defined with the HARDENING MODEL command line, other
hardening commands then define the specific shape of that hardening curve.

• The hardening modulus for a linear hardening model is defined with the
HARDENING MODULUS command line.

• The hardening constant for a power law hardening model is defined with the
HARDENING CONSTANT command line.

• The hardening exponent for a power law hardening model is defined with the
HARDENING EXPONENT command line.

• The Lüders strain for a power law hardening model is defined with the LUDERS STRAIN

command line.

• The hardening function for a user defined hardening model is defined with the
HARDENING FUNCTION command line.

• The shape of the spline for the spline based hardening is defined by the
CUBIC SPLINE TYPE, CARDINAL PARAMETER, KNOT EQPS, and KNOT STRESS

command lines.

• The isotropic hardening model for the flow stress hardening model is defined with the
ISOTROPIC HARDENING MODEL command line.

163

• The function name of a user-defined isotropic hardening model is defined via the
ISOTROPIC HARDENING FUNCTION command line.

• The optional rate multiplier for the flow stress hardening model is defined with the
RATE MULTIPLIER command line.

• The optional temperature multiplier for the flow stress hardening model is defined via the
TEMPERATURE MULTIPLIER command line.

• The function name of a user-defined temperature multiplier is defined with the
TEMPERATURE MULTIPLIER FUNCTION command line.

• For a Johnson-Cook temperature multiplier, the melting temperature, θmelt, is defined via
the MELTING TEMPERATURE command line.

• For a Johnson-Cook temperature multiplier, the reference temperature, θref, is defined via
the REFERENCE TEMPERATURE command line.

• For a Johnson-Cook temperature multiplier, the temperature exponent, M, is defined via the
TEMPERATURE EXPONENT command line.

• The optional rate multiplier for the yield stress for the decoupled flow stress hardening
model is defined with the YIELD RATE MULTIPLIER command line.

• The optional rate multiplier for the hardening for the decoupled flow stress hardening
model is defined with the HARDENING RATE MULTIPLIER command line.

• The optional temperature multiplier for the yield stress for the decoupled flow stress
hardening model is defined with the YIELD TEMPERATURE MULTIPLIER command line.

• The optional temperature multiplier for the hardening for the decoupled flow stress
hardening model is defined via the HARDENING TEMPERATURE MULTIPLIER command
line.

Output variables available for this model are listed in Table 18-7.

Table 18-7. State Variables for CAZACU ORTHOTROPIC PLASTIC-

ITY Model (Section 18.13)

Name Description

EQPS equivalent plastic strain, ε̄p

EQDOT equivalent plastic strain rate, ˙̄εp

SEFF effective stress, φ

164

18.14. SKOROHOD-OLEVSKY VISCOUS SINTERING (SOVS)

BEGIN PARAMETERS FOR MODEL SOVS

#

Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

Initial relative density

#

RHO0 = <real> ρ0

#

Normalized shear viscosity relative density dependence

#

A1 = <real> a1

B1 = <real> b1

#

Normalized bulk viscosity relative density dependence

#

A2 = <real> a2

B2 = <real> b2

C2 = <real> c2

#

Effective sinter stress relative density dependence

#

SIGMA_S0 = <real> σs0

A3 = <real> a3

B3 = <real> b3

#

Skeleton shear viscosity temperature dependence

#

A4 = <real> a4

B4 = <real> b4

C4 = <real> c4

T0 = <real> θ0
#

Numerical integration parameters

#

BETA = <real> β (0.5)

TOL = <real> tol (1.0E6)

END [PARAMETERS FOR MODEL SOVS]

165

The Skorohod-Olevsky viscous sintering (SOVS) model is a continuum scale model for the
evolution of porosity and deformation of ceramic materials through sintering. This
implementation is intended to capture geometric evolution of a body through such a process
thereby enabling the design and manufacture of complex 3D components and/or structures.

Here, the model is a linear-viscous form of the non-linear viscous incompressible model of
Olevsky [13] based on the concepts of plastic porous bodies. The specific implementation used
here is that of Argüello and coworkers [14]. Like other inelastic models, an additive split in the
rate of deformation,

Di j = De
i j+Din

i j , (18.43)

is used in which the elastic constitutive relation may be written as,

◦
σi j= Ci jklD

e
kl. (18.44)

For the inelastic response, a constitutive relation may be derived via thermodynamic analysis and
dissipation considerations (see [13]) producing an inelastic (viscous) strain rate, Din

i j , of the
form,

Din
i j =

σ′i j

2η0 (θ)φ (ρ)
+
σkk/3−σs (ρ)
6η0 (θ)ψ (ρ)

δi j, (18.45)

with η0, φ, σs, and ψ, being the shear viscosity of the fully dense skeleton, normalized shear
viscosity, sintering stress, and normalized bulk viscosity. A split between the contributions of the
deviatoric, σ′i j, and volumetric, σkk/3, components of the Cauchy stress, σi j = σ

′
i j+ (1/3)σkkδi j,

is also utilized. Note, in (18.45) explicit dependencies of the various terms on relative density, ρ,
and absolute temperature, θ, are indicated although for simplicity will be neglected in the
remainder. Importantly, the relative density, ρ, is defined as,

ρ =
ρt

ρT
, (18.46)

where ρT is the theoretical density and ρt is the current material density at time t. Conservation of
mass may be invoked to show the time rate of change of the relative density, ρ̇, is simply,

ρ̇ = −ρDin
kk. (18.47)

Based on previously performed kinetic Monte-Carlo analysis, Argüello and coworkers [14] used
the following density dependent relations,

166

φ (ρ) = a1ρ
b1 , (18.48)

ψ (ρ) = a2
ρb2

(1−ρ)c2
, (18.49)

σs (ρ) = σs0σ̄s (ρ) , (18.50)

σ̄s (ρ) = a3ρ
b3 . (18.51)

In (18.50) it can be observed that the sintering stress is decomposed into two parts: (i) the local
sintering stress, σs0, and (ii) the relative density dependent normalized effective sintering stress,
σ̄s. With respect to the latter, the functional representation is given in (18.51). For the former, the
value may be approximated as,

σs0 =
3α
r0
, (18.52)

with α being the surface tension and r0 the average grain size. In the current implementation, only
the local sintering stress is input to the model as the surface tension and grain size are unneeded
elsewhere.

The temperature dependence of the shear viscosity of the fully dense skeleton was proposed in a
previous effort by Olevsky et al. [15] and is given as,

η0 (θ) = a4

�
θ

θ0

�2

+b4
θ

θ0
+ c4, (18.53)

in which θ0 is a reference temperature. During the efforts of Argüello et al. [14], alternative forms
of this dependence based on either an Arrhenius relationship or the introduction of an additional
variable for grain growth were put forth. Notably, the latter showed good agreement with
experimental measurements although at the time only a 1D form was considered as alterations to
the numerical scheme were needed for the 3D implementation. For the current model, the
previous quadratic form is used as that was the expression validated against experiments.

For details on the SOVS model, please see [14].

In the command blocks that define the SOVS model:

• See the Sierra/SM 4.54 User’s Guide Section ?? for more information on elastic constants
input.

• The initial relative density, ρ0, (0 ≤ ρ0 ≤ 1) is defined with the RHO0 command line.

• The modulus of the relative density dependence of the normalized shear viscosity, a1, is
defined with the A1 command line.

• The exponent of the relative density dependence of the normalized shear viscosity, b1, is
defined with the B1 command line.

167

• The modulus of the relative density dependence of the normalized bulk viscosity, a2, is
defined with the A2 command line.

• The exponent of the relative density dependence of the normalized bulk viscosity, b2, is
defined with the B2 command line.

• The exponent of the relative porosity dependence of the normalized bulk viscosity, c2, is
defined with the C2 command line.

• The local sintering stress, σs0, is defined with the SIGMA_S0 command line.

• The modulus of the relative density dependence of the normalized effective sintering stress,
a3, is defined with the A3 command line.

• The exponent of the relative density dependence of the normalized effective sintering stress,
b3, is defined with the B3 command line.

• The quadratic constant of the skeleton shear viscosity on normalized temperature, a4, is
defined with the A4 command line.

• The linear constant of the skeleton shear viscosity on normalized temperature, b4, is defined
with the B4 command line.

• The constant of the skeleton shear viscosity on normalized temperature, c4, is defined with
the C4 command line.

• The reference temperature used with the skeleton shear viscosity, θ0, is defined with the T0
command line.

• The type of integration is controlled by the integration selection parameter, β (0 ≤ β ≤ 1), is
defined with the BETA command line. A value of one corresponds to implicit constitutive
integration while zero is specified for explicit integration. The default value is 0.5.

• The tolerance of convergence for the non-linear problem associated with constitutive model
integration, tol, may be specified by the TOL command line. A default value of 1.0×106 is
used if no value is specified.

• It is recommended that the default values of constitutive integration parameters (β, tol) be
used. Alternative selections remain an unverified development option.

Output variables available for this model are listed in Table 18-8.

Table 18-8. State Variables for SOVS Model (Section 18.14)

Name Description

RHO relative density, ρ
RHO_DOT time rate of change of density, ρ̇
EPSILON_IN_DOT inelastic strain rate, ε̇ini j

ITERATIONS constitutive integration convergence iterations, iter

168

18.15. HYDRA PLASTICITY

18.15.1. Summary

The hydra plasticity model has the following features:

• Isotropic elastic behavior, with elastic constants that may optionally depend on temperature,

• A Hill yield surface that may undergo isotropic hardening,

• Tabular definition of the material’s hardening behavior, with dependence on equivalent
plastic strain and optional dependence on temperature, and/or equivalent plastic strain rate,

• Option inclusion of material failure,

• Tabular definition of the material’s failure strain, with dependence on stress triaxiality and
optional dependence on temperature, equivalent plastic strain rate, and/or Lode angle (via a
Lode parameter),

• Linear material strength and stiffness degradation following failure initiation that is based
on the fracture energy for the material and is normalized to the element characteristic length
to reduce mesh dependencies,

• User specified value of decay at which an integration point is flagged for removal from the
analysis, and

• Optional inclusion of heating caused by plastic deformation of the material.

18.15.2. User Guide

BEGIN PARAMETERS FOR MODEL HYDRA_PLASTICITY

#

Elastic Constants

#

YOUNGS MODULUS = <real> E

YOUNGS FUNCTION = <string> youngs_func_name fE (Tt)
POISSONS RATIO = <real> ν

POISSONS FUNCTION = <string> poissons_func_name fν (Tt)
#

Material Coordinates System Definition

#

COORDINATE SYSTEM = <string> coordinate_system_name

DIRECTION FOR ROTATION = <real> 1|2|3

ALPHA = <real> α1 (degrees)

SECOND DIRECTION FOR ROTATION = <real> 1|2|3

SECOND ALPHA = <real> α2 (degrees)

#

Yield Surface Parameters

#

169

R11 = <real> R11
R22 = <real> R22
R33 = <real> R33
R12 = <real> R12
R23 = <real> R23
R31 = <real> R31
#

Hardening Parameters

#

HARDENING FUNCTION = <string> hardening_func_name fH

(
ε̄p, ˙̄εp

,Tt

�

PLASTIC STRAIN RATE LOG FLAG = <bool> true or f alse

#

Plastic Heating Parameters

#

SPECIFIC HEAT = <real> C

SPECIFIC HEAT FUNCTION = <string> specific_heat_func_name fC (Tt)
INELASTIC HEAT FRACTION = <real> η

ADIABATIC ANALYSIS FLAG = <bool> true or f alse

#

Failure Parameters

#

FAILURE FUNCTION = <string> failure_func_name fF

(
κ, ˙̄εp
,Θp,Tt

�

FRACTURE ENERGY = <real> G f

ELEMENT REMOVAL DECAY VALUE = <real> ϕr

FAILURE ANALYSIS FLAG = <bool> true or f alse

END [PARAMETERS FOR MODEL HYDRA_PLASTICITY]

• The elastic constants, E and ν, are defined by the YOUNGS MODULUS and
POISSONS RATIO command lines, respectively. Both of these values must be defined by
the user, there are no defaults.

• The temperature scaling factor functions for E and ν are defined by the
YOUNGS MODULUS FUNCTION and POISSONS RATIO FUNCTION command lines,
respectively. The youngs_func_name and poissons_func_name reference functions
defined by separate FUNCTION command blocks. These functions should define
temperature dependent scaling factors that when applied to E and ν (defined by the
YOUNGS MODULUS and POISSONS RATIO command lines) will produce temperature
adjusted E and ν values. Definition of these functions is optional. If not defined by the user
a constant temperature scaling factor of 1.0 will be used.

• The hydra plasticity material model uses an element specific coordinate frame. The
coordinate frame used is specified by the COORDINATE SYSTEM command line, where the
coordinate_system_name references a coordinate system defined by a separate
COORDINATE SYSTEM command block. For the hydra plasticity model, this coordinate
system can be either a rectangular or a cylindrical coordinate system. The
COORDINATE SYSTEM defines a local R, S, and T frame at each element. This initial
coordinate system can be additionally rotated to give the final material directions at each

170

material point.

The first rotation of the initial coordinate system is defined using the
DIRECTION FOR ROTATION and ALPHA command lines. The axis for rotation of the
initial coordinate system is specified by the DIRECTION FOR ROTATION command line, 1
corresponds to the initial coordinate system local R axis, 2 corresponds to the initial
coordinate system local S axis, and 3 corresponds to the initial coordinate system local T
axis. The right hand rule angle of rotation about this axis is given by ALPHA. This rotation
yields an intermediate coordinate system.

A secondary rotation of the intermediate coordinate system may be defined using the
SECOND DIRECTION FOR ROTATION and SECOND ALPHA command lines. The axis for
rotation of the intermediate coordinate system is specified by the
SECOND DIRECTION FOR ROTATION command line, 1 corresponds to the intermediate
coordinate system local R axis, 2 corresponds to the intermediate coordinate system local S
axis, and 3 corresponds to the intermediate coordinate system local T axis. The right hand
rule angle of rotation about this axis is given by SECOND ALPHA. The resulting coordinate
system gives the final R, S, and T coordinate frame for the material directions.

At a minimum, the COORDINATE SYSTEM command line must be specified. The
DIRECTION FOR ROTATION, ALPHA, SECOND DIRECTION FOR ROTATION, and
SECOND ALPHA command lines are optional, and default to 1, 0.0, 2, and 0.0,
respectively (effectively specifying no additional rotations of the coordinate system
specified by the COORDINATE SYSTEM command line).

• The ratio of the normal yield stress to the reference yield stress (σ̄r) in the ē1ē1 material
direction is defined with the R11 command line. The default is 1.0.

• The ratio of the normal yield stress to the reference yield stress (σ̄r) in the ē2ē2 material
direction is defined with the R22 command line. The default is 1.0.

• The ratio of the normal yield stress to the reference yield stress (σ̄r) in the ē3ē3 material
direction is defined with the R33 command line. The default is 1.0.

• The ratio of the shear yield stress to the reference shear yield stress in the ē1ē2 material
direction is defined with the R12 command line. The default is 1.0. Note that the reference
shear stress is equal to 1√

3
σ̄r.

• The ratio of the shear yield stress to the reference shear yield stress in the ē2ē3 material
direction is defined with the R23 command line. The default is 1.0. Note that the reference
shear stress is equal to 1√

3
σ̄r.

• The ratio of the shear yield stress to the reference shear yield stress in the ē3ē1 material
direction is defined with the R31 command line. The default is 1.0. Note that the reference
shear stress is equal to 1√

3
σ̄r.

• The hardening function is defined with the HARDENING FUNCTION command line. The
hardening_func_name references a function defined by a separate FUNCTION command
block. The hardening function must be defined using a piecewise multivariate function
(TYPE = PIECEWISE MULTIVARIATE). The piecewise multivariate function allows the

171

user to define the behavior of a single dependent variable with respect to one or more
independent variables. In this case, hardening (which defines the reference yield stress) can
be defined with dependencies on equivalent plastic strain ε̄p, and optionally on equivalent
plastic strain rate ˙̄εp, and temperature Tt. The hardening function must be defined by the
user and must include dependence of the reference yield stress on equivalent plastic strain.
All other dependencies are optional.

Shown below is an example of the format required to define a hardening function using a
piecewise multivariate function:

begin function multivariate_hardening_function

type = piecewise multivariate

column titles plastic_strain plastic_strain_rate temperature \#

yield_stress

begin values

0.00 -3.0 100.0 1.52294e+09

0.10 -3.0 100.0 1.76488e+09

0.20 -3.0 100.0 1.78225e+09

0.30 -3.0 100.0 1.79298e+09

0.40 -3.0 100.0 1.80086e+09

0.50 -3.0 100.0 1.80713e+09

.

.

.

end

end

The column titles line contains the dependent variable yield_stress in the last
column and the independent variables plastic_strain, plastic_strain_rate, and
temperature in the first three columns. The specific column name shown must be used if
dependency on the variable is desired. The piecewise multivariate function requires that the
independent variables create a fully populated grid where points in each dimension are
evenly spaced. For performance reasons, the independent variables that are expected to
vary the most in the analyses should be placed in the left columns, and variables that are
expected to vary the least in the right columns.

• The flag PLASTIC STRAIN RATE LOG FLAG is used to specify whether the data for ˙̄εp

provided in the hardening function is log10 or not. If the command line
PLASTIC STRAIN RATE LOG FLAG is set equal to true, the values provided in the
piecewise multivariate function defining the hardening for the material are log10

(
˙̄εp�. This

is the case in the example provided above, where the equivalent plastic strain rate value
given as -3.0 corresponds to an actual strain rate of 0.001 1/s. The default setting is f alse.

• The value for the specific heat, C, which is the amount of heat required to change the
temperature of a unit mass of the material by one degree, is defined with the
SPECIFIC HEAT command line. The specific heat must be specified by the user, there is
no default value.

• The temperature scaling factor function for C is defined by the
SPECIFIC HEAT FUNCTION command line. The specific_heat_func_name
references a function defined by a separate FUNCTION command block. The function

172

should define temperature dependent scaling factors that when applied to C (defined by the
SPECIFIC HEAT command line) will produce the temperature adjusted C value. Definition
of this function is optional. If not defined by the user, a constant temperature scaling factor
of 1.0 will be used.

• The value for the inelastic heat fraction, η, is defined with the
INELASTIC HEAT FRACTION command line. The inelastic heat fraction defines the
fraction of plastic work that acts to heat the material. The default value is 1.0.

• The flag ADIABATIC ANALYSIS FLAG is used to specify whether an adiabatic analysis
should be performed. If the command line ADIABATIC ANALYSIS FLAG is set equal to
true, the material model will calculate a change in temperature in the material due to plastic
work, and add the plastic work temperature change to the externally defined temperature,
before determining temperature dependent material properties. If the command line
ADIABATIC ANALYSIS FLAG is set equal to f alse, the material model will still calculate
the plastic work performed on the material, but will make no adjustment to the externally
defined temperature before determining temperature dependent material properties. The
material model will continue to calculate the plastic work heat increment and heat flux,
making them available through state variables for coupled analysis. The default setting is
f alse.

• The failure function is defined with the FAILURE FUNCTION command line. The
failure_func_name references a function defined by a separate FUNCTION command
block. The failure function, like the hardening function, must be defined using a piecewise
multivariate function (TYPE = PIECEWISE MULTIVARIATE). The failure function
defines the failure strain, with dependencies on stress triaxiality κ, and optionally on
equivalent plastic strain rate ˙̄εp, temperature Tt, and Lode parameter Θp (where Θp is
calculated as cos(3Θ) and Θ is the Lode angle). The failure function need only be defined
when FAILURE ANALYSIS FLAG is set equal to true. When defined, the failure function
must include dependence of the failure strain on stress triaxiality. All other dependencies
are optional.

Shown below is an example of the format required to define a failure function using a
piecewise multivariate function:

begin function multivariate_failure_function

type = piecewise multivariate

column titles stress_triaxiality plastic_strain_rate temperature \#

lode_parameter failure_strain

begin values

-0.333 -3.0 100.0 -1.00 102.816

0.000 -3.0 100.0 -1.00 0.288

0.333 -3.0 100.0 -1.00 0.431

0.666 -3.0 100.0 -1.00 0.395

0.999 -3.0 100.0 -1.00 0.275

.

.

.

end

end

173

The column titles line contains the dependent variable failure_strain in the last
column and the independent variables stress_triaxiality, plastic_strain_rate,
temperature, and lode_parameter in the first four columns. The specific column
name shown must be used if dependency on the variable is desired. The piecewise
multivariate function requires that the independent variables create a fully populated grid
where points in each dimension are evenly spaced. For performance reasons, the
independent variables that are expected to vary the most in the analyses should be placed in
the left columns, and variables that are expected to vary the least in the right columns.

• The fracture energy for the material, G f , the energy required to form a unit area of crack
surface, is defined with the FRACTURE ENERGY command line. This default value is 1.0.

• The decay value at which an element or integration point is flagged for removal from the
analysis, ϕr, is specified by the ELEMENT REMOVAL DECAY VALUE command line. The
default value is 0.001.

• The flag FAILURE ANALYSIS FLAG is used to specify whether the failure modeling
capabilities of the material model should be enabled. If the command line
FAILURE ANALYSIS FLAG is set equal to true, the material model will include failure. If
the command line FAILURE ANALYSIS FLAG is set equal to f alse, the failure capabilities
of the material model will be disabled. In the latter case, the user need not define a failure
function, fracture energy, or element removal decay value. The default setting is f alse.

Output variables available for this model are listed in Table 18-9.

18.15.3. Theory

Strain Decomposition

The hydra plasticity model makes use of an additive decomposition of the strain tensor into elastic
and inelastic (plastic) components. The rate form of the additive decomposition is given by:

ε̇ = ε̇e+ ε̇p (18.54)

where ε̇ is the total strain rate that consists of an elastic (ε̇e) and plastic (ε̇p) component.

Elasticity

In the elastic regime, the true stress σ is related to the total strain ε, by Hooke’s law:

σ = C(Tt)ε (18.55)

where C(Tt) is the fourth order elastic moduli tensor that may optionally depend on the material
temperature Tt. Isotropic elasticity is assumed, so the elastic moduli tensor is fully defined by two
elastic constants. In the hydra plasticity model the two elastic constants are constrained to be

174

Table 18-9. State Variables for HYDRA PLASTICITY Model (Sec-

tion 18.15)

Name Description

ITERATIONS Number of iterations required for convergence of the New-
ton algorithm.

SEFF Effective Stress
φ (σ), note may , σe =

√
3J2

SBAR Yield stress based on the current size of the yield surface.
σ̄

EQPS Equivalent Plastic Strain
ε̄p =

R t

0
˙̄εpdt

EQPS_RATE Equivalent Plastic Strain Rate

˙̄εp
=

q
2
3 ε̇

p : ε̇p

HEAT_FLUX Heat Flux
rp = η (σ : ε̇p)

HEAT_INCREMENT Heat Increment
∆rp

TEMP_TOTAL Total temperature including change in temperature due to
plastic heating.
Tt = T +∆Tp, where T is the externally defined tempera-
ture.

EQPS_DT Total accumulated change in temperature due to plastic
heating.
∆Tp

FAIL_STRESS Effective stress at the time of failure initiation.

σ
f
e =

q

3J
f
2

UFAIL Displacement over which the integration point’s strength
and stiffness are reduced to zero following failure initiation.

u f =
2G f

σ
f
e

DAMAGE Damage, equal to 0 at failure initiation, increasing to 1 at
full material strength and stiffness degradation.
D

PRESSURE Pressure
p = −1

3 tr (σ)
SECOND_STRESS_INVARIANT Second Stress Invariant

J2 =
1
2

�
tr
(
σ2

�
− 1

3 tr (σ)2
�

THIRD_STRESS_INVARIANT Third Stress Invariant
J3 =

1
3

�
tr
(
σ3

�
− tr

(
σ2

�
tr (σ)+ 2

9 tr (σ)3
�

STRESS_TRIAXIALITY Stress Triaxiality
κ = − p

σe

LODE_PARAMETER Lode Parameter

Θp = cos(3Θ), where Θ =
�

J3
2

��
3
J2

�1.5
is the Lode angle.175

Young’s modulus and Poisson’s ratio. These constants each may optionally depend on
temperature Tt.

Yield Surface

The hydra plasticity model makes use of the Hill yield surface. The Hill yield surface may be
orthotropic, and assumes orthogonal principal material directions. The yield surface is defined as
follows,

φ2 (σi j

�
= F (σ22−σ33)2+G (σ33−σ11)2+H (σ11−σ22)2

(18.56)

+2Lσ2
23+2Mσ2

31+2Nσ2
12

where the coefficients F, G, H, L, M, and N are given by the following.

F =
(σ̄r)2

2

"

1
(
σ

y
22

�2 +
1

(
σ

y
33

�2 −
1

(
σ

y
11

�2

#

; L =
(σ̄)2

2

"

1
(
τ

y
23

�2

#

G =
(σ̄r)2

2

"

1
(
σ

y
33

�2 +
1

(
σ

y
11

�2 −
1

(
σ

y
22

�2

#

; M =
(σ̄r)2

2

"

1
(
τ

y
31

�2

#

(18.57)

H =
(σ̄r)2

2

"

1
(
σ

y
11

�2 +
1

(
σ

y
22

�2 −
1

(
σ

y
33

�2

#

; N =
(σ̄r)2

2

"

1
(
τ

y
12

�2

#

In Equation 18.57, σy
11, σy

22, σy
33, τy12, τy23, and τy31 represent the three normal and three shear

yield stresses in the three material coordinate directions, and σ̄r a reference yield stress that is
defined by the hardening function. The six independent yield stresses, are specified by the user
through the definition of the following six yield ratios.

R11 =
σ

y
11

σ̄
; R12 =

√
3
τ

y
12

σ̄

R22 =
σ

y
22

σ̄
; R23 =

√
3
τ

y
23

σ̄
(18.58)

R33 =
σ

y
33

σ̄
; R31 =

√
3
τ

y
31

σ̄

If all of the above ratios are set equal to 1.0 (Ri j = 1) the Mises yield surface is recovered.

176

Hardening

The hydra plasticity model assumes isotropic hardening. Hardening of the material is defined by a
hardening function.

σ̄r = fH
(
ε̄p, ˙̄εp,Tt

�
(18.59)

The hardening function defines the reference yield stress (σ̄r) for the material. The hardening
function has dependence on the equivalent plastic strain (ε̄p), and optionally may depend on the
equivalent plastic strain rate (¯̇εp) and/or temperature (Tt). The equivalent plastic strain is defined
as follows:

ε̄p =

Z t

0

˙̄εpdt (18.60)

where ˙̄εp is the equivalent plastic strain rate calculated from the plastic strain rates (ε̇p) as
follows.

˙̄εp
=

r

2
3
ε̇p : ε̇p (18.61)

Failure

Failure in the hydra plasticity model is comprised of two distinct phases. The first, pre-failure
initiation phase, involves the calculation of a failure initiation metric that is used to determine
when the failure initiation criterion has been met. The second, post-failure initiation phase,
involves the accumulation of damage in the material (with increasing plastic deformation) and the
degradation of the material’s strength and stiffness.

The failure initiation criterion is strain based. The criterion is satisfied when the failure measure
(f m) equation is satisfied.

f m =

Z
dε̄p

ε̄
p
f

(
κ, ˙̄εp,Θp,Tt

� ≥ 1.0 (18.62)

The failure strain ε̄p
f

(
κ, ˙̄εp,Θp,Tt

�
is provided by the failure function fF , and is dependent on

stress triaxiality (κ), and optionally on plastic strain rate (˙̄εp), Lode angle (Θ, through the Lode
parameter, Θp), and/or temperature (Tt). Stress triaxiality is calculated as follows:

κ = − p

σe

(18.63)

where p is the pressure and σe is the effective stress. The pressure is given by the following,

177

p = −1
3

tr (σ) (18.64)

and the effective stress by the following.

σe =
p

3J2 (18.65)

In the above equation J2 is the second stress invariant and is calculated from the stress σ as
follows.

J2 =
1
2

�

tr
(
σ2�− 1

3
tr (σ)2

�

(18.66)

The Lode parameter (Θp) is a function of the Lode angle (Θ),

Θ =

�
J3

2

��
3
J2

�1.5

(18.67)

where J3 is the third stress invariant calculated from the stress σ as follows.

J3 =
1
3

�

tr
(
σ3�− tr

(
σ2� tr (σ)+

2
9

tr (σ)3
�

(18.68)

The Lode parameter is then calculated as follows.

Θp = cos(3Θ) (18.69)

Note that the Lode parameter can vary from -1.0 (triaxial compression) to 1.0 (triaxial tension),
with a value of 0.0 representing the pure shear stress state.

Once the failure initiation criterion has been satisfied, increasing plastic deformation of the
material results in the accumulation of damage (D). The rate of damage accumulation is governed
by the following rate equation:

Ḋ =
L ˙̄εp

f

u f
(18.70)

where ˙̄εp
f is the equivalent plastic strain rate associated with plastic deformation of the material

occurring after the initiation of failure, L is the characteristic length associated with the material
integration point (taken as 3

p
Vipt, where Vipt is the volume of material associated with the

material integration point), and u f is the failure displacement. The failure displacement is
calculated based on the state of the material at the time of failure initiation as follows:

u f =
2G f

σ
f
e

(18.71)

178

where G f is the material’s fracture energy and σ f
e is the effective stress at the instant of failure

initiation. The instantaneous damage value is therefore given by the following.

D =

Z t

0
Ḋdt (18.72)

It is important to note that the use of the characteristic length (L) associated with the material
integration point in Equation 18.70 is an approximate way to remove some of the mesh sensitivity
effects associated with material softening. The implementation attempts to get the amount of
energy dissipated by the failure process to match the fracture energy for the material, regardless
of the mesh size selected.

As damage accumulates in the material, both the strength and stiffness of the material are
degraded. This degradation takes the following form,

σ̄r
D = (1−D)σ f

e = ϕσ
f
e (18.73)

C
D = (1−D)C = ϕC (18.74)

where ϕ = (1−D) defines the decay value for the damaged material, and σ̄r
D and CD define the

damaged yield strength and elastic moduli tensor, respectively. The material strength and stiffness
are continually degraded with increasing plastic deformation until the material is fully damage
(D = 1) or the decay value (ϕ) has reached a critical decay value specified by the user (ϕr), at
which point the material point is flagged for removal from the analysis. It is important to note that
the pressure stresses are only degraded when the pressure is tensile (negative pressures). When
the pressure is compressive, the pressure stresses are not degraded, which results in the material
behaving increasingly like an incompressible fluid as damage is accumulated.

Plastic Heating

The hydra plasticity model includes the ability to calculate changes in the material’s temperature
due to heating resulting from plastic deformation of the material. The heat flux (rp) per unit
volume associated with a given plastic strain rate (ε̇p) is calculated as:

rp = ησε̇p (18.75)

where η is a user defined inelastic heat fraction and σ is the instantaneous stress. Given the
specific heat C (Tt) for the material, which may be a function of the temperature (Tt), the heat
equation to be solved at each material integration point is,

ṪtC(Tt)ρ = rp (18.76)

where Tt is the temperature and Ṫt is the rate of change of the temperature.

179

18.15.4. Implementation

Trial Stress

The hydra plasticity model uses a predictor-corrector algorithm for integrating the constitutive
model. Since the elastic constants of the hydra plasticity model may depend on temperature, the
fourth order elastic moduli tensor C is first updated to account for the current (step n) temperature
(T n

t). If ADIABATIC ANALYSIS FLAG is set equal to true, the current temperature is calculated
as follows:

T
(n)
t = T (n)+∆T (n−1)

p (18.77)

where T (n) is the current time step (n) externally defined temperature, and T
(n−1)
p is the

accumulated temperature change in the material resulting from plastic work up through the
previous time step (n−1). If ADIABATIC ANALYSIS FLAG is set equal to f alse, the current
temperature is taken directly as the externally defined temperature.

T
(n)
t = T (n) (18.78)

Given the current step strain rate ε̇(n), time increment ∆t(n), and temperature adjusted elastic

moduli tensor C
�

T
(n)
t

�

, a trial stress is calculated assuming an elastic response:

σ
(n)
tr = σ

(n−1)+C

�

T
(n)
t

�

∆t(n)ε̇(n) (18.79)

where σ(n−1) is the converged stress state from the previous time step. If the trial stress lies inside
the yield surface (i.e. if φ(σ(n)

tr) ≤ σ̄(ε̄p(n)
, ˙̄εp(n)

,T
(n)
t)), then the step is elastic, the plastic strain

increment and plastic strain rate are zero, and the stress is given by the trial stress (σ(n)
tr). If the

trial stress is outside of the yield surface (i.e. if φ(σ(n)
tr) > σ̄(ε̄p(n)

, ˙̄εp(n)
,T

(n)
t)) then the step will

include plastic deformation of the material.

Return Mapping Algorithm

When the elastic trial stress falls outside of the yield surface, the model uses an iterative algorithm
to determine the increment of plastic strain that occurs during the time step and the final stress
state in the material. During the solution process, normality is enforced:

R = ∆εp(n)
−∆γ(n) ∂φ

∂σ
= 0 (18.80)

and the final stress state for the increment (n) is required to resides on the yield surface.

f = φ
(
σ(n)�− σ̄

�

ε̄p(n)
, ˙̄εp(n)

,T
(n)
t

�

= 0 (18.81)

180

A Newton-Raphson search algorithm is implemented. Using ∆γ(k) (which conveniently is equal
to ∆ε̄p(k)

) and σk as the solution variables, the iterative algorithm is as follows:

∆γ(k+1) = ∆γ(k)+∆ (∆γ)(k)

σ(k+1) = σ(k)+∆σ(k) (18.82)

∆εp(k)
= C

�

T
(n,k=0)
t

�−1�

σ
(n)
tr −σ(k)

�

where ∆γ(0) = 0 and σ(0) = σtr. The increment in plastic strain is given by:

∆ (∆γ)(k) =

f (k)−R(k)
L

(k)∂φ
(k)

∂σ

∂φ(k)

∂σ
L

(k)∂φ
(k)

∂σ
+H′(k)

(18.83)

where f (k) and R(k) are defined for the kth increment using Equation 18.81 and 18.80 as follows:

f (k) = φ
(
σ(k)�− σ̄

�

ε̄p(k)
, ˙̄εp(k)

,T
(k)
t

�

(18.84)

R(k) = ∆εp(k)
−∆γ(k) ∂φ

∂σ

(k)

and the elastoplastic tangent (L (k)) for the kth increment, as follows.

L
(k) = C

�

T
(n,k=0)
t

�−1
+∆γ

∂2φ(k)

∂σ∂σ
(18.85)

In Equation 18.83 the slope of the hardening curve (H′(k)) is required. Because the hardening
behavior in the hydra plasticity model may depend on a number of variables defined in a
multivariate function, the calculation of H′(k) is performed using a finite difference
approximation. This is handle by incrementing the current equivalent plastic strain (ε̄p(k)

) and
updating the other parameters (T (k)

t and ˙̄εp(k)
) upon which the hardening function depends based

on the incremented plastic strain, before the hardening function is evaluated to obtain the values
used in the finite difference calculation. This approach ensures that the hardening slope
appropriately captures not only the effect of the change in plastic strain, but also the change in
material temperature and strain rate generated by a change in the plastic strain. Equations 18.83
and 18.85 also require the first and second partial derivatives of φ(k). Since φ is known, the values
are calculated at each step using the current stress state (σ(k)) and predetermined analytical

181

expressions (not described here). Finally, the search direction in stress space (∆σ(k)) utilized in
Equation 18.82 is given by the following.

∆σ(k) = −L (k)
�

R(k)+∆ (∆γ)(k) ∂φ
(k)

∂σ

�

(18.86)

It has been observed that the Newton-Raphson algorithm described above does not always
converge when non von Mises yield surfaces are employed. To improve the robustness of the
return mapping algorithm, a line search is performed during each Newton-Raphson (k) iteration.
This algorithm takes the following form.

∆γ(j) = ∆γ(k)+α(j)∆ (∆γ)(k)

(18.87)

σ(j) = σ(k)+α(j)∆σ(k)

where α(j) ∈ (0,1] is the line search parameter that is determined iteratively using a simple
algorithm not described here. α(0) = 1 is used to initialize the line search. Note that if α(j) = 1 then
the exact Newton-Raphson algorithm search direction and magnitude is recovered. The ∆γ(k+1)

and σ(k+1) values are then given by the converged (α(j=converged)) lines search values.

∆γ(k+1) = ∆γ(k)+α(j=converged)∆ (∆γ)(k)

(18.88)

σ(k+1) = σ(k)+α(j=converged)∆σ(k)

During each Newton-Raphson (k) and line search (j) iteration, the variables that affect the
material hardening and failure parameters are updated, and the hardening and failure functions
re-evaluated. These parameters include the plastic strain (ε̄p), plastic strain rate (˙̄εp), temperature
(Tt), stress triaxiality (κ), and lode parameter (Θp). These parameters are calculated as follows,
where m is equal to either k or j depending on whether the process is occurring during the
Newton-Raphson (k outer) loop or the line search (j inner) loop of the return mapping
algorithm.

ε̄p(m)
= ∆γ(m) (18.89)

˙̄εp(m)
=
∆γ(m)

∆t(n) (18.90)

T
(m)
t = T (n)+∆T (m)

p (18.91)

182

κ
(m) = − p(m)

σ
(m)
e

(18.92)

Θ(m)
p = cos

(
3Θ(m)� (18.93)

In the above equations, the pressure (p(m)) is calculated as follows,

p(m) = −1
3

tr
(
σ(m)� (18.94)

the effective stress is calculated as follows,

σ(m)
e =

q

3J
(m)
2 (18.95)

and the lode angle is calculated as follows.

Θ(m) =

J
(m)
3

2

!

3

J
(m)
2

!1.5

(18.96)

J
(m)
2 and J

(m)
3 are the second and third stress invariants, respectively, that are calculated as

follows.

J
(m)
2 =

1
2

�

tr
�

σ(m)2
�

− 1
3

tr
(
σ(m)�2

�

(18.97)

J
(m)
3 =

1
3

�

tr
�

σ(m)3
�

− tr
�

σ(m)2
�

tr
(
σ(m)�+

2
9

tr
(
σ(m)�3

�

(18.98)

Plastic Heating

The hydra plasticity model includes the ability to calculate heating of the material resulting from
its plastic deformation. The heat flux increment (rp(n)

) per unit volume for a given time step n is
calculated as:

rp(n)
= η

(
σ(n)+σ(n−1)

�

2
: ∆εp(n)

(18.99)

where η is a user defined inelastic heat fraction, σ(n) is the current time step’s stress, σ(n−1) is the
previous time step’s stress, and ∆εp(n)

is the current time step’s increment in plastic strain. The
temperature change added to the integration point resulting from plastic heating (∆T

(n)
p) is given

by the following:

183

∆T (n)
p = ∆T (n−1)

p +∆
(
∆Tp

�(n)
(18.100)

where ∆T
(n−1)
p is the accumulated temperature change added to the integration point resulting

from plastic heating up through the previous time step, and ∆
(
∆Tp

�(n)
is the additional increment

in temperature change resulting from the plastic deformation of the material during the current
time step, which is calculated as follows.

∆
(
∆Tp

�(n)
=

rp(n)

ρC

�

T
(n)
t +T

(n−1)
t

2

� (18.101)

In Equation 18.101 ρ is the material density. Because the specific heat may be temperature
dependent, this equation is iteratively solved, with each successive iteration providing an updated
T

(n)
t .

Failure

Material failure is initiated in the model when the failure measure reaches or exceeds 1.0
(f m ≥ 1.0). The failure measure is calculated as follows:

f m(n) = f m(n−1)+∆ f m(n) (18.102)

The increment in the failure measure associated with the current time step (∆ f m(n)) is calculated
as follows:

∆ f m(n) =
∆ε̄p(n)

ε̄
p
f

�

κ(n), ˙̄εp(n)
,Θ

(n)
p ,T

(n)
t

� (18.103)

where ∆ε̄p(n)
is the current step’s increment in equivalent plastic strain, and

ε̄
p
f

�

κ
(n), ˙̄εp(n) ,Θ

(n)
p ,T

(n)
t

�

is the failure strain for the current increment, provided by the failure

function.

During the time step in which the failure measure just reaches or exceeds the failure initiation
criterion, the failure stress (σ f

e) and failure displacement (u f) are determined. This is done
iteratively during the line search portion of the return mapping algorithm, and consists of a
process where the line search parameter (α(j)) is successively modified until the failure measure
just equals 1.0.The value returned by the hardening function when this occurs is the stress utilized
as the failure stress (σ f

e) and the failure displacement is calculated as follows.

u f =
2G f

σ
f
e

(18.104)

184

where G f is the material’s fracture energy.

Once the failure initiation criterion has been satisfied, the yield strength of the material remains
constant and is set equal to the failure stress. In addition, increasing plastic deformation of the
material results in the accumulation of damage (D). Damage is calculated as follows:

D(n) = D(n−1)+
L∆ε̄

p(n)

f

u f
(18.105)

where D(n−1) is the damage accumulated in the material through the previous time step, ∆ε̄p(n)

f is
the change in the equivalent plastic strain associated with the current time step (including only
plastic strains that have occurred after the failure initiation criterion has been satisfied), and L is
the characteristic length associated with the material integration point (taken as 3

p
Vipt, where Vipt

is the volume of material associated with the material integration point). As damage accumulates
in the material, both the strength, and indirectly, the stiffness of the material are degraded. This
degradation is accomplished by returning the damage adjusted stresses (σD) at the conclusion of
the material integration step, as follows.

σ
(n)
D = (1−D)σ(n) = ϕσ(n) (18.106)

where ϕ = (1−D) defines the decay value for the damaged material. This effectively results in a
response where the material strength and stiffness are degraded. It is important to note that the
pressure stresses are only degraded when the pressure is tensile (negative pressures). When the
pressure is compressive, the pressure stress components of σ(n) are not degraded as indicated in
Equation 18.106. The material strength and stiffness are continually degraded with increasing
plastic deformation until the material is fully damage (D = 1) or the decay value (ϕ) has reached a
critical decay value specified by the user (ϕr), at which point the material point is flagged for
removal from the analysis.

18.15.5. Verification

The hydra plasticity model was verified through comparison of results from the material model
with results obtained from the general metal plasticity model in Abaqus/Explicit (Version 6.14).
A series of six element tests were designed to verify all of the hydra plasticity model’s
capabilities.

Description of Six Element Test Cases

Five test cases in total were performed. For each of the five test cases, six elements were loaded
using six different prescribed velocities - the goal being to test the hydra plasticity model
performs as expected for a variety of different stress states. These elements are not connected in
any way, so each of the six element test cases are actually six single element tests performed at
the same time. Elements 1, 2, and 3 were loaded to cause a tension stress state in the σxx, σyy, and

185

σzz components respectively. Elements 4, 5, and 6 were loaded to cause shear dominated stress
states - though not pure shear - with the dominant component of stress in the τxx, τyy, and τzz and
component respectively. Figure 18-2 shows the six elements in an undeformed (top) and
deformed (bottom) configuration. The deformed configuration shown is chosen from an arbitrary
state in time prior to the failure of any of the elements and is intended only to illustrate the types
of loadings applied.

Figure 18-2. Undeformed (top) and deformed (bottom) shapes for

the six element tests.

186

A test case matrix was developed to verify the capabilities of the hydra plasticity model over a
range of inputs. Table 18-10 below shows the five test cases developed. Test cases 1 through 4 test
different combinations of low (300 K) and high (700 K) temperatures and load and high load rates
(resulting in a range of strain rates tested). Test cases 1 through 4 all have Hill ratios that vary
between 0.90 and 1.20. Test case 5 tests the adiabatic heating capability of the hydra plasticity
model. Because Abaqus does not allow adiabatic heating for a Hill surface all of the Hill ratios
were set to 1.0 in the hydra plasticity model to create a Mises yield surface.

Table 18-10. Hydra plasticity test case matrix

Test

Case

Temp

(K)

load rate

(m/s)

Failure

Included

Adiabatic Heating

Included

Hill Ratios (R11, R22, R33, R12, R23, R31)

1 300 1 Yes No 1.00, 1.15, 0.90, 1.00, 1.20, 0.95
2 700 1 Yes No 1.00, 1.15, 0.90, 1.00, 1.20, 0.95
3 300 10 Yes No 1.00, 1.15, 0.90, 1.00, 1.20, 0.95
4 700 10 Yes No 1.00, 1.15, 0.90, 1.00, 1.20, 0.95
5 300 1 Yes Yes all 1.00 =Mises

A set of hardening data was defined for all five test cases. A python script was used to generate
the same data formatted for the hydra plasticity model and an Abaqus general metal plasticity
model. The hardening data used for the test cases was dependent on equivalent plastic strain,
temperature, and equivalent plastic strain rate. Figure 18-3 shows the data points used to define
yield stress as a function equivalent plastic strain at various temperatures and equivalent plastic
strain rates. Both the hydra plasticity model and the Abaqus general metal plasticity model use
linear interpolation between most of the data points to obtain the yield stress (the exception being
the equivalent plastic strain rate direction which for the test cases include the hydra plasticity
model had the PLASTIC STRAIN RATE LOG FLAG set to true and Abaqus by default uses log
interpolation between for strain rate data).

A set of failure data was also defined for all five test cases. Again, a python script was used to
generate the same data formatted for the hydra plasticity model and an Abaqus general metal
plasticity model. The failure data used for the test cases was dependent on stress triaxiality,
temperature, equivalent plastic strain rate, and Lode angle (via the Lode parameter). Figure 18-4
shows the data points used to define failure strain as a function of stress triaxiality at various
temperatures, equivalent plastic strain rates, and Lode parameters. Again, both the hydra
plasticity model and the Abaqus general metal plasticity model use linear interpolation between
the data points to obtain the failure strain.

Comparison of Results

The five test cases were each run in Sierra using the hydra plasticity model, and Abaqus using the
general plasticity model. The results of the five test cases are presented in Figures 4 through 8.
Each of these figures presents the equivalent plastic strain in an element versus the unrotated
stress in the element in the dominant loading direction. For example, for element 1 which is

187

Figure 18-3. Hardening data used in all five test cases.

loaded in the σxx component the y-axis represents the unrotated stress σxx; for element 4 which is
dominantly loaded in the component the y-axis represents the unrotated stress τxx; etc.

Figure 18-5 shows the results from test case 1, where the temperature was set to 300 K and the
loading rate was 1 m/s. The figure shows that there is near perfect agreement between Sierra and
Abaqus for all of the tension loaded elements (elements 1, 2, and 3). As expected, the tension
loaded elements all fail at the same equivalent plastic strain since they all use the same failure
data. The agreement between Sierra and Abaqus is very close for the shear dominated loading
elements (elements 4, 5, and 6) with less agreement as the plastic strain increases.

Figure 18-6 shows the results from test case 2, where the temperature was set to 700 K and the
loading rate was 1 m/s. Again, the figure shows that there is near perfect agreement between
Sierra and Abaqus for all of the tension loaded elements (elements 1, 2, and 3). And again, as
expected the tension loaded elements all fail at the same equivalent plastic strain since they all use
the same failure data. Also, the agreement between Sierra and Abaqus is very close for the shear
dominated loading elements (elements 4, 5, and 6) with less agreement as the plastic strain
increases.

Figure 18-7 shows the results from test case 3, where the temperature was set to 300 K and the

188

Figure 18-4. Failure data used in all five test cases.

loading rate was 10 m/s. The figure shows that there is very close agreement between Sierra and
Abaqus for all of the tension loaded elements (elements 1, 2, and 3). However, there is some
minor disagreement between the two sets at very low plastic strains. And again, as expected the
tension loaded elements all fail at the same equivalent plastic strain since they all use the same
failure data. Also, the agreement between Sierra and Abaqus is very close for the shear dominated
loading elements (elements 4, 5, and 6) with less agreement as the plastic strain increases.

Figure 18-8 shows the results from test case 4, where the temperature was set to 700 K and the
loading rate was 10 m/s. Again, the figure shows that there is good agreement between Sierra and
Abaqus for all of the tension loaded elements (elements 1, 2, and 3). However, there is more
discrepancy between the two sets of data at low plastic strains. And again, as expected the tension
loaded elements all fail at the same equivalent plastic strain since they all use the same failure
data. Also, the agreement between Sierra and Abaqus is very close for the shear dominated
loading elements (elements 4, 5, and 6) with less agreement as the plastic strain increases.

189

Figure 18-5. Comparison of results from test case 1.

Figure 18-9 shows the results from test case 5, the test case that includes adiabatic heating and the
Hill ratios are all set to 1.0 (which is equivalent to the Mises surface). For this case the
temperature was set to 300 K and the loading rate was 1 m/s. Because the Hill ratios are all the
same the results from the three tension elements all lie right on top of each other in the figure;
likewise the results from the three shear elements all lie right on top of each other. The figure
shows that there is very good agreement between Sierra and Abaqus for all of the tension loaded
elements (elements 1, 2, and 3). As expected, the tension loaded elements all fail at the same
equivalent plastic strain since they all use the same failure data. The agreement between Sierra
and Abaqus is very close for the shear dominated loading elements (elements 4, 5, and 6) with
less agreement as the plastic strain increases.

Conclusions

The hydra plasticity model was verified by comparing the hydra plasticity model to a similar
model in Abaqus. Five sets of six single element tests that exercised a range of features in the
hydra plasticity model were used for the verification. Nearly perfect agreement between the hydra
plasticity model and the Abaqus model was found in the tensile loaded elements. At higher

190

Figure 18-6. Comparison of results from test case 2.

temperatures, some minor differences between the two models was seen at low plastic strains.
Good agreement was found between the two models in the shear loaded elements; however, there
are non-trivial differences at larger strains. While every attempt was made to make the models in
Sierra using hydra plasticity and the models Abaqus/Explicit using the generalized plasticity
model to be the same there may be some differences in non-material model algorithms or options
that would result in discrepancies.

While the above tests are comprehensive, additional verification may benefit the model.
Additional verification should focus on the hydra plasticity model’s ability to recovering the data
input by the hardening and failure functions under simple loading conditions.

191

Figure 18-7. Comparison of results from test case 3.

192

Figure 18-8. Comparison of results from test case 4.

193

Figure 18-9. Comparison of results from test case 5.

194

18.16. NLVE 3D ORTHOTROPIC MODEL

BEGIN PARAMETERS FOR MODEL NLVE_3D_ORTHOTROPIC

#

Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

Material coordinates system definition

#

COORDINATE SYSTEM = <string> coordinate_system_name

DIRECTION FOR ROTATION = <real> 1|2|3

ALPHA = <real> α1 (degrees)

SECOND DIRECTION FOR ROTATION = <real> 1|2|3

SECOND ALPHA = <real> α2 (degrees)

#

#

#

FICTITIOUS LOGA FUNCTION = <string>fict_loga_function_name

FICTITIOUS LOGA SCALE FACTOR = <real>fict_loga_scale_factor

#

In each of the five "PRONY" command lines and in

the RELAX TIME command line, the value of i can be from

1 through 30

#

1PSI PRONY <integer>i = <real>psi1_i

2PSI PRONY <integer>i = <real>psi2_i

3PSI PRONY <integer>i = <real>psi3_i

4PSI PRONY <integer>i = <real>psi4_i

5PSI PRONY <integer>i = <real>psi5_i

RELAX TIME <integer>i = <real>tau_i

REFERENCE TEMP = <real>tref

REFERENCE DENSITY = <real>rhoref

WLF C1 = <real>wlf_c1

WLF C2 = <real>wlf_c2

B SHIFT CONSTANT = <real>b_shift

SHIFT REF VALUE = <real>shift_ref

WWBETA 1PSI = <real>wwb_1psi

WWTAU 1PSI = <real>wwt_1psi

WWBETA 2PSI = <real>wwb_2psi

WWTAU 2PSI = <real>wwt_2psi

WWBETA 3PSI = <real>wwb_3psi

195

WWTAU 3PSI = <real>wwt_3psi

WWBETA 4PSI = <real>wwb_4psi

WWTAU 4PSI = <real>wwt_4psi

WWBETA 5PSI = <real>wwb_5psi

WWTAU 5PSI = <real>wwt_5psi

DOUBLE INTEG FACTOR = <real>dble_int_fac

REF RUBBERY HCAPACITY = <real>hcapr

REF GLASSY HCAPACITY = <real>hcapg

GLASS TRANSITION TEM = <real>tg

REF GLASSY C11 = <real>c11g

REF RUBBERY C11 = <real>c11r

REF GLASSY C22 = <real>c22g

REF RUBBERY C22 = <real>c22r

REF GLASSY C33 = <real>c33g

REF RUBBERY C33 = <real>c33r

REF GLASSY C12 = <real>c12g

REF RUBBERY C12 = <real>c12r

REF GLASSY C13 = <real>c13g

REF RUBBERY C13 = <real>c13r

REF GLASSY C23 = <real>c23g

REF RUBBERY C23 = <real>c23r

REF GLASSY C44 = <real>c44g

REF RUBBERY C44 = <real>c44r

REF GLASSY C55 = <real>c55g

REF RUBBERY C55 = <real>c55r

REF GLASSY C66 = <real>c66g

REF RUBBERY C66 = <real>c66r

REF GLASSY CTE1 = <real>cte1g

REF RUBBERY CTE1 = <real>cte1r

REF GLASSY CTE2 = <real>cte2g

REF RUBBERY CTE2 = <real>cte2r

REF GLASSY CTE3 = <real>cte3g

REF RUBBERY CTE3 = <real>cte3r

LINEAR VISCO TEST = <real>lvt

T DERIV GLASSY C11 = <real>dc11gdT

T DERIV RUBBERY C11 = <real>dc11rdT

T DERIV GLASSY C22 = <real>dc22gdT

T DERIV RUBBERY C22 = <real>dc22rdT

T DERIV GLASSY C33 = <real>dc33gdT

T DERIV RUBBERY C33 = <real>dc33rdT

T DERIV GLASSY C12 = <real>dc12gdT

T DERIV RUBBERY C12 = <real>dc12rdT

T DERIV GLASSY C13 = <real>dc13gdT

T DERIV RUBBERY C13 = <real>dc13rdT

T DERIV GLASSY C23 = <real>dc23gdT

T DERIV RUBBERY C23 = <real>dc23rdT

T DERIV GLASSY C44 = <real>dc44gdT

196

T DERIV RUBBERY C44 = <real>dc44rdT

T DERIV GLASSY C55 = <real>dc55gdT

T DERIV RUBBERY C55 = <real>dc55rdT

T DERIV GLASSY C66 = <real>dc66gdT

T DERIV RUBBERY C66 = <real>dc66rdT

T DERIV GLASSY CTE1 = <real>dcte1gdT

T DERIV RUBBERY CTE1 = <real>dcte1rdT

T DERIV GLASSY CTE2 = <real>dcte2gdT

T DERIV RUBBERY CTE2 = <real>dcte2rdT

T DERIV GLASSY CTE3 = <real>dcte3gdT

T DERIV RUBBERY CTE3 = <real>dcte3rdT

T DERIV GLASSY HCAPACITY = <real>dhcapgdT

T DERIV RUBBERY HCAPACITY = <real>dhcaprdT

REF PSIC = <real>psic_ref

T DERIV PSIC = <real>dpsicdT

T 2DERIV PSIC = <real>d2psicdT2

PSI EQ 2T = <real>psitt

PSI EQ 3T = <real>psittt

PSI EQ 4T = <real>psitttt

PSI EQ XX 11 = <real>psiXX11

PSI EQ XX 22 = <real>psiXX22

PSI EQ XX 33 = <real>psiXX33

PSI EQ XX 12 = <real>psiXX12

PSI EQ XX 13 = <real>psiXX13

PSI EQ XX 23 = <real>psiXX23

PSI EQ XX 44 = <real>psiXX44

PSI EQ XX 55 = <real>psiXX55

PSI EQ XX 66 = <real>psiXX66

PSI EQ XXT 11 = <real>psiXXT11

PSI EQ XXT 22 = <real>psiXXT22

PSI EQ XXT 33 = <real>psiXXT33

PSI EQ XXT 12 = <real>psiXXT12

PSI EQ XXT 13 = <real>psiXXT13

PSI EQ XXT 23 = <real>psiXXT23

PSI EQ XXT 44 = <real>psiXXT44

PSI EQ XXT 55 = <real>psiXXT55

PSI EQ XXT 66 = <real>psiXXT66

PSI EQ XT 1 = <real>psiXT1

PSI EQ XT 2 = <real>psiXT2

PSI EQ XT 3 = <real>psiXT3

PSI EQ XTT 1 = <real>psiXTT1

PSI EQ XTT 2 = <real>psiXTT2

PSI EQ XTT 3 = <real>psiXTT3

REF PSIA 11 = <real>psiA11

REF PSIA 22 = <real>psiA22

REF PSIA 33 = <real>psiA33

REF PSIA 12 = <real>psiA12

197

REF PSIA 13 = <real>psiA13

REF PSIA 23 = <real>psiA23

REF PSIA 44 = <real>psiA44

REF PSIA 55 = <real>psiA55

REF PSIA 66 = <real>psiA66

T DERIV PSIA 11 = <real>dpsiA11dT

T DERIV PSIA 22 = <real>dpsiA22dT

T DERIV PSIA 33 = <real>dpsiA33dT

T DERIV PSIA 12 = <real>dpsiA12dT

T DERIV PSIA 13 = <real>dpsiA13dT

T DERIV PSIA 23 = <real>dpsiA23dT

T DERIV PSIA 44 = <real>dpsiA44dT

T DERIV PSIA 55 = <real>dpsiA55dT

T DERIV PSIA 66 = <real>dpsiA66dT

REF PSIB 1 = <real> psiB1

REF PSIB 2 = <real> psiB2

REF PSIB 3 = <real> psiB3

T DERIV PSIB 1 = <real> dpsiB1dT

T DERIV PSIB 2 = <real> dpsiB2dT

T DERIV PSIB 3 = <real> dpsiB3dT

PSI POT TT = <real> psipotTT

PSI POT TTT = <real> psipotTTT

PSI POT TTTT = <real> psipotTTTT

PSI POT XT 1 = <real> psipotXT1

PSI POT XT 2 = <real> psipotXT2

PSI POT XT 3 = <real> psipotXT3

PSI POT XTT 1 = <real> psipotXTT1

PSI POT XTT 2 = <real> psipotXTT2

PSI POT XTT 3 = <real> psipotXTT3

PSI POT XXT 11 = <real> psipotXXT11

PSI POT XXT 22 = <real> psipotXXT22

PSI POT XXT 33 = <real> psipotXXT33

PSI POT XXT 12 = <real> psipotXXT12

PSI POT XXT 13 = <real> psipotXXT13

PSI POT XXT 23 = <real> psipotXXT23

PSI POT XXT 44 = <real> psipotXXT44

PSI POT XXT 55 = <real> psipotXXT55

PSI POT XXT 66 = <real> psipotXXT66

END [PARAMETERS FOR MODEL NLVE_3D_ORTHOTROPIC]

The NLVE three-dimensional orthotropic model is a nonlinear viscoelastic orthotropic continuum
model that describes the behavior of fiber-reinforced polymer-matrix composites. In addition to
being able to model the linear elastic and linear viscoelastic behaviors of such composites, it also
can capture both “weak” and “strong” nonlinear viscoelastic effects such as stress dependence of
the creep compliance and viscoelastic yielding. This model can be used in both Presto and
Adagio.

Because the NLVE model is still under active development and also because it has an extensive

198

list of command lines, we have not followed the typical approach in documenting this model.

199

18.17. HONEYCOMB MODEL

BEGIN PARAMETERS FOR MODEL HONEYCOMB

#

Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

Orthotropic response

#

MODULUS_TTTT = <real> E0
TTTT

MODULUS_LLLL = <real> E0
LLLL

MODULUS_WWWW = <real> E0
WWWW

MODULUS_TTLL = <real> E0
TT LL

MODULUS_TTWW = <real> E0
TTWW

MODULUS_LLWW = <real> E0
LLWW

MODULUS_TLTL = <real> E0
T LT L

MODULUS_LWLW = <real> E0
LWLW

MODULUS_WTWT = <real> E0
WTWT

#

Material orientation

#

TX = <real> tx

TY = <real> ty
TZ = <real> tz
LX = <real> lx

LY = <real> ly
LZ = <real> lz
#

Yield behavior

#

YIELD_STRESS = <real> σy

A1 = <real> A1

B1 = <real> B1

C1 = <real> C1

A2 = <real> A2

B2 = <real> B2

C2 = <real> C2

A3 = <real> A3

B3 = <real> B3

C3 = <real> C3

200

TS = <real> Ts

LS = <real> Ls

WS = <real> Ws

TLS = <real> T Ls

LWS = <real> LWs

WTS = <real> WTs

ESTL = <real>

ESTW = <real>

ESLW = <real>

ESLT = <real>

ESWT = <real>

ESWL = <real>

MODULUS_FUNCTION = <string>

RATE_FUNCTION = <string>

T_FUNCTION = <string>

L_FUNCTION = <string>

W_FUNCTION = <string>

TL_FUNCTION = <string>

LW_FUNCTION = <string>

WT_FUNCTION = <string>

TTP_FUNCTION = <string>

LLP_FUNCTION = <string>

WWP_FUNCTION = <string>

TLTLP_FUNCTION = <string>

LWLWP_FUNCTION = <string>

WTWTP_FUNCTION = <string>

TTLP_FUNCTION = <string>

TTWP_FUNCTION = <string>

END [PARAMETERS FOR MODEL HONEYCOMB]

The honeycomb constitutive model is used to model the energy absorbing capabilities of
aluminum honeycomb. There are three orthogonal material directions for the model: T , L, and W.
The t-direction is generally considered as the “strong” direction, the W-direction is the “weak”
direction, and the L-direction has an intermediate strength. This convention, however, does not
necessarily need to be followed when defining material inputs.







σ̇TT

σ̇LL

σ̇WW

σ̇T L

σ̇LW

σ̇WT







=











ETTTT ETT LL ETTWW 0 0 0
ETT LL ELLLL ELLWW 0 0 0
ETTWW ELLWW EWWWW 0 0 0

0 0 0 ET LT L 0 0
0 0 0 0 ELWLW 0
0 0 0 0 0 EWTWT

















ḋTT

ḋLL

ḋWW

ḋT L

ḋLW

ḋWT







(18.107)

Output variables available for this model are listed in Table 18-11.

201

Table 18-11. State Variables for HONEYCOMB Model

Index Name Variable Description

1 CRUSH minimum volume ratio
2 EQDOT effective strain rate
3 RMULT rate multiplier
5 ITER iterations
6 EVOL volumetric strain

202

18.18. VISCOPLASTIC FOAM

BEGIN PARAMETERS FOR MODEL VISCOPLASTIC_FOAM

#

Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ

FLOW RATE = <real> h

POWER EXPONENT = <real> n

BETA = <real> β

PHI = <real> φ0

SHEAR STRENGTH = <real> A0

SHEAR HARDENING = <real> A1

SHEAR EXPONENT = <real> A2

HYDRO STRENGTH = <real> B0

HYDRO HARDENING = <real> B1

HYDRO EXPONENT = <real> B2

YOUNGS FUNCTION = <string> hE (θ)
POISSONS FUNCTION = <string> hν (θ)
SS FUNCTION = <string> hA0 (θ)
SH FUNCTION = <string> hA1 (θ)
HS FUNCTION = <string> hB0 (θ)
HH FUNCTION = <string> hB1 (θ)
RATE FUNCTION = <string> hh (θ)
EXPONENT FUNCTION = <string> hn (θ)
STIFFNESS FUNCTION = <string> fE (φ)

#Optional user-specified functions

SHEAR HARDENING FUNCTION = <string> a (φ) #Do not specify A0, A1, A2

HYDRO HARDENING FUNCTION = <string> b (φ) #Do not specify B0, B1, B2

BETA FUNCTION = <string> β (φ) #Do not specify β

END [PARAMETERS FOR MODEL VISCOPLASTIC_FOAM]

The viscoplastic foam model is used to model the rate (and temperature) dependent crushing of
foams [16]. It is based on an additive split of the rate of deformation into an elastic and plastic
portion

Di j = De
i j+D

p
i j. (18.108)

203

The stress in the material is due strictly to the elastic portion of the rate of deformation so that

◦
σi j= Ci jklD

e
kl, (18.109)

where Ci jkl are the components of the fourth-order, isotropic elasticity tensor. The stress rate is
arbitrary, as long as it is objective. Two objective stress rates are commonly used: the Jaumann
rate and the Green-McInnis rate. For problems with fixed principal axes of deformation, these two
rates give the same answers. For problems where the principal axes of deformation rotate during
deformation, the two rates can give different answers. Generally speaking, there is no reason to
pick one objective rate over another.

To describe the rate-dependent response, an over-stress-type yield function is used. Specifically,
the rate-independent foam plasticity yield function

f =
σ̄2

a2 +
p2

b2 −1 (18.110)

is rearranged such that,

f = σ∗−a, (18.111)

where σ∗ is the effective stress given by

σ∗ =

r

σ̄2+
a2

b2 p2. (18.112)

In (18.112), σ̄ is the von Mises effective stress (σ̄ =
q

3
2 si jsi j) and p is the pressure resulting

from a stress decomposition of the form,

σi j = si j− pδi j. (18.113)

Furthermore, a and b are state variables that are functions of the absolute temperature, θ, and
maximum solid volume fraction, φ, and are defined as3

a (θ,φ) = A0 (θ)+A1 (θ)φA2 (18.114)

(18.115)

b (θ,φ) = B0 (θ)+B1 (θ)φB2 . (18.116)

The temperature dependent material properties in the preceding relations are all defined as,
A0 (θ) = A0hA0 (θ) where A0 is the reference material parameter and hA0 (θ) is the relative value as

3In addition to the given analytical expressions, a and b may be optionally specified as user defined functions of the
maximum solid volume fraction. In these cases, however, the temperature dependence is neglected.

204

a function of temperature. In addition to the a and b state variables, the Young’s modulus and
Poisson’s ratio are also functions of the absolute temperature. The latter may be written as
ν (θ) = νhν (θ) while the former is also dependent on the maximum volume fraction of solid
material and is given as E (θ,φ) = EhE (θ) fE (φ).

The maximum volume fraction of solid material, φ, is given by

φ =max
t>0
φ̃ (t) (18.117)

where φ̃ (t) is the current volume fraction of solid material and is defined as,

φ̃ (t) =
φ0

exp
(
ε

p
v

� (18.118)

with φ0 being the initial solid volume fraction and εpv is

εpv =

Z t

0
D

p
kkdt. (18.119)

During inelastic deformation (f > 0), the corresponding rate of plastic deformation is given in a
Perzyna-type form as,

D
p
i j =







exp(h (θ))

�
σ∗

a
−1

�n(θ)

gi j if f > 0

0 if f < 0

(18.120)

where h (θ) and n (θ) are the flow rate and power exponent respectively. The inelastic flow
direction, gi j, is given as a linear combination of the associated (with respect to (18.110)), ga

i j, and
radial, gr

i j,

gi j = (1−β)ga
i j+βg

r
i j. (18.121)

The directions ga
i j and gr

i j are given by

ga
i j =

∂ f
∂σi j

| ∂ f
∂σkl
|
=

3
a2 si j− 2

3b2 pδi j

| 3
a2 si j− 2

3b2 pδi j|
, (18.122)

gr
i j =

σi j

|σkl|
=

σi j√
σklσkl

, (18.123)

respectively. In this model, the flow rule weight, β, may be specified as either a constant value or
as a function of the maximum solid volume fraction (β = β (φ)).

In the above command blocks:

205

• Since the model requires functions to describe the temperature dependence of the elastic
modulus and Poisson’s ratio, it is recommended that one inputs these properties at some
reference temperature. However, any two of the elastic constants can be used for input.
Consult the Sierra/SM 4.54 User’s Guide Section ?? for more information on elastic
constants input.

• The reference value for the flow rate, h, is defined with the FLOW RATE command line.

• The reference value of the over-stress exponent, n, is defined with the POWER EXPONENT

command line.

• The user-defined scalar scaling between associated and radial flow, β, is defined with the
BETA command line.

• The initial volume fraction of solid material, φ0, is defined with the PHI command line.

• The reference value for the shear strength, A0, is defined with the SHEAR STRENGTH

command line.

• The reference value for the shear hardening modulus, A1, is defined with the
SHEAR HARDENING command line.

• The shear hardening exponent, A2, is defined with the SHEAR EXPONENT command line.

• The reference value for the hydrostatic strength, B0, is defined with the HYDRO STRENGTH

command line.

• The reference value for the hydrostatic hardening modulus, B1, is defined with the
HYDRO HARDENING command line.

• The hydrostatic hardening exponent, B2, is defined with the HYDRO EXPONENT command
line.

• The user-defined and normalized function that gives the elastic modulus as a function of
temperature, hE(θ), is defined with the YOUNGS FUNCTION command line.

• The user-defined and normalized function that gives the Poisson’s ratio as a function of
temperature, hν(θ), is defined with the POISSONS FUNCTION command line.

• The user-defined and normalized function that gives the shear strength as a function of
temperature, hA0(θ), is defined with the SS FUNCTION command line.

• The user-defined and normalized function that gives the shear hardening modulus as a
function of temperature, hA1(θ), is defined with the SH FUNCTION command line.

• The user-defined and normalized function that gives the hydrostatic strength as a function
of temperature, hB0(θ), is defined with the HS FUNCTION command line.

• The user-defined and normalized function that gives the hydrostatic hardening modulus as a
function of temperature, hB1(θ), is defined with the HH FUNCTION command line.

• The user-defined and normalized function that gives the flow rate as a function of
temperature, hh(θ), is defined with the RATE FUNCTION command line.

• The user-defined and normalized function that gives the over-stress exponent as a function

206

of temperature, hn(θ), is defined with the EXPONENT FUNCTION command line.

• The user-defined and normalized function that gives the elastic modulus as a function of
maximum solid volume fraction, fE(φ), is defined with the STIFFNESS FUNCTION

command line.

• The optional user-defined function that gives the shear strength as a function of the
maximum solid volume fraction, a (φ), is defined with the SHEAR HARDENING FUNCTION

command line. Note, if this function is defined the SHEAR STRENGTH,
SHEAR HARDENING, and SHEAR EXPONENT values should not be specified.

• The optional user-defended function that gives the hydrostatic strength as a function of the
maximum solid volume fraction, b (φ), is defined with the HYDRO HARDENING FUNCTION

command line. Note, if this function is defined the HYDRO STRENGTH,
HYDRO HARDENING, and HYDRO EXPONENT values should not be specified.

• The optional user-defined function that gives the scaling between associated and radial flow
as a function of maximum solid volume fraction, β (φ), is defined with the BETA FUNCTION

command line. Note, if this function is defined the BETA value should not be specified.

Output variables available for this model are listed in Table 18-12.

Table 18-12. State Variables for VISCOPLASTIC FOAM Model 18.18

Name Description

ITER number of sub-increments
EPVOL inelastic volumetric strain, εpv
EDOT effective inelastic strain rate, ˙̄εp

PHI volume fraction of solid material, φ
FA shear strength, a

FB hydrostatic strength, b

STIF elastic stiffness as a function of φ

207

18.19. FOAM DAMAGE

BEGIN PARAMETERS FOR MODEL FOAM_DAMAGE

#

Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ

#

Yield behavior

#

PHI = <real> φ0

FLOW RATE = <real> h

POWER EXPONENT = <real> n

TENSILE STRENGTH = <real> c

ADAM = <real> adam

BDAM = <real> bdam

#

Functions

#

YOUNGS FUNCTION = <string> hE(θ)
POISSONS FUNCTION = <string> hν(θ)
RATE FUNCTION = <string> hh(θ)
EXPONENT FUNCTION = <string> hn(θ)
SHEAR HARDENING FUNCTION = <string> a(φ)
HYDRO HARDENING FUNCTION = <string> b(φ)
BETA FUNCTION = <string> β(φ)
YOUNGS PHI FUNCTION = <string> fE(φ)
POISSONS PHI FUNCTION = <string> fν(φ)
DAMAGE FUNCTION = <string> w(εdam)

END [PARAMETERS FOR FOAM_DAMAGE]

The foam damage model was developed at Sandia National Laboratories to model the behavior of
rigid polyurethane foams under a variety of loading conditions [17]. For instance, temperature,
rate, and tension-compression dependencies are all built into this model. This model, leverages
previous efforts and experience with other foam models. Consult the Sierra/SM 4.54 User’s Guide
chapter on Material Models for additional details. Like those past efforts, this model utilizes an
additive decomposition of the strain rates into elastic and inelastic parts,

Di j = De
i j+Din

i j . (18.124)

It is also assumed that the elastic response is linear and isotropic such that the stress rate for

208

isothermal conditions is given by the following equation

◦
σi j= Ci jklD

e
kl = Ci jkl

(
Dkl−Din

kl

�
, (18.125)

with Ci jkl being the fourth-order, isotropic elasticity tensor. The specific stress rate considered is
arbitrary as long as it is object. Two common rates satisfying that constraint are the Jaumann and
Green-McInnis rates.

The initial yield surface is assumed to be an ellipsoid about the hydrostat and is described by the
function

f =
σ̄2

a2 +
p2

b2 −1 = 0, (18.126)

where a and b are state variables that define the current deviatoric and volumetric strengths,
respectively, of the foam. The von Mises effective stress, σ̄ is a scalar measure of the deviatoric
stress given by

σ̄ =

r

3
2

si jsi j, (18.127)

while p is the pressure, or mean stress, and is defined as

p =
1
3
σkk, (18.128)

with σi j and si j being the components of the Cauchy and deviatoric stress. This latter tensor may
be written as,

si j = σi j− pδi j, (18.129)

where δi j are the components of the identity tensor - δi j = 1 if i = j, δi j = 0 if i , j.

For this model, the yield function (18.126) is re-written as

f = σ∗−a = 0 (18.130)

with the effective stress, σ∗, being a function of the von Mises effective stress, σ̄, and the
pressure, p, as follows

σ∗ =

r

σ̄2+
a2

b2 p2. (18.131)

209

Next, using a Perzyna-type formulation, the following expression for the inelastic strain rate, Din
i j ,

is developed

Din
i j =







˙̄εp gi j = eh

�
σ∗

a
−1

�n

gi j if
σ∗

a
−1 > 0

0 if
σ∗

a
−1 ≤ 0,

(18.132)

where gi j are the components of a symmetric, second-order tensor that defines the orientation of
the inelastic flow. This type of model is sometimes referred to as an over-stress model because the
inelastic rate is a function of the over-stress - the distance outside the yield surface. For associated
flow, gi j is simply normal to the yield surface and is given by

ga
i j =

∂ f

∂σi j
�
�
�
�

∂ f

∂σkl

�
�
�
�

=

3
a2 si j+

2
3b2 pδi j

�
�
�
�

3
a2 skl+

2
3b2 pδkl

�
�
�
�

. (18.133)

When lower density foams are subjected to a simple load path like uniaxial compression, the
inelastic flow direction at moderate strains appears nearly uniaxial. In other words, the flow
direction is given by the normalized stress tensor as follows

gr
i j =
σi j

|σkl|
. (18.134)

This type of flow is called radial flow. The foam damage model has another parameter, β, which
allows for the flow direction to be prescribed as a linear combination of associated and radial flow
such that,

gi j =
(1−β)ga

i j+βgr
i j

�
�(1−β)ga

kl+βgr
kl

�
�
. (18.135)

Rigid polyurethane foams have little ductility when they are subjected to tensile stress. For this
loading case, the materials behave more like brittle materials and even for uniaxial compression
the foams often show cracking at large strains.

The damage surfaces for the foam damage model are simply three orthogonal planes with the
normals given by the positive principal stress axes. The damage surfaces are given by the
following equation

f i
dam = σ̂

i− c (1−w) , ; i = 1,2,3 (18.136)

210

where σ̂i is a principal stress, c is the initial tensile strength which is a material parameter, and w

is a scalar measure of the damage. As damage occurs, the damage surface will collapse toward
the origin and the foam will lose tensile strength. The foam will, however, still have compressive
strength.

Damage is taken to be a positive, monotonically increasing function of the damage strain, εdam,
and the damage strain is a function of the maximum principal strain, εmax, and the plastic volume
strain, εpv , such that

w = w (εdam) ; εdam = adamεmax+bdamε
p
v , (18.137)

with the material parameters adam and bdam controlling the rate at which damage is generated in
tension and compression, respectively. The model does not allow healing, so the damage never
decreases even if the damage strain decreases.

To fully capture temperature, strain rate, and lock-up effects, several material parameters are
defined as functions of temperature, θ, and/or some measure of the amount of compaction, e.g.
the maximum volume fraction of the solid material obtained during any prior loading, φ. For
instance,

E (θ,φ) = E hE (θ) fE (φ) ,

(18.138)

ν (θ,φ) = νhν (θ) fν (φ) ,

and the natural logarithm of the reference flow rate, h, and the power law exponent, n are also
functions of temperature

h (θ) = hhh (θ)

(18.139)

n (θ) = nhn (θ) .

The current deviatoric and volumetric strengths are hardening functions of the maximum volume
fraction of the solid material obtained during any prior loading, φ, as is the parameter that defines
the fraction of associated and radial flow, β. Therefore,

a = a (φ) ; b = b (φ)

(18.140)

β = β (φ) .

211

Through the loading cycle, the maximum volume fraction of solid material is written as,

φ =max
t>0
φ̃ (t) (18.141)

where φ̃ (t) is the current volume faction of solid material defined as

φ̃ (t) =
φ0

exp
(
ε

p
v

� , (18.142)

with φ0 and εpv being the initial solid volume fraction and plastic volumetric strain, respectively.

The foam damage model, as presented, provides a phenomenological model with enough
flexibility to model the observed deformation and failure of rigid polyurethane foams.

• Consult the Sierra/SM 4.54 User’s Guide Section ?? for more information on elastic
constants input.

Output variables available for this model are listed in Table 18-13. For information about the
foam damage model, consult [17].

Table 18-13. State Variables for FOAM DAMAGE Model

Name Variable Description

ITER number of sub-increments taken in subroutine
EPVOL plastic volume strain
PHI maximum volume fraction of solid material
EQPS equivalent plastic strain
FA shear strength - a

FB hydrostatic strength - b

DAMAGE damage
EMAX maximum tensile strain
PWORK plastic work rate

212

18.20. THERMO EP POWER MODEL

Output variables available for this model are listed in Table 18-14.

Table 18-14. State Variables for THERMO EP POWER Model

Index Name Variable Description

1 EQPS equivalent plastic strain
2 RADIUS radius of yield surface
3 BACK_STRESS_XX back stress - xx component
4 BACK_STRESS_YY back stress - yy component
5 BACK_STRESS_ZZ back stress - zz component
6 BACK_STRESS_XY back stress - xy component
7 BACK_STRESS_YZ back stress - yz component
8 BACK_STRESS_ZX back stress - zx component

213

18.21. THERMO EP POWER WELD MODEL

Output variables available for this model are listed in Table 18-15.

Table 18-15. State Variables for THERMO EP POWER WELD Model

Index Name Variable Description

EQPS equivalent plastic strain
RADIUS radius of yield surface
BACK_STRESS_XX back stress - xx component
BACK_STRESS_YY back stress - yy component
BACK_STRESS_ZZ back stress - zz component
BACK_STRESS_XY back stress - xy component
BACK_STRESS_YZ back stress - yz component
BACK_STRESS_ZX back stress - zx component
WELD_FLAG

214

18.22. UNIVERSAL POLYMER MODEL

BEGIN PARAMETERS FOR MODEL UNIVERSAL_POLYMER

#

Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> ν

SHEAR MODULUS = <real> G

BULK MODULUS = <real> K

LAMBDA = <real> λ

TWO MU = <real> 2µ
#

#

#

WWBETA 1 = <real> β w
1

WWTAU 1 = <real> τ w
1

WWBETA 2 = <real> β w
2

WWTAU 2 = <real> τ w
2

SPECTRUM START TIME = <real> tstart

SPECTRUM END TIME = <real> tend

LOG TIME INCREMENT = <real> dt

BULK GLASSY 0 = <real> K 0
0

BULK GLASSY 1 = <real> K 1
0

BULK GLASSY 2 = <real> K 2
0

BULK RUBBERY 0 = <real> K 0
∞

BULK RUBBERY 1 = <real> K 1
∞

BULK RUBBERY 2 = <real> K 2
∞

VOLCTE GLASSY 0 = <real> α 0
0

VOLCTE GLASSY 1 = <real> α 1
0

VOLCTE GLASSY 2 = <real> α 2
0

VOLCTE RUBBERY 0 = <real> α 0
∞

VOLCTE RUBBERY 1 = <real> α 1
∞

VOLCTE RUBBERY 2 = <real> α 2
∞

SHEAR GLASSY 0 = <real> G 0
0

SHEAR GLASSY 1 = <real> G 1
0

SHEAR GLASSY 2 = <real> G 2
0

SHEAR RUBBERY 0 = <real> G 0
∞

SHEAR RUBBERY 1 = <real> G 1
∞

SHEAR RUBBERY 2 = <real> G 2
∞

REFERENCE TEMPERATURE = <real> Tre f

STRESS FREE TEMPERATURE = <real> Ts f

WLF C1 = <real> Ĉ1

WLF C2 = <real> Ĉ2

CLOCK_C1 = <real> C1

CLOCK_C2 = <real> C2

CLOCK_C3 = <real> C3

215

CLOCK_C4 = <real> C4

CLOCK_C5 = <real> C5

FILLER VOL FRACTION = <real> V f

#

In each of the five "PRONY" command lines and in

the RELAX TIME command line, the value of i can be from

1 through 30

#

RELAX TIME <integer> i = <real> τi
F1 <integer> i = <real> f1 i

F2 <integer> i = <real> f2 i

END [PARAMETERS FOR MODEL UNIVERSAL_POLYMER]

The Universal Polymer model is a phenomenological, nonlinear viscoelastic material model for
analyzing stresses and strains in glass-forming materials such as filled and unfilled polymers (e.g.,
thermoplastics, thermosets) and amorphous inorganic glasses. It represents a simplification of the
Potential Energy Clock (PEC) nonlinear viscoelastic model [18, 19] which goes by the name
NLVE polymer model in the Sierra codes. The material model was developed to predict the
life-cycle behavior of encapsulated components and glass-to-metal seals in design and
performance analyses. It predicts a full range of behavior including “yielding” (i.e., accelerations
in rates of relaxation generated by deformations), stress relaxation, volume relaxation, creep and
physical aging. The model uses a material clock driven by temperature, volume and strain
histories (approximating the potential internal energy of NLVE material). The strain measure is
obtained from the integration of the rate of deformation tensor. As a special feature, it does allow
the user to initiate an analysis from a stress-free temperature, Ts f , that is different from the
reference temperature, Tre f , where the material properties are defined.

The constitutive equation is

σσσ =
�
Kg (T)−K∞ (T)

�
Z t

0
f1
(
t∗− s∗

� dI1

ds
ds I

−
�
Kg (T) δg (T)−K∞ (T) δ∞ (T)

�
Z t

0
f1
(
t∗− s∗

� dT

ds
ds I

(18.143)

+2
�
Gg (T)−G∞ (T)

�
Z t

0
f2
(
t∗− s∗

� dεεεdev

ds
ds

�
K∞ (T) I1−K∞ (T) δ∞ (T)

(
T −Ts f

��
I+2G∞ (T)εεεdev

The strain variables in the model are

I1 = trεεε = I : εεε ; εεεdev = εεε−
1
3

I1I (18.144)

216

The glassy bulk modulus is the instantaneous, short time bulk modulus, and it is a function of
temperature

Kg (T) = Kgre f
+

dKg

dT

(
T −Tre f

�
= Kg s f

+
dKg

dT

(
T −Ts f

�
(18.145)

while the equilibrium bulk modulus is the equilibrium, long time bulk modulus, and is also a
function of temperature

K∞ (T) = K∞re f
+

dK∞
dT

(
T −Tre f

�
= K∞ s f

+
dK∞
dT

(
T −Ts f

�
(18.146)

The volumetric thermal expansion coefficients have similar forms

αg (T) = αgre f
+

dαg

dT

(
T −Tre f

�
= αg s f

+
dαg

dT

(
T −Ts f

�

(18.147)

α∞ (T) = α∞re f
+

dα∞
dT

(
T −Tre f

�
= α∞ s f

+
dα∞
dT

(
T −Ts f

�

while δg(T) and δ∞(T) are the volumetric thermal strains in (18.143)

δg(T) = αg s f
+

1
2

dαg

dT

(
T −Ts f

�
; δ∞(T) = α∞ s f

+
1
2

dα∞
dT

(
T −Ts f

�
(18.148)

The glassy and equilibrium shear moduli are similar, but they also have an I2 dependence

Gg (T) =Ggre f
+

dGg

dT

(
T −Tre f

�
+

dGg

dI2
I2 =Gg s f

+
dGg

dT

(
T −Ts f

�
+

dGg

dI2
I2

(18.149)

G∞ (T) =G∞re f
+

dG∞
dT

(
T −Tre f

�
+

dG∞
dI2

I2 =G∞ s f
+

dG∞
dT

(
T −Ts f

�
+

dG∞
dI2

I2

The relaxation functions in the integrands, f1 and f2, have similar forms. They can be represented
with stretched exponential functions, while in the code they are evaluated using Prony series
expansions

217

f1 (t) = exp
(
− (t/τ1)β1

�
≈

NX

i=1

F1 i exp(−t/τi) ;
NX

i=1

F1 i = 1

(18.150)

f2 (t) = exp
(
− (t/τ2)β2

�
≈

NX

i=1

F2 i exp(−t/τi) ;
NX

i=1

F2 i = 1

The material clock is the fundamental feature of the model. The clock is defined by

t− s =

Z t

s

dw

a(w)
; loga = −Ĉ1

�
N

Ĉ2+N

�

(18.151)

where

N =
(
T −Tre f

�
−
Z t

0
f1
(
t∗− s∗

� dT

ds
ds+C3

�

I1(t)−
Z t

0
f1
(
t∗− s∗

� dI1

ds
ds

�

(18.152)

+C4

Z t

0

Z t

0
f
(
t∗− s∗, t∗−u∗

� dεεεdev

ds
:

dεεεdev

du
dsdu

If the clock is represented by the WLF equation above Tg, we have

loga =
−C1

(
T −Tre f

�

C2+
(
T −Tre f

� (18.153)

Equating constants above Tg we obtain

Ĉ1 =C1 ; Ĉ2 =C2
(
1+C3α∞re f

�
(18.154)

fv (t) = exp

"

−
�

t

τv

�βv

#

(18.155)

Output variables available for this model are listed in Table 18-16.

218

Table 18-16. State Variables for UNIVERSAL POLYMER Model

Name Variable Description

AEND

LOGA potential energy clock

219

18.23. OTHER UNDOCUMENTED MATERIAL MODELS

For a listing of other material models that exist in Sierra/SM See Table 18-17. Support for use of
these models is limited.

Table 18-17. Other Material Models Available, but Undocumented

Material Name Author

CDM_EP Shawn English
UNIVERSAL_CURING Kevin Long
JOHNSON COOK DAMAGE Bill Scherzinger
FROST_ASHBY_CREEP Bill Scherzinger
ELASTIC_PLASTIC_FAIL Bill Scherzinger
ELASTIC_ORTHOTROPIC_FAIL Shawn English
HAIL_ICE Bill Scherzinger
ELASTO_VISCOPLASTIC Arthur Brown
ELASTIC_UQ_SHELL Mark Merewether
MLEP_WILKINS_FAIL Mike Neilsen
UCP_FAIL Mike Neilsen
SOLDER

SOLDER_DAMAGE

COULOMBMIXMODE Shawn English
EVG Jake Ostien
SPECTACULAR Kevin Long
HILL_PLASTICITY_DAMAGE Jake Ostien
CRYSTAL_PLASTIC David Littlewood
CRYSTAL_PLASTICITY

LOCAL_CRYSTAL_PLASTICITY

220

REFERENCES

[1] S.A. English. A 3D orthotropic strain-rate dependent elastic damage material model.
Technical Report SAND2014-17469, Sandia National Laboratories, Albuquerque, NM,
2014. pdf.

[2] S.W. Attaway, R.V. Matallucci, S.W. Key, K.B. Morrill, L.J. Malvar, and J.E. Crawford.
Enhancements to Pronto3D to predict structural response to blast. Technical Report
SAND2000-1017, Sandia National Laboratories, Albuquerque, NM, 2000. pdf.

[3] ACI318-08: Building code requirements for structural concrete and commentary.
Farmington Hills, MI. American Concrete Institute, 2008.

[4] R.M. Brannon, A.F. Fossum, and O.E. Strack. Kayenta: Theory and user’s guide. Technical
Report SAND2009-2282, Sandia National Laboratories, Albuquerque, NM, 2009.

[5] D. C. Lagoudas, editor. Shape Memory Alloys: Modeling and Engineering Application.
Springer, New York, NY USA, 2008.

[6] K. Otsuka and X. Ren. Physical metallurgy of Ti-Ni-based shape memory alloys. Progress

in Materials Science, 50:511–678, 2005.

[7] D. Lagoudas, D. Hartl, Y. Chemisky, L. Machado, and P. Popov. Constitutive model for the
numerical analysis of phase transformation in polycrystalline shape memory alloys.
International Journal of Plasticity, 32-33:155–183, 2012.

[8] D. J. Hartl, D. C. Lagoudas, F. T. Calkins, and J. H. Mabe. Use of a Ni60Ti shape memory
alloy for active jet engine chevron application: I. thermomechanical characterization. Smart

Materials and Structures, 19:015020, 2010.

[9] D. J. Hartl, J. T. Mooney, D. C. Lagoudas, F. T. Calkins, and J. H. Mabe. Use of a Ni60Ti
shape memory alloy for active jet engine chevron application: II. experimentally validated
numerical analysis. Smart Materials and Structures, 19:015021, 2010.

[10] G.R. Johnson and W.H. Cook. A constitutive model and data for metals subjected to large
strains, high strain rates and high temperatures. In Proc. 7th. Int. Symp. on Ballistics, pages
541–547, The Hague, The Netherlands, 1983.

[11] G.R. Johnson and W.H. Cook. Fracture characteristics of three metals subjected to various
strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1):
31–48, 1985.

[12] A. P. Karafillis and M. C. Boyce. A general anisotropic yield criterion using bounds and a
transformation weighting tensor. Journal of the Mechanics and Physics of Solids, 41(12):
1859–1886, 1993.

[13] E. A. Olevsky. Theory of sintering: from discrete to continuum. Materials Science and

Engineering, R23:41–100, 1998.

221

http://infoserve.sandia.gov/sand_doc/2014/17469.pdf
http://infoserve.sandia.gov/sand_doc/1972/720883.pdf

[14] J. G. Argüello, M. W. Reiterer, and K. G. Ewsuk. Verification, performance, validation, and
modifications to the SOVS continuum constitutive model in a nonlinear large-deformation
finite element code. Journal of the American Ceramic Society, 92(7):1442–1449, 2009.

[15] E. A. Olevsky, V. Tikare, T. J. Garino, and M. V. Braginsky. Simulation of sintering of
layered structures. In Proceedings of PM2000: World Congress on Powder Metallurgy,
Kyoto, Japan, 2002. Japan Society of Powder and Powder Metallurgy.

[16] M. K. Neilsen, W. Y. Lu, B. Olsson, and T. Hinnerichs. A viscoplastic constitutive model for
polyurethane foams. In Proceedings ASME 2006 International Mechanical Engineering

Congress and Exposition, Chicago, IL, 2006. ASME.

[17] M. K. Neilsen, W. Y. Lu, W. M. Scherzinger, T. D. Hinnerichs, and C. S. Lo. Unified creep
plasticity damage (UCPD) model for rigid polyurethane foams. Technical Report
SAND2015-4352, Sandia National Laboratories, Albuquerque, NM, 2015.

[18] J. M. Caruthers, D. B. Adolf, R. S. Chambers, and P. Shrikhande. A thermodynamically
consistent, nonlinear viscoelastic approach for modeling glassy polymers. Polymer, 45:
4577–4597, 2004.

[19] D. B. Adolf, R. S. Chambers, and M. A. Neidigk. A simplified potential energy clock model
for glassy polymers. Polymer, 50:4257–4269, 2009.

222

19. COHESIVE MATERIAL MODELS

This chapter describes the theory and usage of cohesive models in development. There are
typically two different types of cohesive models – intrinsic and extrinsic. Intrinsic models are
used for cohesive surfaces that are known a priori and are included in the model from the
beginning. These models by definition produce zero traction for zero cohesive separation and
have a loading region before failure. Extrinsic models are used when cohesive surfaces are
dynamically inserted based on some material criteria. These models typically are initialized to
produce an equilibrium traction at zero separation based on the cohesive zone insertion criteria.
Section 19.1 describes the intrinsic cohesive zone models in development, whereas Section 19.2
describes the extrinsic models.

19.1. INTRINSIC MODELS

19.1.1. Mixed-mode Dependent Toughness

The MDGc CZM (Mixed-mode Dependent Toughness Cohesive Zone Mode) has two elements.
Mode I energy dissipation is defined by a trapezoidal traction-separation relationship that depends
only on normal separation. Mode II (III) dissipation is generated by shear yielding that depends
only on the tangential separation components. A perfect plasticity-like formulation is used to
define shear yielding by relating effective shear traction to effective slip rate. Shear yielding
occurs within the region where Mode I separation (softening) occurs and can also occur ahead of
that region. The MDGc CZM was developed to model crack propagation along an epoxy/solid
interface when there is small-scale crack-tip yielding and when the epoxy and solid materials can
be idealized as linear elastic. Nevertheless, this model might be applicable to other types of
interfaces, but the user needs to use care in doing so. The MDGc CZM is described in detail in
reference [1]. Note that the current implementation of the MDGc CZM differs slightly from that
described in reference [1] in that shear unloading occurs after Mode I separation is complete (i.e.
the normal traction has dropped to zero). In the initial implementation described in reference [1],
shear unloading commenced as soon as Mode I softening initiated. A clear preference for either
option is not obvious and the current choice generates a smoother solution.

BEGIN PARAMETERS FOR MODEL MDGc

PEAK NORMAL TRACTION = <real>

NORMAL LENGTH SCALE = <real>

TANGENTIAL LENGTH SCALE = <real>

LAMBDA_1 = <real>

223

LAMBDA_2 = <real>

PEAK SHEAR TRACTION = <real>

LAMBDA_3 = <real>

PENETRATION PENALTY = <real>

UNLOAD TYPE = ELASTIC

END [PARAMETERS FOR MODEL MDGc]

In the above command blocks:

• The maximum normal traction is specified by the PEAK NORMAL TRACTION command.

• The normal separation at which the normal traction falls to zero is prescribed by the
NORMAL LENGTH SCALE command.

• The effective tangential separation over which plastic yield occurs before the interface fails
in shear is prescribed by the TANGENTIAL LENGTH SCALE command. This should be
large compared to NORMAL LENGTH SCALE. A recommended value is 100.0.

• LAMBDA_1 indicates the normalized separation at which the normal traction response
flattens with an additional increase in normal separation. The initial Mode I loading slope K

equals the PEAK NORMAL TRACTION/(LAMBDA_1×NORMAL LENGTH SCALE).

• LAMBDA_2 indicates the normalized separation at which the normal traction begins to
decrease with additional increase in normal separation. Setting LAMBDA_1=LAMBDA_2

generates a triangular traction-separation relationship.

• The maximum shear traction is specified through the PEAK SHEAR TRACTION command.

• LAMDBA_3 controls the rapidity with which the shear is released. The shear unloading
slope, Ku, equals the negative of the initial Mode I loading slope, K, times the ratio of
LAMBDA_1/LAMBDA_3. One reasonable choice is LAMBDA_3=LAMBDA_1.

• The PENETRATION PENALTY parameter multiplies the Mode I loading slope, K, to provide
an artificially increased penetration stiffness to help prevent interpenetration of cohesive
surfaces when crack closure occurs. It is recommended that this parameter be set to zero
(no penetration stiffness) and that Sierra/SM contact surfaces be used to prevent
interpenetration.

• The only currently supported option for UNLOAD TYPE is ELASTIC.

The state variables for this model are listed in Table 19-1.

Table 19-1. State Variables for MDGc CZM (Section 19.1.1)

Name Variable Description

LAMBDA_MAX Maximum lambda the model has experienced (lambda
equals the normal separation divided by the NORMAL

LENGTH SCALE)
TRACTION AT LAMBDA MAX Traction at LAMBDA_MAX

224

19.2. EXTRINSIC MODELS

19.2.1. Tvergaard Hutchinson

This model is an extension of the trapezoidal traction-separation model proposed by Tvergaard
and Hutchinson [2] generalized to multiple dimensions. The generalization is performed by
appropriately scaling the normal and tangential components of the traction and separation into the
1D model depicted in Figure 19-1. In Figure 19-1, λc is the normalized final cohesive opening in
the effective space, λ1 is the length of the initial loading branch of the model, λ2 is the separation
length that begins the failure branch of the model, and σ̂ is the maximum effective traction of the
cohesive zone. These parameters have the following restrictions on their values:

0 ≤ λ1 ≤ λ2 ≤ λc = 1, σ̂ > 0.

Finally, as shown in Figure 19-1, for λ > λ1 unloading may be assumed towards the origin.

Assuming a loading condition (λ > 0, λ̇ > 0), the slope of the effective traction-separation model
is evaluated as follows

t̂′ =







σ̂/λ1, λ ∈ [0, λ1)

σ̂/λ, λ ∈ [λ1,λ2)

σ̂(1−λ)/(λ(1−λ2)), λ ∈ [λ2,λc)

0, λ ≥ λc

and the effective traction is computed as t̂ = t̂′λ.

The effective traction-separation model is extended to 3D by defining the following additional
values:

• The normal failure separation, δcn

• The tangential failure separation, δct

Figure 19-1. The effective traction-separation model following [2].

225

• The ratio of failure separations, r = δcn/δct

• The normalized normal separation, λn = un/δcn

• The normalized tangential separations, λi
t = ui

t/δct, i = 1, 2.

• The effective separation, λ =
p

λ2
n+ (λ1

t)2+ (λ2
t)2

Then, the traction is computed as

t1t =t̂′λ1
t r,

t2t =t̂′λ2
t r,

tn =t̂′λn.

The model is extended to the extrinsic behavior by computing an effective opening λ̃λλ that recovers
the initialization traction. There are two modes of initialization: 1) where the initial effective
traction is below the peak traction specified in the input file, and 2) where the initial effective
traction exceeds the peak traction in the input file. In the first case, the components of the
effective opening (λ̃λλ) are computed on the hardening branch of the cohesive model. In the second
case, the peak traction is reset to the initial effective traction and the components of the initial
effective opening are computed using the condition |λ̃λλ| = λ1. Evaluation of the extrinsic effective
opening is given by the following:

σ̃ =

q

(tnr)2+ (t1t)2+ (t2t)2,

σ̂ =max(σ̂, σ̃),

λ̃i
t =

titλ1

σ̂r
, i = 1, 2,

λ̃n =
tnλn

σ̂
.

After initialization, the model is evaluated using

λ =

q

(λn+ λ̃n)2+ (λ1
t + λ̃

1
t)2+ (λ2

t + λ̃
2
t)2.

The model is specified in adagio by the following command block:

BEGIN PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON

INIT TRACTION METHOD = IGNORE|ADD|EXTRINSIC (IGNORE)

LAMBDA_1 = <real>

LAMBDA_2 = <real>

NORMAL LENGTH SCALE = <real>

TANGENTIAL LENGTH SCALE = <real>

PEAK TRACTION = <real>

PENETRATION STIFFNESS MULTIPLIER = <real>

USE ELASTIC UNLOADING = NO|YES (YES)

END [PARAMETERS FOR MODEL TVERGAARD_HUTCHINSON]

The INIT TRACTION METHOD = EXTRINSIC|ADD command line relates only to the dynamic
insertion of cohesive zone elements through element death or XFEM.

226

19.2.2. Thouless Parmigiani

This model is an extension of the Tvergaard Hutchinson effective traction-separation model
described in Section 19.2.1, but the normal and tangential traction components are treated
independently. The model is specified in adagio by the following command block:

BEGIN PARAMETERS FOR MODEL THOULESS_PARMIGIANI

INIT TRACTION METHOD = IGNORE|ADD|EXTRINSIC (IGNORE)

LAMBDA_1_N = <real>

LAMBDA_1_T = <real>

LAMBDA_2_N = <real>

LAMBDA_2_T = <real>

NORMAL LENGTH SCALE = <real>

PEAK NORMAL TRACTION = <real>

TANGENTIAL LENGTH SCALE = <real>

PEAK TANGENTIAL TRACTION = <real>

PENETRATION STIFFNESS MULTIPLIER = <real>

USE ELASTIC UNLOADING = NO|YES (YES)

END [PARAMETERS FOR MODEL THOULESS_PARMIGIANI]

227

REFERENCES

[1] E. D. Reedy and J. M. Emery. A simple cohesive zone model that generates a mode-mixity
dependent toughness. International Journal of Solids and Structures, 51:3727–3734, 2014.

[2] Viggo Tvergaard and John W. Hutchinson. On the toughness of ductile adhesive joints.
Journal of the Mechanics and Physics of Solids, 44(5):789–800, 1996.

228

20. MULTICRITERIA REBALANCE

This chapter describes how to use the multicriteria rebalance capability in Sierra/SM.

When running a typical Sierra/SM analysis, there are many capabilities that have a much higher
computational cost than the other capabilities used in the simulation. An example of such
capabilities is contact. Because contact typically does not occur on every element in the finite
element model, the mesh can be decomposed (rebalanced) to split the contact work up across as
many processors as possible to run most efficiently. This rebalance can occur at a user defined
interval to account for contact patches coming in and out of contact with each other (consider a
tire rolling on the ground), or it can be done automatically. Multicriteria rebalance also takes into
account more expensive element formulations.

To activate multicriteria rebalance, use the following command:

BEGIN REBALANCE

INITIAL REBALANCE = ON

PERIODIC REBALANCE = AUTO

LOAD RATIO THRESHOLD = 1.25

REBALANCE STRATEGY = MULTICRITERIA

END

Warning: REBALANCE STRATEGY = MULTICRITERIA is still an experimental
capability and should be used with caution.

Known Issue: REBALANCE STRATEGY = MULTICRITERIA does not currently
work with restart.

229

21. OTHER IN-DEVELOPMENT

CAPABILITIES

This chapter describes other miscellaneous capabilities that are still in development or have
limited testing.

21.1. INITIAL PARTICLE CONVERSION

BEGIN CONVERSION TO PARTICLES AT INITIALIZATION <string>name

BLOCK = <string list>block_names

SECTION = <string>section_name

END

The initial particle conversion capability is provided to facilitate the creation of particle meshes
for particle based methods—such as smooth particle hydrodynamics (SPH), reproducing kernel
particle method (RKPM), or peridynamics—from an initial mesh of solid elements (e.g.,
hexes).

At the beginning of the analysis the solid element blocks listed in block_names are converted to
spherical particles of the type defined in the particle section section_name. It is important to
note that the particle section will thus supersede any section specified in the original solid element
block definition (consult [1] section on Element Block Parameters).

Note that elements may also be converted to particles via element death (consult [1] section on
Element Death); however, conversion at initialization should offer more robust creation of particle
meshes that are (a) compatible with the original mesh boundary conditions and (b) amenable to
the chosen particle formulation methodology.

230

21.2. SHELL CONTACT LOFTING FACTOR

Warning: The shell contact lofting factor only works with Dash contact.

BEGIN SHELL SECTION <string>shell_section_name

... see the Elements chapter of [1]

CONTACT LOFTING FACTOR = <real>contact_lofting_factor

END [SHELL SECTION <string>shell_section_name]

The CONTACT LOFTING FACTOR line command is available in the SHELL SECTION command
block to set a lofting factor specifically for use in contact. This contact lofting factor is used in
place of the kinematic lofting factor for creation of the shell lofted geometry in contact. If no
contact lofting factor is set, the kinematic lofting factor is used for contact.

The contact lofting factor has no effect on the shell element kinematics, and the
LOFTING FACTOR and CONTACT LOFTING FACTOR line commands may be used in
combination to independently set the kinematic and contact lofting factors, respectively.

231

21.3. REACTION DIFFUSION SOLVER

An experimental diffusion capability eventually intended for use in phase field fracture. Currently
in early development and not recommended for use.

BEGIN REACTION DIFFUSION rxndiffname

BLOCK = <string list>block_names

INCLUDE ALL BLOCKS

INITIAL VALUE = <real>value(1.0)

SOURCE COEFFICIENT = <real>source_coeff(1.0)

DIFFUSION COEFFICIENT = <real>diff_coeff(0.0)

REACTION COEFFICIENT = <real<rxn_coeff(1.0)

SOLVE AT INITIALIZATION = OFF|ON(OFF)

SOLVE INCREMENT = <integer>solv_incr(1)

SOLVE EXPLICIT = OFF|ON(OFF)

GRADIENT CONFIGURATION = MODEL|CURRENT(MODEL)

BEGIN PRESCRIBED FLUX

SURFACE = <string>surf_name

NODE SET = <string>node_set_name

FUNCTION = <string>func_name

END

BEGIN PRESCRIBED FIELD

SURFACE = <string>surf_name

NODE SET = <string>node_set_name

FUNCTION = <string>func_name

END

END

BEGIN GRADIENT DAMAGE gradDam

BLOCK = <string>block_names

INCLUDE ALL BLOCKS

FORMULATION = LORENTZ|MIEHE|COSINE(LORENTZ)

INITIAL VALUE = <real>value(1.0)

SOURCE COEFFICIENT = <real>source_coeff(1.0)

DIFFUSION COEFFICIENT = <real>diff_coeff(0.0)

REACTION COEFFICIENT = <real<rxn_coeff(1.0)

SOLVE AT INITIALIZATION = OFF|ON(OFF)

SOLVE INCREMENT = <integer>solv_incr(1)

SOLVE EXPLICIT = OFF|ON(OFF)

SUBCYCLES = <int>num_sub(1)

GRADIENT CONFIGURATION = MODEL|CURRENT(MODEL)

BEGIN PRESCRIBED FIELD

SURFACE = <string>surf_name

NODE SET = <string>node_set_name

FUNCTION = <string>func_name

END

END

232

233

21.4. PHASE FIELD FRACTURE MATERIAL

An experimental fracture capability. Currently in early development and not recommended for
use.

BEGIN MATERIAL <name>

BEGIN PARAMETERS FOR MODEL PHASE_FIELD_LINEAR_ELASTIC

END

END

BEGIN PFFRAC phasefieldfracname

FRACTURE LENGTH SCALE = <real>reaction_value

CONDITIONING COEFFICIENT = <real>diffusion_value

FRACTURE ENERGY = <real>forcing_value

END

234

21.5. DISCRETE ELEMENT METHOD (DEM)

The discrete element method is a particle based element formulation. This method is in early
development, experimental, and currently not recommended for use.

BEGIN DEM OPTIONS

....

END

BEGIN DEM SECTION

....

END

235

21.6. Q1P0 ELEMENT

A selectively integrated formulation is specified with the command FORMULATION = Q1P0.
This is only available for 8-node hexahedral element blocks.

BEGIN SOLID SECTION <string>solid_section_name

...

FORMULATION = Q1P0

...

Q1P0 STABILIZATION THRESHOLD = <real>threshold(0.0)

Q1P0 TIMESTEP SCALE FACTOR = <real>scale_factor(0.95)

Q1P0 TIMESTEP WAVE SPEED = <string>VOLUMETRIC|SHEAR|

AUTOMATIC(AUTOMATIC)

Q1P0 TIMESTEP LENGTH SCALE = <string>DEFORMED_NODAL_DISTANCE|

MINIMUM_MAPPING_STRETCH|INSCRIBED_SPHERE_DIAMETER

(MINIMUM_MAPPING_STRETCH

END [SOLID SECTION <string>solid_section_name]

In the Q1P0 element formulation, the internal forces arising from material stress are selectively
integrated. Forces arising from the pressure component of the stress are integrated using a single
integration point while forces arising from the deviatoric stress are integrated using a 2×2×2
Gauss rule.

The only STRAIN INCREMENTATION option available for this element is
STRONGLY_OBJECTIVE.

When post-processing information such as the plastic strain with this element, information at the
first integration point should typically be used as it is more accurate than at any other point. The
first integration point corresponds to the location at the center of the element where the pressure
response is evaluated.

Warning: Material model evaluations at the q1p0 element’s deviatoric integra-
tion points can result in spurious high and low locked pressures for incompressible
(or nearly incompressible) material models. The q1p0 element avoids the pressure
locking when calculating the internal forces (for the balance of linear momentum)
by discarding the pressures calculated at the deviatoric integration points and re-
placing them with the pressure from the central integration point. Note that the
locked pressures are replaced during element calculations, not inside the constitu-
tive model. This means that material models and element death criteria that fail
or accumulate damage based on pressure may be adversely affected by this devi-
atoric pressure locking. For this reason, the selective-deviatoric (SD) element is
generally preferred for material failure analyses. The SD element calculates a sin-
gle average element volumetric strain and passes that average volumetric strain to
all material integration points. The volume averaging of strain in the SD element
prevents pressure locking in the material constitutive equations and in the overall
element response.

236

Stress-based values such as stress and values derived from it such as von_mises are evaluated
using a stress tensor taken from a volumetric average of the 8 deviatoric Gauss points for the
deviatoric response combined with a pressure response at the central integration point.

The Q1P0 STABILIZATION THRESHOLD command modifies the formulation to provide
additional stabilization as elements become distorted at the cost of accuracy. If a simulation
produces inverted elements, these may be able to be mitigated by providing a value of 0.25. One
may look at the stabilization_factor element variable to determine if this option is being
activated in the analysis. A value of 0 in this variable corresponds to a fully q1p0 formulation
while a value of 1 corresponds to a fully integrated formulation. Keep in mind that if this is
changed from the default value of 0, the formulation is no longer truly q1p0.

Explicit Only

Three additional parameters are available to select how the critical time step is evaluated: Q1P0
TIMESTEP SCALE FACTOR, Q1P0 TIMESTEP WAVE SPEED, and Q1P0 TIMESTEP LENGTH

SCALE. The critical time step is evaluated using the following formula:

timestep = scale factor× length scale
wave speed

The Q1P0 TIMESTEP SCALE FACTOR = scale_factor command scales the calculated time
step for elements with this section. The default of 0.95 should be sufficient for almost all
analyses. Lowering this slightly may provide better results in certain circumstances. If another
time step scale factor is specified within the PARAMETERS FOR PRESTO REGION block, they are
effectively multiplied together for elements using this section.

The Q1P0 TIMESTEP WAVE SPEED command chooses the wave speed used by the time step
calculation. The default, AUTOMATIC, should be sufficient for all analyses. The VOLUMETRIC
option calculates wave speed using the bulk modulus while the SHEAR option uses the shear
modulus. The AUTOMATIC option uses the maximum of the other two options.

The Q1P0 TIMESTEP LENGTH SCALE selects the method used to calculate the length scale of
the element. The default MINIMUM_MAPPING_STRETCH option calculates this as the minimum
stretch from the mapping between a unit cube and the current configuration of the element. While
this option is relatively slow, it is robust. The DEFORMED_NODAL_DISTANCE option calculates
this as the minimum non-zero node to node distance within the element. This is the fastest option
and a potential increase in speed is achieved by selecting it at the cost of robustness. The
INSCRIBED_SPHERE_DIAMETER option calculates this as the diameter of the largest sphere
which can fit inside the element.

237

REFERENCES

[1] Sierra/SolidMechanics Team. Sierra/SolidMechanics VOTD User’s Guide. Technical Report
In draft, Sandia National Laboratories, Albuquerque, NM, 2019.

238

22. PERIDYNAMICS

This chapter describes the peridynamics functionality available in Sierra/SM. Peridynamics is a
non-local formulation of continuum mechanics that is well-suited for modeling material
discontinuities such as cracks.

Explicit Only
22.1. THEORY

Peridynamics is an extension of classical solid mechanics that allows for the modeling of bodies
in which discontinuities occur spontaneously [1, 2, 3, 4, 5]. Unlike the classical continuum
formulation, the peridynamic expression for the balance of linear momentum does not contain
spatial derivatives and instead is based on an integral equation. For this reason, peridynamics is
well suited for modeling phenomena involving spatial discontinuities such as cracking. This
section presents a basic overview of the peridynamics formulation implemented in Sierra/SM and
suggested guidelines for setting up peridynamic analyses. For a comprehensive review of
peridynamics theory, the reader is referred to [5].

22.1.1. Overview

Peridynamics is a non-local theory in which any point in the body x is acted on by forces due to
the deformation of all points x′ within a neighborhood of radius δ centered at x. The radius δ is
called the horizon and the vector x′−x is called a bond.

The peridynamic equation of motion is

ρ(x)ü(x, t) = Lu (x, t)+b(x, t) ∀x ∈B, t ≥ 0, (22.1)

Lu (x, t) =
R

B
{T[x, t] hx′−xi−T[x′, t] hx−x′i} dVx′ .

Here, B is the reference configuration of the body, ρ is the density in the reference configuration,
u is the displacement, and b is the body force density.

The relationship between x and x′ is expressed in terms of the force state at x at time t, T[x, t].
The force state is a function that associates with any bond x′−x a force density per unit volume
T[x, t] hx′−xi acting on x. This force density per unit volume is called a pairwise force.

The body B may be discretized in the reference configuration into a finite number of cells with
each cell containing a single node at its center. The integral in Equation (22.1) may then be
replaced by a summation,

ρ(x)üh(x, t) =
PN

i=0

�
T[x, t]

x′i −x

�
−T′[x′i , t]

x−x′i

�	
∆Vx′i

+b(x, t), (22.2)

239

where N is the number of cells in the neighborhood of x, x′i is the position of the node centered in
cell i, and ∆Vx′i

is the volume of cell i. The length of the bond between two cells is determined as
the distance between the nodes at the centers of the cells.

Equation (22.2) requires evaluation of the pairwise forces T[x, t]

x′i −x

�
and T′[x′i , t]

x−x′i

�
,

where the force states T[x, t] and T′[x′i , t] are, in general, functions of the deformations of all cells
within the neighborhoods of x and x′i , respectively. A constitutive model is required to compute
the force state, T[x, t], in terms of the deformation state in the neighborhood of x and possibly
other variables as well.

The constitutive models available for peridynamics in Sierra/SM fall into three categories:

1. State-based constitutive models developed specifically for peridynamics.

2. Bond-based constitutive models developed specifically for peridynamics.

3. Classical constitutive models within the LAME library that have been made available from
within peridynamics via a wrapper.

Constitutive models developed specifically for peridynamics are generally more robust than
classical constitutive models that have been adapted for use within peridynamics, particularly in
analyses involving extreme deformation and pervasive fracture. The Linear Peridynamic Solid

material model developed by Silling, et al. [3], described below, is the only model of the first type
currently available in Sierra/SM. Two bond-based constitutive models are available, the
Microelastic material model [1], and the Microplastic material model [6]. The peridynamics
interface to classical material models offers a means for accessing the large number of material
models within LAME. This interface is based on the computation of an approximate deformation
gradient, F̄, described in Section 22.1.5.

22.1.2. State-Based Linear Peridynamic Solid Material Model

The state-based linear peridynamic solid material model computes the pairwise forces
T[x, t]

x′i −x

�
acting on x based on the deformation of all cells x′ within the neighborhood of x,

T[x, t]

x′i −x

�
= t M[x, t]

x′i −x

�
, (22.3)

where t is the magnitude of the pairwise force and M[x, t]

x′i −x

�
is the unit vector pointing from

the deformed position of x to the deformed position of x′.

The magnitude of the pairwise force in a linear peridynamic solid is given by

t =
−3p

m
ω x+

15µ
m
ωed, p = −kθ, (22.4)

where the p is the peridynamic pressure, θ is the peridynamic dilatation, m is the weighted
volume at x, ω is the value of the influence function between cells x and x′, x is the length of the
bond x′−x in the undeformed configuration, ed is the deviatoric part of the extension e, and µ and
k are material constants (the shear modulus and bulk modulus, respectively). For a complete
description of the linear peridynamic solid material model, see [3].

240

22.1.3. Bond-Based Microelastic Peridynamic Material Model

The bond-based microelastic material model computes the pairwise forces T[x, t]

x′i −x

�
acting

on x in accordance with Equation (22.3). Unlike the state-based linear peridynamic solid material
model, the pairwise force acting between cells x and x′ is purely a function of their relative
displacements. This distinction differentiates bond-based peridynamic material models from the
more general state-based peridynamic material models.

The magnitude of a pairwise force for the microelastic material model is computed as

t =
18k

πδ4
s, (22.5)

where k is the bulk modulus, δ is the peridynamic horizon, and s is the bond stretch, defined as

s =
y− x

x
. (22.6)

Here, x is the length of the bond x′−x in the undeformed configuration, and y is the bond length
in the current configuration. For a complete description of the bond-based microelastic material
model, see [1, 2].

22.1.4. Bond-Based Microplastic Peridynamic Material Model

The bond-based microplastic material model computes the pairwise forces T[x, t]

x′i −x

�
as a

function of the relative displacements of the cells x and x′. As with the microelastic material
model, each pairwise force is purely a function of the stretch of an individual bond. In the case of
the microplastic material model, an elastic-perfectly-plastic constitutive law is used to compute
the pairwise force as a function of bond stretch. The magnitude of a pairwise force for the
microplastic material model is computed as

t =
18k

πδ4

(
s− sp

�
, (22.7)

where k is the bulk modulus, δ is the peridynamic horizon, s is the total bond stretch, and sp is the
plastic bond stretch. Plastic bond stretch is governed by

sp (0) = 0, ṡp =

(

ṡ if
�
�s− sp

�
� ≥ sY ,

0 otherwise.
(22.8)

For a complete description of the bond-based microplastic material model, see [6].

22.1.5. Interface to Classical Material Models

A means for adapting classical material models for use with peridynamics has been developed by
Silling, et al. [3]. The approach is based on the evaluation of an approximate deformation
gradient, F̄, at x,

F̄ =

NX

i=0

ωi Yi⊗Xi∆Vxi

!

K−1, (22.9)

241

where K is the shape tensor, defined as

K =

NX

i=0

ωi Xi⊗Xi∆Vxi
. (22.10)

Here, X denotes a vector directed from x to x′ in the reference configuration, Y denotes a vector
directed from x to x′ in the deformed configuration, ω is the value of the influence function
between cells x and x′, and ∆Vx is the volume of cell x. The operator ⊗ denotes a dyadic
product.

The approximate deformation gradient, as defined in Equation (22.9), allows for the computation
of a strain measure or, alternatively, a strain increment, that can be passed to a classical material
model. The classical material model is expected to return stress which is then transformed into a
pairwise force as follows,

T

x′−x

�
= fdωσσσK−1
x′−x

�
, (22.11)

where σσσ is the Piola stress and fd is the stress decay function. As described in Section 22.2, the
stress decay function is a multiplier that reduces the stress as a function of the percentage of
broken bonds for a given element. This is necessary to avoid a nonphysical increase in the
magnitude of pairwise forces as damage accumulates.

The accuracy of the peridynamic interface to classical material models depends strongly on the
calculation of the approximate deformation gradient, F̄. The approximate deformation gradient
calculation may become unreliable in cases of extreme deformation, or in cases of pervasive
material failure in which a large percentage of bonds at a given point are broken. This may result
in unphysical strain values being passed to the classical material model, and a subsequent
unphysical internal force calculation. In addition, the inversion of the shape tensor in
Equation (22.11) will fail if the number of bonds for a given cell is less than three, or if all bonds
for a given cell are coplanar. For these reasons, Sierra/SM sets the stress to zero for peridynamic
cells with less than three intact bonds that are not coplanar. Under these conditions, a cell will
remain active in the simulation and may be acted on by other cells but will not contribute to the
internal force. Cells for which all bonds have been broken will behave as mass particles.

Zero-energy modes are possible in the calculation of the approximate deformation gradient, F̄.
Zero energy modes may result in unphysical motion of cells within a simulation, typically
manifesting as rapid oscillations. Sierra/SM provides a means for suppressing zero-energy modes
through peridynamic hourglass control. Peridynamic hourglass control is based on the comparison
of cell positions with the positions of those cells as predicted by direct application of the
approximate deformation gradient computed at a cell x. The suppression of zero-energy modes is
achieved by applying a penalty force proportional to the difference between these values.

22.1.6. Peridynamic Influence Function

State-based peridynamic material models make use of an influence function, ω, to assign a
weighting to each neighbor x′ of a given cell x. An influence function is used for both the Linear
Peridynamic Solid material model (Section 22.1.2) and classical material models made available

242

for peridynamics via a wrapper (Section 22.1.5). Influence functions do not apply to bond-based
peridynamics. The default influence function, shown in Figure 22-1, has a value of one for
neighbors within a distance of half the horizon, beyond which it drops off parabolically to a value
of zero at the horizon. This form of the influence function mitigates numerical noise that can
result from cells that lie near the edge of the horizon. As described in Section 22.2, a user-defined
influence function may be used in place of the default influence function.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
flu

en
ce

 F
un

ct
io

n

Distance from Node / Horizon

Figure 22-1. Default influence function for peridynamics.

22.1.7. Modeling Fracture

Peridynamics includes a natural mechanism for modeling fracture through the breaking of
peridynamic bonds. In an undamaged material, bonds connect a given cell x to each cell x′ within
its neighborhood in the reference configuration. A damage law dictates the conditions under
which individual bonds are broken. Material discontinuities, such as cracks, form as a result of
the accumulation of broken bonds.

A critical stretch damage model has been implemented in Sierra/SM to allow for the modeling of
fracture within a peridynamics simulation. The critical stretch model assigns a damage value of
zero (unbroken) or one (broken) as a function of the maximum stretch obtained by a bond and a
critical stretch material parameter, scrit. The damage value, φ, is given by the relation

φ =

(

0 for smax < scrit

1 for smax ≥ scrit,
(22.12)

where s is the maximum stretch,

smax =
ymax− x

x
. (22.13)

Here, ymax is the maximum distance between the bonded cells x and x′ achieved over the duration
of the simulation, and x is the distances between x and x′ in the reference configuration. The use
of the maximum distance, ymax, ensures that the breaking of bonds is irreversible.

243

The critical stretch decay bond breaking law is a modification of the critical stretch bond breaking
law in which the critical stretch decays as a function of peridynamic damage as follows:

scrit = scrito max(m,1− cdmax) , (22.14)

where scrit is the critical stretch, scrito is the nominal critical stretch, m is the minimum allowable
multiplier, c is the damage coefficient, and dmax is the maximum peridynamic damage (percentage
of broken bonds) for the two cells connected by the given bond.

The critical stretch pervasive damage bond breaking law is a modification of the critical stretch
bond breaking law in which the critical stretch increases as a function of peridynamic damage:

scrit = scrito min

�

C3, 1+C2
dmax−C1
1−dmax

�

, (22.15)

where C1, C2, and C3 are user-supplied coefficients. The critical stretch pervasive damage law is
appropriate for cases in which multiple cracks may pass through the neighborhood of a given cell
x.

Sierra/SM also allows for the breaking of peridynamic bonds based on the value of an element
variable. A common use case for this option is the breaking of bonds based on the value of a
material model variable, such as equivalent plastic strain. In the case where a bond connects two
peridynamic cells for which the specified element variable is defined, the bond is broken when the
average value of the element variable exceeds the given threshold. In the case where the element
variable is defined on only one of the cells, the single available value is compared against the
threshold value.

22.1.8. Peridynamics and Contact

Peridynamics elements are compatible with the Dash contact algorithm as described in the
Sierra/SM 4.54 User’s Guide in the Chapter ??. The Dash contact algorithm allows for general
and self contact for peridynamics blocks and general contact between peridynamics blocks and
blocks modeled with classical finite elements. Contact for peridynamics is enabled by the use of
lofted contact geometry, which provides the planar facets required by the contact algorithm (see
Section ?? in the Sierra/SM 4.54 User’s Guide). In the case of self contact, the contact algorithm
has been specialized for peridynamics. Self contact is enabled between peridynamic elements not
bonded to each other, but is disabled between any pair of elements that is bonded. In this way,
peridynamic elements may interact via their constitutive laws, or via contact, but not via both
their constitutive laws and contact simultaneously. Self contact between a pair of bonded
elements is enabled if that the bond is broken due to material damage.

244

22.2. USAGE GUIDELINES

This section provides basic usage guidelines for carrying out peridynamic analyses with
Sierra/SM. Suggestions are provided for constructing input mesh files, applying boundary
conditions, and selecting appropriate values for peridynamic parameters. For a description of the
PERIDYNAMICS SECTION input syntax, see Section 22.2.

Model generation. There are two options for generating a peridynamic model: preprocessing a
mesh using spheregen.py or reading in a mesh and converting to particles at initialization.

The recommended way to create a peridynamic model is to read in a standard hexahedron and/or
tetrahedron element mesh and convert the elements to particles at initialization in the region scope
using the BEGIN CONVERSION TO PARTICLES AT INITIALIZATION (see also Section ?? in
the Sierra/SM 4.54 User’s Guide):

BEGIN CONVERSION TO PARTICLES AT INITIALIZATION

BLOCK = <string list>block_names

SECTION = <string>particle_section

END [CONVERSION TO PARTICLES AT INITIALIZATION]

where the BLOCK command specifies which blocks are converted to particles, and SECTION

specifies the peridynamics section.

An alternative way to convert a standard mesh is to use the utility spheregen.py, which is
available for the construction of input meshes compatible with the peridynamic capabilities of
Sierra/SM. spheregen.py converts hexahedron and tetrahedron elements into sphere elements.
By default, all hexahedron and tetrahedron blocks are converted to sphere elements. In the case of
analyses using both peridynamics and classical finite element analysis, specific blocks may be
selected for conversion to sphere elements using the -b and +b options. A complete list of
spheregen.py options is available by running spheregen.py --help. The spheregen.py
utility attempts to preserve node sets defined in the original mesh file by transferring them to
newly-created sphere elements. Side sets defined in the original mesh file are lost for elements
converted to sphere elements.

Horizon. The horizon defines the region of nonlocality for a given cell in a peridynamics
analysis. Analysis results may be strongly dependent on the choice of the horizon. For example,
the choice of horizon affects the localization of forces in the neighborhood of a discontinuity, as
well as the dispersion of waves traveling through blocks modeled with peridynamics. In addition
to affecting material behavior, the choice of horizon has a strong effect on the computational cost
of a peridynamic analysis. In extreme cases, a large horizon may render an analysis intractable. A
recommend value of the horizon is three times the mesh spacing.

Boundary conditions. Boundary conditions for a nonlocal approach such as peridynamics differ
fundamentally from boundary conditions in classical mechanics. To capture exactly the material
response in the vicinity of a boundary condition, the boundary condition in a nonlocal model must
be applied over a volume. For example, displacement boundary conditions applied at the surface
of a body should be applied to a volume that reaches into the body a distance equal to the
peridynamic horizon. This is not always practical (as with contact), and often satisfactory results

245

can be obtained by applying boundary conditions at the surface only. Users should be aware,
however, that unphysical edge effects will be present if boundary conditions are not applied in a
way that is consistent with the nonlocal nature of peridynamics.

Timestep. The time step computed by peridynamic elements in Sierra/SM is an approximate
value that may require modification to ensure a stable analysis. Peridynamic elements in
Sierra/SM compute a stable time step under an assumed relationship between the bulk modulus in
state-based peridynamics and the micro-modulus in bond-based peridynamics. For details
regarding the time step computed by peridynamic elements in Sierra/SM, see [2]. Because the
time step computed by peridynamic elements is not guaranteed to be stable, it is recommended
that the time step be reduced using a scale factor of approximately 0.75. This can be achieved
using the TIME STEP SCALE FACTOR command described in Chapter ?? in the Sierra/SM 4.54
User’s Guide.

Hourglass stiffness. The use of classical material models with peridynamics in Sierra/SM may
require the application of hourglass stiffness to reduce the effects of zero-energy modes in the
computation of the approximate deformation gradient, F̄. Recommended values for hourglass
stiffness are in the range 0.01 - 0.05. The value of hourglass stiffness is multiplied by a material’s
bulk modulus when computing the stiffening forces for peridynamics hourglass control. For a
description of the corresponding input syntax, see Section 22.2.

Explicit Only
22.2.1. Peridynamics Section

BEGIN PERIDYNAMICS SECTION <string>section_name

MATERIAL MODEL FORMULATION = <string>CLASSICAL|

PERIDYNAMIC_BOND_BASED|PERIDYNAMIC_STATE_BASED

HORIZON = <real>horizon

INFLUENCE FUNCTION = <string>influence_function

BOND DAMAGE MODEL = <string>CRITICAL_STRETCH|

CRITICAL_STRETCH_DECAY|CRITICAL_STRETCH_PERVASIVE_DAMAGE|

ELEMENT_VARIABLE|NONE(NONE)

[<real>critical_stretch] [<real>damage_coefficient]

[<real>min_allowable_multiplier] [<real>C1] [<real>C2]

[<real>C3]

HOURGLASS STIFFNESS = <real>stiffness(0.0)

BOND CUTTING BLOCK = <string list>block_names

STRESS DECAY FUNCTION = <string>stress_decay_function

BOND VISUALIZATION = <string>OFF|ON(OFF)

SHORT RANGE FORCES = OFF|ON(OFF) [<real>staticCoefficient(15.0)]

[<real>dampingCoefficient(1.0)]

[<real>thresholdAlphaDistance(1.35)]

[<real>thresholdBetaDistance(0.9)]

END [PERIDYNAMICS SECTION <string>section_name]

Peridynamics is an extension of classical solid mechanics that allows for the modeling of bodies
in which discontinuities occur spontaneously. For this reason, peridynamics is well suited for
modeling phenomena such as cracking. This section describes the PERIDYNAMICS SECTION

246

command block. Details regarding peridynamics methodology and suggested usage guidelines
can be found in Section 22.

A PERIDYNAMICS SECTION should only be associated with elements with the SPHERE topology.
Sphere elements are point elements that are connected to only a single node. Sphere elements may
be created, for example, using the spheregen.py utility (preferred) or the sphgen3d utility.

Warning: The default parallel decomposition for models containing sphere ele-
ments is typically poor. It is recommended that an initial rebalance be carried out
for parallel analyses with peridynamics. See the Sierra/SM 4.54 User’s Guide for
details regarding the INITIAL REBALANCE command.

Within a PERIDYNAMICS SECTION, the MATERIAL MODEL FORMULATION command line
specifies the application of either a state-based peridynamics material model, a bond-based
peridynamics material model, or a classical material model adapted for use with peridynamics as
described in Section 22. Currently, only the ELASTIC material model is available with the
PERIDYNAMIC_STATE_BASED material model formulation, and only the ELASTIC and
ELASTIC_PLASTIC material models are available with the PERIDYNAMIC_BOND_BASED
material model formulation. Setting MATERIAL MODEL FORMULATION = CLASSICAL enables
the interface between Sierra/SM peridynamics and the LAME material library. This interface
allows the material models described in the Sierra/SM 4.54 User’s Guide to be used with
peridynamics.

The peridynamic horizon is set with the HORIZON line command. As described in Section 22, the
horizon determines the region of nonlocality for a given peridynamic element. A peridynamic
element interacts directly with all peridynamic elements that are within a distance equal to the
horizon in the reference configuration. The horizon may be specified as either a constant value or
as a multiple of the element radius. By default, the command applies a constant horizon equal to
the specified value of horizon to all elements associated with the given peridynamics section.

A user-defined peridynamic influence function may be defined using the INFLUENCE FUNCTION

command line. The influence function provides a means for controlling the relative influence of a
neighbor within the family of a given peridynamic element as a function of the neighbor’s
distance from the element. Distance from the element is normalized by the horizon and ranges
from zero to one. A value of zero corresponds to a distance of zero from the element, and a value
of one corresponds to a distance from the element equal to the horizon. By default, the influence
function is set to:

ω =

(

1 for 0 ≤ x < 1
2

4x−4x2 for 1
2 ≤ x ≤ 1,

(22.16)

which results in the influence function having a value of 1.0 for all neighbors within a distance of
half the horizon, and a value that drops off parabolically beginning at half the horizon and ending
with a value of zero at edge of the horizon. (An influence function that drops off smoothly near
the edge of the horizon tends to mitigate numerical noise.) An arbitrary influence function may be
defined with the INFLUENCE FUNCTION command line by providing a function name
corresponding to a DEFINITION OF FUNCTION command block in the Sierra scope (see the
Sierra/SM 4.54 User’s Guide user defined functions). The input to this function is the distance in

247

the reference configuration from an element to a given neighbor, divided by that element’s
horizon. The output is the weighting value, ω. Influence functions do not apply to bond-based
peridynamic material models.

The bond damage model is specified by the BOND DAMAGE MODEL command. The available
options for BOND DAMAGE MODEL are CRITICAL_STRETCH, CRITICAL_STRETCH_DECAY,
CRITICAL_STRETCH_PERVASIVE_DAMAGE, ELEMENT_VARIABLE, and NONE. The default
option, NONE, disables bond breaking. The critical stretch bond breaking law is activated by
specifying CRITICAL_STRETCH. If this model is selected, the user must specify
critical_stretch, the value of stretch at which bonds are broken, where stretch is computed
as bond elongation divided by the initial bond length. The CRITICAL_STRETCH_DECAY bond
breaking law provides a modification to the standard CRITICAL_STRETCH law. In the case of
CRITICAL_STRETCH_DECAY, the value of critical stretch is modified based on the value of
peridynamic damage as follows:

scrit = scrito max(m,1− cdmax) , (22.17)

where scrit is the critical stretch, scrito is the nominal critical stretch, m is the minimum allowable
multiplier, c is the damage coefficient, and dmax is the peridynamic damage. The value of
peridynamic damage, dmax, is the maximum peridynamic damage (percentage of broken bonds)
for the two elements connected by the given bond. An additional modification to the standard
CRITICAL_STRETCH law is available through the CRITICAL_STRETCH_PERVASIVE_DAMAGE
bond breaking law. In this case, the critical stretch is computed as follows,

scrit = scrito min

�

C3, 1+C2
dmax−C1
1−dmax

�

, (22.18)

where C1, C2, and C3 are user-supplied coefficients. The ELEMENT_VARIABLE option allows
bonds to be broken based on the maximum value of a specified element variable (e.g., an element
variable associated with a material model, such as equivalent plastic strain). In the case of a bond
that connects two peridynamics elements for which the specified element variable is defined, the
average of the two element values is compared against the threshold value to determine bond
breakage. If the specified element variable is defined on only one of the two elements connected
by a given bond, the single available value is compared against the threshold value.

Hourglass stiffness for peridynamics is controlled with the HOURGLASS STIFFNESS command.
Within the peridynamics hourglass stiffness routine, the parameter stiffness is multiplied by a
material’s bulk modulus to determine the resistance to deformation in potential zero-energy
modes. By default, no hourglass stiffness is computed for peridynamics; hourglass stiffness must
be activated by including a HOURGLASS STIFFNESS command line. Note that peridynamics
hourglass control is completely independent from the hourglass control applied to
under-integrated elements (see the Sierra/SM 4.54 User’s Guide section on element hour glass
control).

By default, a peridynamic bond is formed between a given peridynamic element and all
peridynamic elements within its horizon. Sometimes this results in the formation of bonds that
are unphysical. For example, bonds may be incorrectly formed between two components that are
within a distance equal to the horizon in the reference configuration but that are not physically

248

connected. The bond cutting feature provides a mechanism for controlling the formation of
bonds. The BOND CUTTING BLOCK command designates blocks in the block_names list as
bond cutting blocks. Any bond that would pass through a surface of a bond cutting block is
omitted from the analysis. For example, to prevent the creation of bonds between two components
that are in close proximity but are not physically connected, a user may include a block in the
input mesh file that lies between these components and designate that block as a bond cutting
block. The bond cutting block may be any type of block (e.g., a shell, hexahedral, or tetrahedral
mesh), provided that Sierra/SM is capable of skinning it (see Sierra/SM 4.54 User’s Guide section
on contact descriptions). If a sphere element mesh for use with peridynamics has been created
from a hexahedral mesh (for example, with spheregen.py), it may be convenient to include the
original hexahedral element mesh as a bond cutting block. Any block designated as a bond
cutting block is automatically removed from the analysis following the initialization of bonds.

The optional STRESS DECAY FUNCTION command line specifies a function by which the
computed stress from a classical material model is decayed as a function of peridynamic damage.
The use of stress decay function prevents an unphysical increase in the magnitude of pairwise
forces as the number of broken bonds increases for a given element. By default, the stress decay
function is:

fd =

�
1.0−1.25d for 0 ≤ x < 0.8

0 for 0.8 ≤ d ≤ 1.0,
(22.19)

where d is the peridynamic damage (percentage of broken bonds). Note that the
STRESS DECAY FUNCTION command line has an effect only when
MATERIAL MODEL FORMULATION is set to CLASSICAL and is ignored when either
PERIDYNAMIC_STATE_BASED or PERIDYNAMIC_BOND_BASED material models are in use.

The BOND VISUALIZATION command provides a mechanism for visualizing bonds through the
representation of bonds as bar elements in the output database. This feature is set to OFF by
default and may be activated with the command BOND VISUALIZATION = ON. The bond
visualization feature is intended as a verification tool for mesh creation and is not recommended
for used for production runs.

The SHORT RANGE FORCES command provides a contact like formulation to prevent
interpenetration of peridynamics nodes that do not have bonds. By default these forces are off.

Warning: Setting BOND VISUALIZATION = ON results in the creation of addi-
tional elements in the output file. Because each bond is represented by an additional
element, the resulting output file may grow in size by several orders of magnitude
relative to the standard output file. For this reason, BOND VISUALIZATION is rec-
ommended only as a mesh verification tool for small- to medium-sized problems
and should not be used for production runs.

Known Issue: Peridynamics is not compatible with several modeling capabilities.
Peridynamics is currently not compatible with restart. Also, the only type of rebal-
ancing that can be done with peridynamics is an initial rebalance.

249

22.2.2. Identify Fragments

The IDENTIFY FRAGMENTS capability provides data on unique contiguous mesh fragments in a
simulation. Fragments are identified based on mesh connectivity. The fragment identification
algorithm accounts for topological changes including bond failure in a peridynamics
simulation.

250

REFERENCES

[1] S.A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces.
Journal of the Mechanics and Physics of Solids, 42:175–209, 2000. doi.

[2] S.A. Silling and E. Askari. A meshfree method based on the peridynamic model of solid
mechanics. Computers and Structures, 83:1526–1535, 2005. doi.

[3] S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Peridynamic states and constitutive
modeling. Journal of Elasticity, 88:151–184, 2007. doi.

[4] S.A. Silling and R. B. R.B. Lehoucq. Convergence of peridynamics to classical elasticity
theory. Journal of Elasticity, 93:13–37, 2008. doi.

[5] S.A. Silling and R.B. Lehoucq. Peridynamic theory of solid mechanics. Advances in Applied

Mechanics, 44:73–168, 2010. doi. Also available as SAND2010-1233J. pdf.

[6] R.W. Macek and S.A. Silling. Peridynamics via finite element analysis. Finite Elements in

Analysis and Design, 43:1169–1178, 2007. doi.

251

http://dx.doi.org/10.1016/S0022-5096(99)00029-0
http://dx.doi.org/10.1016/j.compstruc.2004.11.026
http://dx.doi.org/10.1007/s10659-007-9125-1
http://dx.doi.org/10.1007/s10659-008-9163-3
http://dx.doi.org/10.1016/S0065-2156(10)44002-8
http://prod.sandia.gov/sand_doc/2010/101233j.pdf
http://dx.doi.org/10.1016/j.finel.2007.08.012

INDEX

ACTIVE PERIODS
in J Integral, 68

ANALYTIC CYLINDER
in Contact Definition

description of, 62
ANALYTIC PLANE

in Contact Definition
description of, 61

AXIAL DIRECTION
in Contact Definition – in Analytic Cylinder

description of, 62

BOND CUTTING BLOCK
in Peridynamics Section, 229

BOND DAMAGE MODEL
in Peridynamics Section, 229

BOND VISUALIZATION
in Peridynamics Section, 229

Bond-Based Microelastic Peridynamic Material
Model

in Peridynamics, 224
Bond-Based Microplastic Peridynamic Material

Model
in Peridynamics, 224

CENTER
in Contact Definition – in Analytic Cylinder

description of, 62
Classical Material Models

with Peridynamics, 224
Coarse Mesh

for Explicit Control Modes, 36
Contact

with Peridynamics, 227
CONTACT NORMAL

in Contact Definition – in Analytic Cylinder
description of, 62

CONTROL BLOCKS
in Control Modes Region, 38

usage in, 39
CONTROL MODES REGION, 38

usage of for Explicit Control Modes, 36
CRACK DIRECTION

in J Integral, 68
CRACK PLANE SIDE SET

in J Integral, 68

CRACK TIP NODE SET
in J Integral, 68

CUBATURE DEGREE
in Total Lagrange Section

for Total Lagrange Element, 50

DEBUG OUTPUT
in J Integral, 68

ELEMENTS
in RVE REGION, 13

Explicit Control Modes, 36

FINITE ELEMENT MODEL
usage of for Explicit Control Modes, 36

FIXED DISPLACEMENT
in Control Modes Region, 38

usage in, 42
FORMULATION

in Total Lagrange Section
for Total Lagrange Element, 50

Fracture
with Peridynamics, 226

FUNCTION
in J Integral, 68

HIGH FREQUENCY MASS SCALING
in Control Modes Region, 38

usage in, 41
HIGH FREQUENCY STIFFNESS DAMPING

in Control Modes Region
usage in, 42

HORIZON
in Peridynamics, 228
in Peridynamics Section, 229

HOURGLASS STIFFNESS
in Peridynamics Section, 229
with Peridynamics, 229

IDENTIFY FRAGMENTS, 233
INACTIVE PERIODS

in J Integral, 68
INFLUENCE FUNCTION

in Peridynamics Section, 229
Influence Function

with Peridynamics, 225

252

INTEGRATION RADIUS
in J Integral, 68

J INTEGRAL, 68

LANCZOS TIME STEP INTERVAL
in Control Modes Region

usage in, 39
LENGTH

in Contact Definition – in Analytic Cylinder
description of, 62

MATERIAL MODEL FORMULATION
in Peridynamics Section, 229

NORMAL
in Contact Definition – in Analytic Plane

description of, 61
NUMBER OF DOMAINS

in J Integral, 68

PARAMETERS FOR MODEL RVE, 12
Peridynamics

in Special Modeling Techniques, 222
PERIDYNAMICS SECTION, 229
POINT

in Contact Definition – in Analytic Plane
description of, 61

POWER METHOD TIME STEP INTERVAL
in Control Modes Region

usage in, 39

RADIUS
in Contact Definition – in Analytic Cylinder

description of, 62
Reference Mesh

for Explicit Control Modes, 36
RESULTS OUTPUT

in Control Modes Region
usage in, 42

RVE REGION, 13

State-Based Linear Peridynamic Solid Material Model
in Peridynamics, 223

STRAIN INCREMENTATION
in Total Lagrange Section

for Total Lagrange Element, 50
STRESS DECAY FUNCTION

in Peridynamics Section, 229
SYMMETRY

in J Integral, 68

TIME STEP RATIO FUNCTION
in Control Modes Region, 38

usage in, 39

TIME STEP RATIO SCALING
in Control Modes Region, 38

usage in, 39
TIME STEP SCALE FACTOR

with Peridynamics, 229
TOTAL LAGRANGE SECTION

for Total Lagrange Element, 50
Total Lagrange Section, 50
TYPE

in Loadstep Predictor
description of, 49

USE FINITE ELEMENT MODEL
in Control Modes Region, 38

usage in, 39
USE SURFACE FOR EDGE DIRECTION

in J Integral, 68

VOLUME AVERAGE J
in Total Lagrange Section

for Total Lagrange Element, 50

253

DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address

Technical Library 01177 libref@sandia.gov

254

255

Sandia National Laboratories is

a multimission laboratory

managed and operated by

National Technology &

Engineering Solutions of Sandia

LLC, a wholly owned subsidiary

of Honeywell International Inc.,

for the U.S. Department of

Energy’s National Nuclear

Security Administration under

contract DE-NA0003525.

	Title
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Representative Volume Elements
	RVE Processing
	Mesh Requirements
	Input Commands
	RVE Material Model
	Embedded Coordinate System
	RVE Region
	Definition of RVEs
	Multi-Point Constraints
	RVE Boundary Conditions

	Explicit Subcycling
	Specifying Subcycling in Input
	Limitations of Subcycling
	Other Subcycling Issues
	References

	Automatic Time Step Selector
	Modal Analysis
	Modal Analysis

	Solvers and Solver Options
	Newton Solver
	Control Contact : Control Subset

	eXtended Finite Element Method (XFEM)
	General XFEM Commands
	XFEM for Fracture and Fragmentation
	Fixed and Prescribed XFEM Discontinuities
	Spontaneous Crack Nucleation, Growth, and Branching
	Cohesive Zone Insertion
	Other Options

	XFEM Carving
	Use of XFEM with Existing Capabilities
	Contact
	CONWEP Blast Pressure
	Implicit Dynamics

	References

	Explicit Control Modes
	Limitations and Requirements
	Control Modes Region
	Model Setup Commands
	Time Step Control Commands
	Mass Scaling Commands
	Damping Commands
	Kinematic Boundary Condition Commands
	Output Commands
	ECM with Lanczos

	ECM Theory
	Introduction
	Modal Decomposition Approach
	Explicit-Explicit Partitioning
	Energy Ratio: a Measure of Approximation

	References

	External Loadstep Predictor
	References

	Total Lagrange
	Formulation
	Strain Incrementation
	Cubature Degree
	Volume Average J
	References

	Bolt
	Linear Beam
	References

	Contact
	Analytic Contact Surfaces
	General Analytic Surfaces
	Plane
	Cylinder
	Other Analytic Surface Options

	Implicit Solver Control Contact Options
	References

	J-Integrals
	Technique for Computing J
	Input Commands
	Output
	Required Discretization
	Results and History Output
	References

	Nonlocal Regularization
	Variational nonlocal method
	Nonlocal partitioning
	Command summary
	Usage guidelines
	References

	POD
	Time Step Control Commands
	References

	RKPM
	Formulation
	Domain integration
	Kinematics for RKPM in SIERRA
	Input format
	Converting a mesh to particles

	References

	Material Models
	Elastic Orthotropic Model
	Elastic Orthotropic Damage Model
	Elastic Orthotropic Fail Model
	Elastic Orthotropic Shell Model
	Karagozian and Case Concrete Model
	Kayenta Model
	Shape Memory Alloy
	Linear Elastic
	Elastic Three-Dimensional Anisotropic Model
	J2 Plasticity
	Karafillis Boyce Plasticity Model
	Cazacu Plasticity Model
	Cazacu Orthotropic Plasticity Model
	Skorohod-Olevsky Viscous Sintering (SOVS)
	Hydra Plasticity
	Summary
	User Guide
	Theory
	Implementation
	Verification

	NLVE 3D Orthotropic Model
	Honeycomb Model
	Viscoplastic Foam
	Foam Damage
	Thermo EP Power Model
	Thermo EP Power Weld Model
	Universal Polymer Model
	Other Undocumented Material Models
	References

	Cohesive Material Models
	Intrinsic models
	Mixed-mode Dependent Toughness

	Extrinsic models
	Tvergaard Hutchinson
	Thouless Parmigiani

	References

	Multicriteria Rebalance
	Other In-Development Capabilities
	Initial Particle Conversion
	Shell Contact Lofting Factor
	Reaction Diffusion Solver
	Phase Field Fracture Material
	Discrete Element Method (DEM)
	Q1P0 Element
	References

	Peridynamics
	Theory
	Overview
	State-Based Linear Peridynamic Solid Material Model
	Bond-Based Microelastic Peridynamic Material Model
	Bond-Based Microplastic Peridynamic Material Model
	Interface to Classical Material Models
	Peridynamic Influence Function
	Modeling Fracture
	Peridynamics and Contact

	Usage Guidelines
	Peridynamics Section
	Identify Fragments

	References

	Index
	Index
	Distribution

