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Background

 Pebble Bed Reactors operate on pebbles circulated multiple times
through the reactor vessel before discharge.

« Determining the burnup level of a pebble is the key to deciding if the
pebble should be discharged or recycled.

« Height of photopeaks in gamma spectra related to various indicator
Isotopes such as 13’Cs, 154Eu etc. are often used for this application.

« These technigues suffer several challenges:

« Source is complex and measurements are performed in less-than-ideal
environment with self-shielding effects, strong radiation backgrounds and
Intervening material effects.

« Also, due to operational constraints, high pebble throughput necessitate lower
acquisition times which results in noisier spectra.
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Objectives

 Develop a process for generating gamma spectra, which is
representative of the burnup levels of a reference pebble.

« Establish baseline gamma spectra dataset as well as spectra
data that represents typical operational condition for a PBR.

 Compare the performance of a multilayer perceptron's (MLP)
model to standard linear regression for burnup prediction.
« For both an ideal and operation type measurement times.

« Also, for multiple pebble cooling times that range between typical
operational cooling times to ideal cooling times (i.e., which produce
cleaner spectra).
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Gamma Spectra Data
Generation
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Structure of a Pebble & PBR core

Images from:
www.nuclearstreet.com (left)
www.wikipedia.org (right)
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Pebble bed reactor scheme
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Burnup and Source Modeling

* Burnup and source modeling of the pebble was done In
SERPENT Monte Carlo.

 Two separate Models were created:
« To perform burnup and obtain burnup level specific isotope composition.

« To transport the gamma source from the TRISO kernels through the
coatings to the pebble surfaces.

« A 3x3x3 lattice of pebbles was designed and the center pebble
was regarded as the reference pebble for burnup and source

definitions.
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Burnup and Source Modeling (cont’d)

Param eter

Value

Uranium Oxy -Carbide (UCO) Density (atoms/b-cm) 6.9924E-02
Buffer (C) Density (atoms/b-cm) 5.2644E-02
Polycarbonate (PyC)/ Silicon Carbide (SiC) Density (atoms/b-cm) ~9.5262E-02

Number of Pebble/TRISO 27/18857
Pebble/TRISO radius (cm) 3.000/0.0455

Power (MW,,)

Boundary condition Reflected/Periodic
Pebble/TRISO PF 0.5200/0.1137
Average residence time (days)/Cycles(passes) 522/8

Cooling time before spectral measurement (days)

280

0,05,1,2,5,10

Data acquisition time (s) 20, 3600
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Burnup and Source Modeling (cont’d)

B Stepsin a pass
B Power density (KW/g)

Step 1 6.525 5.735E-02
Step 2 6.525 | 5.735E-02
O T

Step 9 6.525 5.735E-02
Step 10 6.525 5.735E-02
Cooling 05,1, 2,

Time 50r10 0-000E-00

Il Absolute time step (days)

National Laboratory
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Although the axial
power profile is roughly
cosine, an average
pebble power Is used
In this work.

Spectra relevant output

IS extracted after the
step

shown In the Figure.



Generation of Spectrain GADRAS

* The source information and output generated by SERPENT is fed
Into GADRAS to generate spectra data.

* A burnup steps produced in the SERPENT, after appropriate
cooling time Is converted into a GADRAS readable file format
known as .GAM files.

A HPGe detector with 95% efficiency is selected in GADRAS and
calibrated with spectroscopic pair that span the energy spectra
(l.e., about 0 — 2500 keV).

« The .GAM files are then injected in batch mode to produce
spectra data in .N42 format. (no simulated background was
Injected into the data sets)
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Generation of Spectra in GADRAS (cont’d)
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Performance of ML
Algorithm
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Baseline and ML approaches

Standard approach to burnup prediction is linear regression with
known photopeak (e.g. 13’Cs 662 keV)

« More complex algorithms may be used; but key is hand-selected features
(may be multiple photopeaks)

« Accuracy is limited by pronounced effects of self-shielding, background
radiation, short acquisition time, etc. on spectrum signal

Machine learning (ML) methods can use full spectra, with no need
for manual feature selection or engineering (data-driven)
* More robust to background effects, as full signal is used

« Feature extraction can be done with many ML methods; most direct is a
multi-layer perceptron (MLP), also called a fully-connected neural network
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MLP and parameters

 MLP is “classic” neural network
e Architecturally simple

« Extracts global features representations
(because layers are fully connected)

« Parameters and hyperparameters

« Connection weights and biases are learned during model training from
annotated data (like standard regression)

* Network shape (number and size of hidden layers) is architectural choice
(“hyperparameter”) determined empirically

« Other hyperparameters: learning rate, rate schedule, activation function,
optimization algorithm and parameters, binning rate, dropout rate

« 3-layer network with hidden layers of size 256 and 32 worked well
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137Cs Regression vs ML results

Performance @0.5 day cooling, 20-sec acquisition

« MLP significantly outperforms regression,

. . . - 137Cs regression MLP model
particularly in challenging conditions
. - Mean average percent 55 8% 11.3%
« 137Cs regression performance drops dramatically error (MAPE)
with reduced cooling time and acquisition time Correlation (R?) 0.648 0.956
MLP performance largely unaffected, even appears Linear regression predictions 05 qq, MLP model predictions
to improve (likely due to under-optimized model) (0.5 day cooling, 20-second acquisition) === 220 T
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Conclusion

K

The preliminary tests in this work showed that both ML-based
methods and the photopeak-based linear regression method
achieved higher accuracy when the gamma-ray spectra contained
negligible background radiation caused by short-lived fission
products and minimal statistical errors.

Under the conditions that the PBR designers are considering
today, e.qg., 2 days or less cooling time and 20-s acquisition time,
the gamma spectra from burnup measurement Is noisy.

The proposed ML methods outperformed the conventional linear
regression method significantly under these conditions.
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