
U.S. Department of Energy 

Brookhaven National Laboratory 

Submitted to the INMM & ESARDA Joint Annual Meeting Conference
to be held at Virtual
August 23 - 26, 2021

O. Dim

VERIFICATION OF TRISO FUEL BURNUP USING MACHINE
LEARNING ALGORITHMS

BNL-221996-2021-COPR

Nonproliferation and National Security Department

USDOE National Nuclear Security Administration (NNSA), Office of Nonproliferation and
Verification Research and Development (NA-22)

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes.



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government nor any 
agency thereof, nor any of their employees, nor any of their contractors, 
subcontractors, or their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or any 
third party’s use or the results of such use of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service 
by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof or its contractors or subcontractors. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof.  



BNL-221947-2021-INRE

Verification of TRISO fuel 
burnup using machine 
learning algorithms

August 2021Odera Dim, Carlos Soto, Yonggang Cui, Lap-Yan Cheng, 

Maia Gemmill, Thomas Grice, Joseph Rivers, 

Warren Stern,  and Michael Todosow



BNL-221947-2021-INRE

Background

• Pebble Bed Reactors operate on pebbles circulated multiple times 
through the reactor vessel before discharge. 

• Determining the burnup level of a pebble is the key to deciding if the 
pebble should be discharged or recycled. 

• Height of photopeaks in gamma spectra related to various indicator 
isotopes such as 137Cs, 154Eu etc. are often used for this application.

• These techniques suffer several challenges:
• Source is complex and measurements are performed in less-than-ideal 

environment with self-shielding effects, strong radiation backgrounds and 
intervening material effects.

• Also, due to operational constraints, high pebble throughput necessitate lower 
acquisition times which results in noisier spectra.
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Objectives

• Develop a process for generating gamma spectra, which is 
representative of the burnup levels of a reference pebble.

• Establish baseline gamma spectra dataset as well as spectra 
data that represents typical operational condition for a PBR.

• Compare the performance of a multilayer perceptron's (MLP) 
model to standard linear regression for burnup prediction. 
• For both an ideal and operation type measurement times.

• Also, for multiple pebble cooling times that range between typical 
operational cooling times to ideal cooling times (i.e., which produce 
cleaner spectra).
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Gamma Spectra Data 
Generation

Presenter : Odera Dim
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Structure of a Pebble & PBR core
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Typical structure of a pebble and TRISO PBR reactor core

Images from:

www.nuclearstreet.com (left)

www.wikipedia.org (right)

http://www.nuclearstreet.com/
http://www.wikipedia.org/
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Overall Process Flow

47.8E-03

57.8E-03

67.8E-03

57.8E-03

47.8E-03

5 - 8 Passes

1 𝑝𝑎𝑠𝑠 ≅ 30 𝐺𝑊𝐷/𝑇

Reactor Core

Serpent MC simulation

Parameters: transit time, 

power and profile

Photon 

emission 

results

GADRAS-DRF

Gamma-ray spectrum



BNL-221947-2021-INRE

Burnup and Source Modeling

• Burnup and source modeling of the pebble was done in 
SERPENT Monte Carlo. 

• Two separate Models were created: 
• To perform burnup and obtain burnup level specific isotope composition. 

• To transport the gamma source from the TRISO kernels through the 
coatings to the pebble surfaces.

• A 3x3x3 lattice of pebbles was designed and the center pebble 
was regarded as the reference pebble for burnup and source 
definitions.
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Burnup and Source Modeling (cont’d)

Parameter Value

Uranium Oxy-Carbide (UCO) Density (atoms/b-cm) 6.9924E-02

Buffer (C) Density (atoms/b-cm) 5.2644E-02

Polycarbonate (PyC)/ Silicon Carbide (SiC)  Density (atoms/b-cm) ~9.5262E-02

Number of Pebble/TRISO 27/18857

Pebble/TRISO radius (cm) 3.000/0.0455

Lattice configuration 3 x 3 x 3

Power (MWth) 280

Boundary condition Reflected/Periodic

Pebble/TRISO PF 0.5200/0.1137

Average residence time (days)/Cycles(passes) 522/8

Cooling time before spectral measurement (days) 0, 0.5, 1, 2, 5, 10

Data acquisition time (s) 20, 3600
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Burnup and Source Modeling (cont’d)
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Pebble burnup process

• Although the axial 
power profile is roughly 
cosine, an average 
pebble power is used 
in this work.

• Spectra relevant output 
is extracted after the 
cooling time step 
shown in the Figure.
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Generation of Spectra in GADRAS

• The source information and output generated by SERPENT is fed 
into GADRAS to generate spectra data.

• A burnup steps produced in the SERPENT, after appropriate 
cooling time is converted into a GADRAS readable file format 
known as .GAM files.

• A HPGe detector with 95% efficiency is selected in GADRAS and 
calibrated with spectroscopic pair that span the energy spectra 
(i.e., about 0 – 2500 keV).

• The .GAM files are then injected in batch mode to produce 
spectra data in .N42 format. (no simulated background was 
injected into the data sets)
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Generation of Spectra in GADRAS (cont’d)
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Performance of ML 
Algorithm

Presenter : Carlos Soto
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Baseline and ML approaches
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• Standard approach to burnup prediction is linear regression with 
known photopeak (e.g. 137Cs 662 keV)
• More complex algorithms may be used; but key is hand-selected features 

(may be multiple photopeaks)

• Accuracy is limited by pronounced effects of self-shielding, background 
radiation, short acquisition time, etc. on spectrum signal

• Machine learning (ML) methods can use full spectra, with no need 
for manual feature selection or engineering (data-driven)
• More robust to background effects, as full signal is used

• Feature extraction can be done with many ML methods; most direct is a 
multi-layer perceptron (MLP), also called a fully-connected neural network
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MLP and parameters

14

• MLP is “classic” neural network
• Architecturally simple

• Extracts global features representations
(because layers are fully connected)

• Parameters and hyperparameters
• Connection weights and biases are learned during model training from 

annotated data (like standard regression)

• Network shape (number and size of hidden layers) is architectural choice 
(“hyperparameter”) determined empirically
• Other hyperparameters: learning rate, rate schedule, activation function, 

optimization algorithm and parameters, binning rate, dropout rate

• 3-layer network with hidden layers of size 256 and 32 worked well
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137Cs Regression vs ML results
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• MLP significantly outperforms regression, 
particularly in challenging conditions
• 137Cs regression performance drops dramatically 

with reduced cooling time and acquisition time

• MLP performance largely unaffected, even appears 
to improve (likely due to under-optimized model)

137Cs regression MLP model

Mean average percent 

error (MAPE)
55.8% 11.3%

Correlation (R2) 0.648 0.956

Performance @0.5 day cooling, 20-sec acquisition

True vs predicted burnup (perfect predictions 

would lay along main diagonal)
Mean average percent error (MAPE) and correlation (R2) performance 

of 137Cs regression and MLP model over differing conditions. (lower is 

better for MAPE, higher is better for R2)
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Conclusion

• The preliminary tests in this work showed that both ML-based 
methods and the photopeak-based linear regression method 
achieved higher accuracy when the gamma-ray spectra contained 
negligible background radiation caused by short-lived fission 
products and minimal statistical errors.

• Under the conditions that the PBR designers are considering 
today, e.g., 2 days or less cooling time and 20-s acquisition time, 
the gamma spectra from burnup measurement is noisy.

• The proposed ML methods outperformed the conventional linear 
regression method significantly under these conditions.
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