
SANDIA REPORT
SAND # Pending
Unlimited Release
Printed May 2015

The Capability Portfolio Analysis Tool (CPAT):
A Mixed Integer Linear Programming Formulation for
Fleet Modernization Analysis

Stephen M. Henry, Frank M. Muldoon, Matthew J. Hoffman,
Gio K. Kao, Craig R. Lawton, Darryl J. Melander, Liliana Shelton

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

SAND2015-3487

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND # Pending
Unlimited Release
Printed May 2015

The Capability Portfolio Analysis Tool (CPAT):

A Mixed Integer Linear Programming Formulation for Fleet

Modernization Analysis

Stephen M. Henry1, Frank M. Muldoon1, Matthew J. Hoffman1, Gio K. Kao2,

Craig R. Lawton1, Darryl J. Melander3, Roy E. Rice4, Liliana Shelton5

1 Systems Readiness and Sustainment Technologies

2 Networked System Survivability & Assurance

3 Software Systems R&D

5 System Surety Engineering I

Sandia National Laboratories

P.O. Box 5800, Albuquerque, New Mexico 87185

4Teledyne Brown Engineering

300 Sparkman Drive, Huntsville, AL 35805-1912

Abstract

In order to effectively plan the management and modernization of its large and diverse fleet of
vehicles, the Program Executive Office Ground Combat Systems (PEO GCS) commissioned
the development of a large-scale portfolio planning optimization tool. This software, the
Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally pri-
oritizes the modernization or replacement of vehicles within the fleet - respecting numerous
business rules associated with fleet structure, budgets, industrial base, research and testing,
etc., while maximizing overall fleet performance through time. This paper contains a thor-
ough documentation of the terminology, parameters, variables, and constraints that comprise
the fleet management mixed integer linear programming (MILP) mathematical formulation.

3

This page intentionally left blank.

Contents

Preface 9

Nomenclature 11

1 Business Rules 15

System Transition Flow . 15

Mission Priority Tiers . 16

Transition Delays . 17

General Scheduling Rules . 17

Budgets . 18

Product Families . 19

Low-Rate Initial Production . 21

Future Programs . 21

2 Formulation Indices, Sets and Tuples 23

Formulation Indices . 23

Useful Sets and Tuples . 24

Fleet Structure and Flow . 24

Optimization Tiers . 25

Modernization Scheduling . 25

Product Families . 26

Future Programs . 27

3 Model Input Parameters 29

5

Optimization Tiers and Phases . 29

Fleet Structure and Flow . 30

Modernization Scheduling . 31

Cost & Budgets . 32

Future Programs . 34

Auxiliary Parameters . 34

4 MILP Decision Variables 37

Non-Negative Integer Variables . 37

Binary Variables . 38

Continuous “Binary” Variables . 39

Non-negative Continuous Variables . 39

5 MILP Variable Expressions 41

Fleet Structure and Flow . 41

Low-Rate Initial Production . 44

Storage . 44

Cost and Budgets . 46

Production . 49

Objective Function . 50

6 MILP Constraints 53

Multi-Tier, Multi-Phase Constraints . 53

System Flow Conservation Constraints . 55

General Scheduling Constraints . 57

Budget Constraints . 60

Group Density Levels . 62

System Production Constraints . 63

6

Product Family Constraints . 64

LRIP Constraints . 68

Production Smoothing Constraints . 69

Future Program Constraints . 70

7

List of Figures

1 CPAT Fleet and Storage Structure . 11

8

Preface

Program executives face the perpetual fleet management challenge of devising investment
strategies to assure optimal fleet modernization and to mitigate system obsolescence. These
investment plans must be comprehensive, ensuring a balance between capability, schedule
and cost. This is particularly true for the Ground Combat Systems (GCS) fleet within the
United States Army. Here, capability requirements must be met without violating increas-
ingly strict expenditure limits, which are made in various categories including procurement,
recapitalization, operations & support (O&S), and research, development, testing & evalua-
tion (RDT&E). In addition to these demanding budgetary considerations, secondary effects
on the industrial base must be carefully integrated, along with numerous other business rules
associated with the GCS fleet. This paper presents a mixed-integer linear programming
model that helps decision-makers create and evaluate real-world fleet-wide modernization
plans. While comprehensive in scope, this paper’s concentration on the mathematical for-
mulation itself may fail to elucidate more general modeling approaches, assumptions, and
thought processes. Hence, this document should be read in conjunction with the CPAT
Domain Model, which presents the CPAT methodology from the perspective of an outside
analyst not possessing intimate knowledge of the mathematical formulation.

9

This page intentionally left blank.

Nomenclature

Storage

= single system

Mission1

Mission2

Mission3

Mission4

Set1

Mission5

Mission6
Set2

Group1

Group1

Group2 Group3

Group2 Group3 Group4

Fleet

Figure 1. CPAT Fleet and Storage Structure

Fleet: The regimented collection of systems whose performance contributes to the opti-
mization’s objective function (i.e. the systems that are actively fulfilling mission roles).
The fleet’s composition is altered through time as new systems are introduced and old
systems are taken out, though the size of the fleet is always constant. Systems in
storage are not considered part of the fleet.

Set: A high-level partition of the fleet. Each set is itself partitioned into equal groups, and
each set’s partitioning can be unique.

Group: The equi-partitioning of a set. Each group is itself partitioned into heteroge-
neous missions. Each group within a set is partitioned identically by mission. In
Army parlance these groups are are called “brigades,” and we will often use this term
interchangeably.

Mission: The partitioning of a brigade into areas of unique operational responsibility.
Every brigade within a set is partitioned in an identical manner by mission. The lowest
level fleet modernization decisions made by CPAT are for a mission within a group,
and often when this document refers to a “group” or a “mission” being modernized, it
is meant as a shorthand for “a mission within a group.”

11

System: A resource that fulfills a mission with a certain performance level. Systems are
the individual components which are being upgraded, purchased, and swapped within
the fleet by the CPAT optimization algorithm.

Storage: A conceptual holding area for systems which are not in the fleet. Systems can
flow into and out of storage via a variety of mechanisms.

Transition/Fielded/Modernize: General terms referring to any substitution event that
alters the composition of the fleet (i.e. one system type is switched over to another
type within a mission). This conversion may happen via a mission upgrade or a storage
swap.

Mission Upgrade: A transition that occurs within the context of a mission wherein the
original system is consumed in the creation of the new system. While the upgrade is
in progress, the mission still “gets credit” for the performance of the original system.
Upon completion, the new system is delivered to the mission.

Storage Swap: A transition that occurs within the context of both storage and a mission.
Here the original system in the mission is taken out and placed in storage. The new
system is taken out of storage and placed in the mission. Note that storage swaps are
free and instantaneous, since the new system is already in storage and waiting to be
used. However, the process of getting that new system in storage is most likely neither
free nor instantaneous (i.e. via a purchase or storage upgrade).

Purchase: The acquisition of a new system that previously did not exist. Newly purchased
systems are placed into storage and are immediately available for introduction into the
fleet via a storage swap. Purchases are not considered transitions, since they do not
directly alter the composition of the fleet.

Storage Upgrade: An upgrade that happens in storage (outside the context of the fleet).
Here the original system in storage is consumed in the creation of the new system
which is placed in storage and immediately available to be fielded to the fleet via a
storage swap. Note that storage upgrades are not categorized as a transition, since
they do not directly alter fleet composition.

Delivery: The completion of production (as defined by the admin and/or production
delays) for a system. When a mission upgrade completes production, the new system
is delivered to the mission. When a purchase or storage upgrade completes production,
the new system is delivered to storage. Depending on user specifications, when systems
are produced by an LRIP profile, some of the produced systems may be delivered to
storage, while others may disappear (destroyed in testing, for example) and never enter
storage.

Fielding: The act of placing systems into a mission.

Spoken For: A system is “spoken for” if it is in the process of upgrading from one type
to another. More specifically, systems are spoken for when they are in the production
period(s) of an upgrade; they are not spoken for during administration periods. We

12

use this notion because systems are still considered in mission or in storage throughout
the upgrade process. Hence, we need a way to delineate which systems are already
being worked on and which ones are not.

Procurement: A term referring to expenses incurred in the process of modernizing sys-
tems. Upgrade, purchase, LRIP, product family start-up and per-period costs all fall
under this category.

Product Family: A collection of system types that share production costs, RDT&E costs,
and/or resources.

Conventional Time Horizon: Any time period t where t ≤ T . Highest fidelity decisions
are made during the conventional planning horizon.

Extended Time Horizon: Any time period t where T < t ≤ T . Lower fidelity decisions
regarding future programs are made during the extended planning horizon.

13

This page intentionally left blank.

Chapter 1

Business Rules

Before presenting details of the mathematical formulation itself, we first outline the set of
business rules that govern the behavior of our fleet modernization model. In outlining these
rules, and the formulation at large, many terms will have a specific meaning that facilitates
ease of interpretation. See the Nomenclature section at the beginning of this document for
a list of common vocabulary conventions.

The business rules below each correspond to a set of parameters, constraints, and ex-
pressions within the optimization model. However, some constraints or expressions play
an auxiliary role not directly corresponding to a specific business rule; others may address
multiple business rules simultaneously.

System Transition Flow

• Constant System Population: Throughout the planning horizon, each mission
within a group always maintains a constant number of systems. Every change to
the fleet consists of either modifying existing systems or removing some number of
systems from the fleet and putting an equal number of different systems in their place.

• Group Purity: At any given time, the systems serving a particular mission within
a particular group must all be of the same system type. Different groups can each be
using a different system type for that mission, and different missions within the same
group may be using different system types, but a single group cannot mix system types
within a mission.

• Outflow Availability: For any time period, the number of systems of a given type in a
mission that are upgraded or swapped to storage may not exceed the number currently
exchangeable. Similarly, the number of systems of a given type in storage that are
upgraded or sent to a mission may not exceed the number currently exchangeable. In
both cases, the number currently exchangeable is given by the current number present
minus the current number in the process of being upgraded.

• Initial Populations: Each mission has an initial population of systems that is already
in the fleet and is immediately available to begin modernization. There may also be
an initial population of systems in storage which is also immediately available to begin

15

upgrading or swapping into missions. In other words, no initial systems are “spoken
for” in the first time period.

• Storage Flow: Systems enter and exit storage through the following means: 1) pur-
chases put new systems directly into storage, 2) storage upgrades take one system type
already in storage and turn it into another type, and 3) storage swaps take one system
type out of a mission and into storage while taking another type out of storage and
sending it to the mission. Once in storage, a system is immediately available for any
type of flow action with one exception: a system cannot be swapped into and out of
the same mission in the same time period.

• No Pre-Usage Upgrades: Newly purchased systems in storage that have not yet
been sent to a mission should not be upgraded while in storage.

• Optional Pre-Purchasing: Systems may be purchased or in-storage upgraded before
they are actually needed to be fielded to a mission. However, this ability is optional
and may be disallowed by user choice.

• Delivery Implies Fielding: System types whose procurement cost is non-zero can
only be produced if they are also fielded to a mission. (Note that delivery of these
systems from production and fielding to a mission can occur at different times.) Only
systems that can be procured for free (usually hull systems) can be delivered without
also being fielded.

• No Retire and Re-Fielding: Systems that are retired from a mission and sent to
storage cannot be immediately sent back into that same mission during that same time
period.

• 1-Year Duty Minimum: Systems in a mission must remain for at least 1 time period
before they can be swapped out or spoken for by a mission upgrade.

Mission Priority Tiers

• Priority Tiers: Fleet missions may be partitioned into priority tiers wherein each
tier comprises a separate optimization. The modernization of missions in the highest
priority tier is performed first, with subsequent tiers being modernized separately with
the remaining budget. Note that all other business rules must hold in toto across all
tiers. For example, if a product family disallows production gaps, then it may only
be started up once even if it fields systems to missions across multiple tiers; it is not
allowed to start up separately for each tier.

• Tier Phases: Within each tier, there are four separate optimization phases. The
first minimizes schedules violation; the second minimizes budget violation while not
allowing schedule violations to increase; the third maximizes fleet performance while
not allowing either schedule or budget violations to increase; the fourth minimizes
cumulative combined fleet costs while preserving fleet performance and not allowing

16

schedule or budget violations to increase. This ensures that 1) if business rules must
be broken then budget violations are always preferred to schedule violations, 2) per-
formance is achieved via the most intelligent possible allocation of budget resources
and 3) lower tiers, which use the left-over budget from higher tiers, will have the best
possible opportunity for modernization.

• Mission Succession: One mission can be designated to succeed another so that
nothing can be fielded to the succeeding mission until the preceding mission has 1)
completely finished fielding and 2) modernized 100% of its original systems. This is
typically used for corresponding missions in different tiers (i.e. the IFV mission in the
ABCT set must be fully upgraded before the IFV mission in the National Guard set),
but can also be used for missions within the same tier.

Transition Delays

• Delay Partitioning: When upgrading from one system to another (whether in a
mission or in storage) or purchasing a new system, there may be a delay between
when the new system is paid for and when it is delivered. This delay is partitioned
into an administrative delay (where the system has been paid for but is not yet in
production) followed by a production delay (where the system is in production but is
not yet delivered). These delays must be accounted for. Default administrative and
production delay = 0 periods.

• Upgrade Admin Delays: For any upgrade having admin and production delays,
the admin period is allowed to begin even if the seed system is not yet on hand.
However, the seed system must be on hand in order to begin the first production
period. Intuitively, this means that “upgrade paperwork” (i.e. the admin period) can
be started in anticipation of the soon to arrive system. Stated another way, while in
admin periods a system is not yet “spoken for.”

General Scheduling Rules

• System Modernization Requirements: System types in the initial fleet may re-
quire that a certain percentage be transitioned out before a specified time period. This
modernization must be performed. Default requirement = 0%.

• System Mandates: Missions may mandate that a minimum number of a particular
system type be in that mission during the final time period. This minimum must be
met. Default minimum = 0.

• Per-Period Mission Modernization Limit: Missions may place an upper bound
on the number of groups that can modernized per period. These upper bounds must
be respected. Default bound = unlimited.

17

• Cumulative Mission Modernization Limit: Missions may place an upper bound
on the cumulative number of groups of initial systems that can ever modernized. These
upper bounds must be respected. Default bound = unlimited.

• Minimum Group Transition Density: Missions may require that if a transition
occurs, then it must occur for at least a certain number of groups. These transition
requirements may be specified for up to 3 density levels, which operate as follows:

Levels = {12,−,−} implies that a transition must occur for at least 12 groups.
Levels = {12, 16,−} implies that a transition must occur for at exactly 12 or at

least 16 groups.
Levels = {12, 16, 20} implies that a transition must occur for exactly 12 or exactly

16 or at least 20 groups.
Default Levels = {−,−,−}.

• Minimum Group Final Density: Missions may require that the number of groups
of non-initial systems in the mission during the final time period meet certain densities.
These densities may be specified by up to 3 levels, which operate analogously to the
Minimum Group Transition Densities. Default Levels = {−,−,−}.

• System Obviation: A system type may be obviated by any other system type so
that the obviated system can only be delivered prior to any deliveries of the obviating
system.

• Synchronization Sets: A collection of missions and systems within those missions
may be required to modernize or divest simultaneously. For example, if mission M1

uses system S1 and M2 uses S2, and additionally these missions and systems are part
of a sync set, then the number of groups of S1 entering or exiting M1 must equal the
number of groups of S2 entering or exiting M2 for all time periods.

• Storage Consumption Priority: Certain systems in storage may take consumption
priority over certain other systems. This means that if the higher priority system is
exchangeable in storage, then it must be used as an upgrade seed before the lower
priority system can be used as an upgrade seed.

• Upgrades Trump Purchases: For some systems, modernization must be accom-
plished via upgrades, if possible. A new purchase is allowed only if no seeds systems
are available for the upgrade.

Budgets

• Per-Period Budgets: The amount of money spent each period in the 3 categories
of Procurement, O&S, and RDT&E must not violate associated per-period budgets
for these expense types. Furthermore, a user-specified combination of these 3 per-
period budget types must not violate a per-period combined budget. These budgets
must be respected by both future and non-future system expenditures throughtout the
conventional and extended time horizons. Default budgets = unlimited.

18

• Cumulative Budgets: The total amount of money spent throughout the conventional
plus extended time horizon in the 3 categories of Procurement, O&S, and RDT&E
must not violate associated cumulative budgets for these expense types. Furthermore,
a user-specified combination of these 3 budget types (matching the per-period budget
combination) must not violate a combined cumulative budget. These budgets must
be respected by both future and non-future system expenditures. Default budgets =
unlimited.

• Early/Late Transition Charging: No transition may take place in a time period
early enough so that associated costs (whether transition, long lead, or product family
start-up costs) would be incurred prior to the start of the time horizon. Similarly, no
transition may occur in time periods late enough that associate product family start-up
costs would be incurred after the end of the time horizon.

• Long Lead: Some system types may have long lead on their procurement. This means
that a certain percentage of their procurement cost is incurred one year earlier than
normal. (Remember that normally procurement costs are incurred during the first
admin period.)

Product Families

• Active Product Families: Multiple system types can be clustered together into a
single product family, with the interpretation that these systems share production fa-
cilities and/or RDT&E efforts. A product family is considered “active” (thus incurring
per-period costs) during a time period if any member systems are 1) in administrative
delay, 2) in production delay, or 3) being delivered and the production delay is 0. Note
that both low-rate initial production (LRIP) and full-rate production (FRP) count to-
wards these three conditions, even if the LRIP is being incurred for a separate product
family.

• Family Start-Up Costs: Each product family may have an associated start-up cost
profile that must be incurred when the family first begins work for full-rate production.
That is, when the family is 1) in administrative delay, 2) in production delay, or 3)
being delivered and the production delay is 0 for the first non-LRIP systems. These
costs are allocated to missions using a vehicle density weighting method (see the CPAT
Domain Model document for more info.) Default start-up cost = $0.

• Family Per-Period Costs: Each product family may have an associated per-period
cost that must be incurred every time period that the family is active. Note that a
family is active even if its member systems are being produced for LRIP of another
family. Like Family Start-Up Costs, these costs are allocated to missions using a vehicle
density weighting method. Default per-period cost = $0.

• Family Per-Period Capacity: For each product family and time period, there may
be an upper limit on the number of member systems delivered during that period.

19

These limits must be respected, although LRIP does not count towards this capacity.
Default capacity = unlimited.

• Family Cumulative Capacity: For each product family, there may be an upper
limit on the cumulative number of member systems that are ever delivered from the
family. These limits must be respected, although LRIP does not count towards this
capacity. Default capacity = unlimited.

• Minimum Sustaining Rate: Given that systems are delivered from a product family
in a particular time period, there may be a lower bound on the number of systems that
must be delivered from that family in that time period. These bounds must be met,
although LRIP does not count towards this bound. Also, these bounds are not enforced
during the last production period, allowing the production line to wind down. Default
MSR = 0.

• Delivery Gaps: Product families may be restricted so that delivery begins at most
1 time; it cannot start delivering systems, stop, and then subsequently restart. This
means that all systems within that family must be delivered during a collection of
contiguous time periods.

• Production Smoothing: For each product family, there may be a limit on the
variation in number of system delivered from that family when in full-rate production.
This prevents undesirable effects to the manufacturer. Note that in the final period
of full-rate production, this restriction is less stringent so that the production line can
begin to wind down output. Default production variation = unlimited.

• Production Ramp-Up: For each product family, there may be a ramp-up period
prior to full-rate production. During this ramp-up, delivery output is not required
to respect production smoothing. Instead, the number of systems delivered must be
non-decreasing in time during this ramp-up.

• RDT&E Costs: For each product family, there may be an RDT&E cost and systems
from the family can be delivered if and only if the RDT&E cost profile of the family is
incurred. Default cost = $0. The analyst may choose to allow the optimization engine
to delay certain RDT&E costs in order to avoid budgetary bottlenecks. For each time
period that a cost profile is delayed, a separate cost profile must be supplied; a delay
(including d = 0) is valid only if it has an associated cost profile. Incurring a delay of
d time periods also delays the availability of systems in the product family by d time
periods. In addition, if d > 0, then at least one system within that family must also be
delayed by exactly d (other systems may be delayed by more). The analyst may choose
to enable legacy RDT&E cost behavior. As before, systems from the product family
with an RDT&E cost profile may only be produced if and only if the cost profile is
incurred. However, the d = 0 cost profile is incurred regardless of when the associated
systems are first delivered.

20

Low-Rate Initial Production

• LRIP Profiles: Some systems in some product families may require a modest number
of systems be produced in the years leading up to full-rate production for the family.
These LRIP profiles define fixed amounts of systems that must be produced up to
5 years before FRP begins. These LRIP profiles have 3 additional analyst-defined
properties: 1) not all of the LRIP systems produced have to be delivered to storage
(some may be destroyed, for instance), 2) the seed system for the LRIP production
may or may not be explicitly defined and, 3) if the seed system is defined, these seeds
may or may not be extracted from storage when the LRIP profile is produced.

• LRIP Timing: All LRIP profiles incurred by a product family must be lined up so
that their final LRIP delivery come exactly one time period prior to the first non-LRIP
(i.e. FRP) delivery for the family.

Future Programs

• Future Program Activation: Systems that might enter the fleet far in the future
can be grouped together into future programs. Future programs are incorporated into
the fleet via simple go/no-go decisions. If a future program is activated, then at least
one future system associated with the program must be activated. Optionally, each
future program may be restricted so that its activation requires that all of its associated
systems must be fielded.

• Future System Fielding: When a future system is activated, it must be fielded to
its mission according to a fixed, user-defined fielding schedule. Optionally, each future
system may be mandated to be fielded, in which case the schedule phase would be
infeasible were the system not activated.

• Future Obviates Present: Once a future system starts fielding to a mission, no
other “non-future” systems may be fielded to that mission.

21

This page intentionally left blank.

Chapter 2

Formulation Indices, Sets and Tuples

Formulation Indices

The following indices are used consistently throughout the formulation for indexing input
parameters and decision variables:

• i and j denote system types, of which there are approximately 90 due to the breakout
of mission specific variants.

• m denotes missions, which are predefined assignments performed by specific systems
with specific performance qualities. Currently, there are approximately 30 missions.

• t denotes time periods (years) in the planning horizon, which currently spans years
between FY15 and FY50. Note that time periods are partitioned into the conventional
and extended time horizons. The extended time horizon allows for the inclusions of
future programs.

• T denotes the ending period of the conventional planning horizon.

• T denotes the ending period of the extended planning horizon, which spans T < t ≤ T .
Note, if there does not exist an extended time horizon in the model then T = T .

• p denotes the product families, of which there are currently around 25. Each product
family is associated with a start-up cost profile, a per-period cost, a set of RDT&E cost
profiles, and a subset of system types. The start-up cost profile and an RDT&E profile
must be incurred in order to begin producing systems from the family; the per-period
cost must be incurred for every time period that the family is active.

• d denotes the possible number of time periods by which RDT&E costs associated with a
product family (and thus the availability of the associated systems) may be delayed. A
value of d = 0 indicates that the product family starts “on time” while a value of d = 2
indicates that the product family starts two years late. Delays of d ∈ {0, . . . , T − 1}
are only valid if there is an associated cost profile explicitly input for that delay.

• s denotes the synchronization sets. Each sync set is associated with a collection of
missions (given by the set SyncMissionss) and systems (given by SyncSystemss) for

23

which the number of groups of synchronized systems entering or exiting the synchro-
nized missions must be equal for all time periods.

• F denotes the future programs, of which there are about 5. Each future program has
associated costs (predefined startup and active profiles) along with associated future
systems having fixed fielding profiles. Future programs are included in the fleet via
simple go/no-go decisions.

• J denotes the future systems, of which there are about 15. These systems are fielded
according to a fixed profile, and can only be fielded if their parent future program has
been activated.

Useful Sets and Tuples

Fleet Structure and Flow

• Roles defines the valid pairings (i,m) where system i can serve mission m.

• InterimRoles defines the roles (i,m) where system i can serve mission m where i is an
interim system (i.e. neither initial nor final) in mission m. Here InterimRoles ⊆ Roles
and is used to filter the bInterimBrigCanFieldi,m,t variables down to the minimal
number needed.

• MandatedRoles defines the roles (i,m) for which there exists a requirement that at
least a certain number (given by FinalMandatei,m) of systems imust exist in missionm
at the end of the conventional time horizon (time T). Here MandatedRoles ⊆ Roles
and is used to filter the iF inalMandateDeficiti,m variables down to the minimum
number needed.

• Transitions defines the valid triplets (i, j,m) where system i can modernize by some
means to system j in mission m.

• MissionUpgrades defines the valid triplets (i, j,m) where system i can upgrade to
system j in mission m. Here, the seed system i is consumed in the creation of system
j. Note that MissionUpgrades ⊆ Transitions.

• StorageUpgrades defines the valid pairs (i, j) where system i can upgrade to system
j in storage. As in MissionUpgrades, the seed system i is consumed in the creation
of j. Unlike MissionUpgrades, these upgrades happen in storage, not in the context
of a mission, and so can define pairs (i, j) not seen in the set Transitions.

• Inflowi,m defines the set of valid systems j for which (j, i,m) ∈ Transitions. These
are the systems that can modernize to system i in mission m.

• Outflowi,m defines the set of valid systems j for which (i, j,m) ∈ Transitions. These
are the systems that can be modernized from system i in mission m.

24

• PurchasableV eh defines the set of systems i that are able to be purchased. This is
used to filter the iNumBatchesPurchasedi,t variables down to the minimal number
needed.

• DeliverableV eh defines the set of systems i that are able to be delivered (i.e. finished
production). This is used to filter the bV ehDeliveredi,t variables down to the minimal
number needed.

• FreeInterimUpgV eh defines the set of systems i that are 1) able to be upgraded to
with zero cost and then 2) upgraded to something else. This is used to define the
“hull” vehicles in storage.

Optimization Tiers

These tuples are used to pass optimal solutions from higher priority tiers on to the next
tier.

• fixedV ehInMissionUpgraded defines the valid (i, j,m, t,N) quintuples where N ve-
hicles will be upgraded from system i to j in mission m at time t ≤ T as determined
by preceding tier optimizations. This set will be empty during the first tier.

• fixedV ehFromStorage defines the valid (i, j,m, t,N) quintuples where N systems
undergo a storage swap wherein system i leaves mission m and goes to storage while
j leaves storage and enters mission m at time t ≤ T as determined by preceding tier
optimizations. This set will be empty during the first tier.

• fixedModernizedDeficit defines the valid (i,m, t,N) quadruples where system i in
mission m has a modernization deficit of N systems at time t ≤ T as determined by
preceding tier optimizations. This set will be empty during the first tier.

• fixedF inalMandateDeficit defines the valid (i,m,N) triplets where system i in mis-
sion m has a final deficit of N systems at time T as determined by preceding tier
optimizations. This set will be empty during the first tier.

Modernization Scheduling

• MissionSuccessions defines the valid mission pairings (m1,m2) where mission m1

must completely modernize and finish fielding before m2 can begin fielding (m1 is said
to precede m2).

• PrecededMissions defines the set of missions m which are preceded by some other
mission as defined in the MissionSuccessions set.

• SystemObviations defines the valid system pairings (i, j) where system j can only be
produced before system i is produced (i obviates j).

25

• SyncMissionss defines the set of missions belonging to the synchronization set s.

• SyncSystemss defines the set of systems belonging to the synchronization set s.

• UpgDensityF lags defines the triplets (i,m, `) where system i must transition into mis-
sion m so as to either achieve one of up to 3 density levels ` ∈ UpgDensityLevelsm or
exceed the highest density level. It helps filter the bTransitionedToDensityLeveli,m,`
variables down to the minimal set needed.

• FinalDensityF lags defines the triplets (i,m, `) where system i in mission m must ei-
ther achieve one of up to 3 density levels ` ∈ FinalDensityLevelsm or exceed the high-
est density level during the final time period. It helps filter the bHasFinalDensityi,m,`
variables down to the minimal set needed.

• StoragePriorityPairs defines the valid parings (i, j) where if system i is exchangeable
in storage, then j cannot be spoken for as the seed of a storage upgrade.

• UpgBeforePurch defines the set of systems i that must be used up as storage upgrade
seeds before any corresponding new purchases can occur. That is, for all systems j
such that (i, j) is a storage upgrade, no systems j may be purchased while i is available
in storage.

Product Families

• ProductFamilyp defines the set of system types belonging to the product family p.

• V ehPFMembershipi defines the set of product families to which system i belongs.

• PFWithActive defines product families p for which a per-period active cost exists.
This filters the bProductFamilyActivep,t variables down to the minimal number needed.

• PFWithStartup defines product families p for which a start-up cost profile exists. This
filters the bProductFamilyStartupp,t variables down to the minimal number needed.

• PFWithProdCtrls defines product families p for which there exist certain controls on
the production of member systems. These controls include a minimum production rate,
a delivery variance limit for production smoothing, or the restriction that production
gaps are not allowed. This filters the bProductFamilyDeliveredp,t variables down to
the minimal number needed.

• PFWithLrip defines product families p which has an LRIP profile. This filters the
bProductFamilyFrpStartedp,t variables down to the minimal number needed.

• LripProfiles defines the valid pairs (p, i) where system i of product family p has an
LRIP profile.

26

• LripY ears denotes the set of integers {1, 2, . . . ,maxLripY ear}, where maxLripY ear
gives the maximum number of years prior to full-rate production, across all LRIP
profiles, that LRIP systems are produced.

• PFWithRdte defines product families p for which at least one RDT&E cost profile
exists. This filters the bRdteDelayp,d variables down to the minimial number needed.

• AllowedDelaysp defines the delays d for which a product family RDT&E cost profile
exists. These are the valid time periods by which the effort may be delayed, given that
delays are allowed.

Future Programs

• FutureProgramF defines the set of future system types belonging to program F .

• FutureTransitions defines the valid triplets (i,J ,m) where system i can be replaced
by future system J in mission m.

• FutureTransitionPurchases is a subset of FutureTransitions and defines the valid
transition (i,J ,m) where system i can be replaced by future system J in mission m
and system i returns to storage.

• FutureMissionMapJ defines the mission to which future system J is fielded.

• FutureMandatedSystems defines the set of future system types that must field.

• FutureUpgDensityF lags defines triplets (J ,m, `) where system J must transition
into mission m to either achieve one of up to 3 density levels ` ∈ UpgDensityLevelsm or
exceed the highest density level - filtering bFutureTransitionedToDensityLevelJ ,m,`
down to the minimal set needed.

• FutureF inalDensityF lags defines the triplets (J ,m, `) where future system J in
mission m must either achieve one of up to 3 density levels ` ∈ FinalDensityLevelsm
or exceed the highest density level during the final time period. This filters the
bFutureHasFinalDensityJ ,m,` variables down to the minimal set needed.

27

This page intentionally left blank.

Chapter 3

Model Input Parameters

The parameters below capture the specific qualities of the business rules as they relate
to a broad range of performance, fielding, and budgetary requirements.

Optimization Tiers and Phases

• αi,m gives the performance of system type i in mission m. This is the key parame-
ter driving the performance optimization phase, which seeks to maximize the sum of
performance for all system types for all missions over the entire planning horizon.

• CurrentT ier gives the tier number for the missions that are currently being mod-
ernized. Missions with a smaller tier number have already be modernized and their
schedule is fixed. Missions with a larger tier number have not yet been modernized,
and their schedule (of no modernizations) is also fixed.

• Tierm gives the priority tier for mission m. All missions with the smallest tier number
are modernized together first, then missions with the next smallest tier number are
modernized with the budget left over from the first tier. This continues in the same
manner until all tiers are modernized.

• SchedulePhase, BudgetPhase, PerformancePhase, and CostPhase are binary pa-
rameters indicating which of the four phases the optimization is currently performing.
They are used in the objective function to ensure that the proper terms are being
minimized or maximized.

• TierScheduleDeficitBound gives the upper limit on the schedule violation amount
allowed during phases subsequent to the schedule phase within a tier. This limit
equals the minimum schedule violation discovered during the schedule phase.

• BudgetOverrunBound gives the upper limit on the budget overage amount allowed
during phases subsequent to the budget phase. This limit equals the minimum budget
overrun amount discovered in the budget phase.

• MinimumPerformance gives the smallest acceptable value for total fleet performance
during phases subsequent to the performance phase. This lower bound equals the
maximum cumulative fleet performance found during the performance phase.

29

Fleet Structure and Flow

• PurchBatchSizei gives the smallest number of systems i that can be purchased. Fur-
thermore, all purchases must be made in multiples of this batch size. For example, if
PurchBatchSizei = 5, then the number of i that can be purchased at any time is 0,
5, 10, 15, 20, etc.

• AllowPrePurchasing is a binary flag that is set to 1 if pre-purchasing is allowed and 0
if it is not. When pre-purchasing is allowed, systems purchased or upgraded in storage
are not required to be fielded into a mission as soon as their production is complete.
When pre-purchasing is disallowed, these purchased and in-storage-upgraded systems
must be immediately fielded to a mission.

• PurchDelayi gives the number of time periods between when costs are incurred and
when the system i is actually delivered. PurchDelayi is itself the sum of two separate
delay parameters PurchAdminDelayi followed by PurchProdDelayi.

• UpgDelayi,j gives the number of time periods between when costs are incurred for
upgrading system i to j and when the resultant j is actually delivered. This param-
eter applies to both in-mission and in-storage upgrades. UpgDelayi,j is the sum of
parameters UpgAdminDelayi,j followed by UpgProdDelayi,j.

• LripDelayp,i gives the production delay when obtaining LRIP systems i for family
p. Depending on whether the LRIP systems are purchased or upgraded from a seed,
LripDelayp,i is equal to PurchProdDelayi or UpgProdDelayj,i, respectively, where j
is the seed system.

• V ehPerMissionm gives the total number of systems needed for mission m. Note that
this value must equal the total number of systems in the initial inventory for m.

• BrigPerMissionm gives the total number of groups needed for mission m.

• V ehPerBrigadem gives the number of systems per group for mission m. This is used
to ensure that systems are upgraded in group-sized increments.

• InitialV ehInMissioni,m gives the initial number of systems i in mission m. This
parameter describes the complete existing fleet prior to any modernization. Note that
the total initial inventory for each mission must match the number of systems required
for that mission given by the V ehPerMissionm parameter.

• InitialBrigInMissioni,m gives the initial number of groups of system i in mission m.
This is the same information as given in InitialV ehInMission, just denominated in
group size.

• InitialV ehInStoragei gives the initial number of systems i in storage at the beginning
of the planning horizon.

• maxPathLengthm gives the maximum possible path length in the transition diagram
of mission m.

30

Modernization Scheduling

• ModernPercenti,m,t gives the minimum percentage of system i in mission m that must
be modernized to something else by time t ≤ T . Note that system i must be in the
initial inventory for m.

• FinalMandatei,m gives the minimum number of systems i in mission m that must be
in service at the end of the conventional time horizon (T). This is often used when
administrative requirements force certain programs to be mandatory.

• Y earlyBrigTransitLimitm gives the maximum number of groups that can be tran-
sitioned in mission m during a single time period. This is used since groups are not
available for modernization all at once due, for example, to deployment based on the
ARFORGEN cycle.

• CumulativeBrigTransitLimitm gives the maximum number of groups for mission m
that can be transitioned throughout the conventional planning horizon.

• UpgDensityLevelsm defines the transition density levels for mission m. There may be
anywhere between 0 and 3 levels defined. As an example, if UpgDensityLevelsm =
{10, 13, 20}, then the number of groups transitioned into m of a specific system type
must be either 10, 13, 20, or greater than 20.

• FinalDensityLevelsm defines the density levels for mission m at the end of the con-
ventional planning horizon. There may be anywhere between 0 and 3 levels defined.
Consider the case where FinalDensityLevelsm = {10, 13, 20}. Then the number of
groups in m during time T of a specific system type must be either 10, 13, or at least
20.

• ProdFamilyMaxDeliveryp,t gives the upper limit on the number of systems from
product family p that can be delivered at time t ≤ T .

• ProdFamilyMinDeliveryp gives the lower limit on the number of systems from prod-
uct family p that must be delivered at any time period, given that systems from the
family are delivered.

• ProdFamilyMaxCumulativeDeliveryp gives the upper limit on the cumulative num-
ber of systems from product family p that can ever be delivered.

• ProdFamilyAllowGapsp is a binary flag that takes on value 1 to indicate that pro-
duction gaps for family p are allowed.

• MaxDeliveryV ariancep gives the bandwidth within which the product family p must
stay after it reaches full-rate production (that is, after LRIP and/or ramp-up periods).
For example, if fMedianDeliveryLevelp = 100 and MaxDeliveryV ariancep = 0.2,
then the highest number of systems delivered from family p in a time period can only
be 1.1 ∗ 100 and the lowest number of systems delivered can only be 0.9 ∗ 100.

31

• RampUpp gives the number of time-periods prior to full-rate production that the
family p is ramping-up the production line. These periods do not count towards
to MaxDeliveryV ariancep bandwidth. The only restriction is that each successive
ramp-up period must produce at least as many systems as the previous.

• LripPreProductionp,i,t gives the number of systems i of product family p that are
produced t years before full-rate production.

• LripPreDeliveryp,i,t gives the number of systems i of product family p that are pro-
duced t years before full-rate production and are then delivered to storage.

• LripSeedp,i gives the seed system (if any) that is used in producing LRIP systems i for
product family p. This helps determine what LRIP production costs and delays are
incurred: if no seed is given then the purchase cost/delays for system i are used, if the
seed (say system j) is given then the corresponding upgrade from j to i costs/delays
are used.

• LripConsumesSeedsp,i is a binary flag indicating whether the seed system (given by
LripSeedp,i) is removed from storage in producing LRIP systems i in product family
p.

Cost & Budgets

• ProdFamilyStartupCostSchedp,t gives the start-up cost schedule for product family
p during its tth time period of activity. Note the t = 0 represents the time when the
family first becomes active, t = 1 represents the year after the family first becomes
active, and t = −1 represents the year before the family first becomes active. All are
valid time periods to incur start-up costs.

• ProdFamilyActiveCostp gives the recurring cost of keeping product family p active
for one time period.

• PrePurchCosti + PurchCosti gives the cost of purchasing 1 system of type i. Here,
PurchCosti gives the amount charged in the time period work first begins to de-
liver the system (usually the admin period). If a purchase requires long lead, then
PrePurchCosti gives the amount charged one period prior to PurchCosti; otherwise
PrePurchCosti = 0.

• PreUpgCosti,j+UpgCosti,j gives the cost of upgrading (either in mission or in storage)
1 system from type i to type j. UpgCosti,j gives the amount charged in the time
period work first begins to deliver the system. If an upgrade requires long lead, then
PreUpgCosti,j gives the amount charged one period prior to UpgCosti,j; otherwise
PreUpgCosti,j = 0.

• LripPreCostp,i +LripCostp,i denotes the cost of procuring 1 LRIP system of type i in
product family p. Here, LripCostp,i gives the amount charged in the time period work

32

first begins to deliver the LRIP system (usually the admin period). If a procurement
requires long lead, then PreLripCostp,i gives the amount charged one period prior to
LripCostp,i; otherwise PreLripCostp,i = 0.

• V ehOSCosti,m gives the cost for operating and supporting system i in mission m for
one time period.

• RdteCostp,d,t gives the RDT&E cost for product family p at time t ≤ T when it is
delayed by d time periods. This entire cost profile must be incurred in order for any
systems in product family p to be fielded.

• ProcureBudgett gives the per-period budget at time t ≤ T for procurement of systems.
Procurement expenses include system purchase and upgrade costs (both LRIP and
FRP), as well as product family active and start-up costs. When procurement expenses
for future programs are incurred during the conventional time horizon, those expenses
must also respect this budget.

• OSBudgett gives the per-period budget at time t ≤ T for O&S expenditures for systems
in the fleet. Systems in storage do not incur O&S expenses. When O&S expenses for
future programs are incurred during the conventional time horizon, those expenses
must also respect this budget.

• RdteBudgett gives the per-period budget at time t ≤ T for expenditures on RDT&E
efforts. When RDT&E expenses for future programs are incurred during the conven-
tional time horizon, those expenses must also respect this budget.

• CombinedBudgett gives the budget at time t for a user-specified combination of pro-
curement, O&S, and RDT&E expenditures. For example, the user may constrain all
three categories under this budget; or perhaps only procurement and RDT&E expen-
ditures are desired to be constrained together. When expenses for future programs are
incurred during the conventional time horizon, those expenses must also respect this
budget.

• CumulativeProcureBudget gives the cumulative budget for all procurement expenses
ever incurred, both over the conventional and extended planning horizons.

• CumulativeOSBudget gives the cumulative budget for O&S expenses ever incurred,
both over the conventional and extended planning horizons.

• CumulativeRdteBudget gives the cumulative budget for RDT&E expenses ever in-
curred, both over the conventional and extended planning horizons.

• CumulativeCombinedBudget gives the cumulative budget for all (user-specified) com-
bined expenses ever incurred, both over the conventional and extended planning hori-
zons.

33

Future Programs

• FutureF ieldingProfileJ ,t gives the number of groups of future systems of type J
that must be fielded at time t ≤ T , if the future system is activated.

• FutureSysF irstF ieldJ gives the time period during which future system J first fields,
according to the schedule dictated by FutureF ieldingProfileJ ,t.

• FutureProcureBudgett, FutureOSBudgett, FutureRdteBudgett, and
FutureCombinedBudgett give the procurement, O&S, RDT&E, and Combined bud-
gets, respectively, for time periods in the extended time horizon (i.e. T < t ≤ T).

• FutureRdteCostScheduleF ,t, FutureStartupCostScheduleF ,t, and
FutureActiveCostScheduleF ,t give the cost of future program F (if activated) at time
t in the categories of RDT&E, startup, and active cost, respectively.

• FutureTransitCosti,J ,m gives the cost of transitioning 1 system from type i to future
system type J in mission m.

• FutureV ehOSCostJ gives the cost of operating and supporting future system J for
one time period.

• FutureLongLeadi,J ,m gives the fraction of the transition cost from system i to future
system J in mission m that is incurred a year earlier than normal.

• FutureDelayi,J ,m gives the number of time periods between when transition costs are
incurred and when the system i is replaced by J in mission m.

• FutureLripProfileF ,t gives the number of LRIP systems that program F produces at
time t.

• FutureLripDelayJ = FutureDelayi,J ,m for that triplet (i,J ,m) having the largest
FutureTransitCosti,J ,m.

• FutureLripLongLeadJ = FutureLongLeadi,J ,m for that triplet (i,J ,m) having the
largest FutureTransitCosti,J ,m.

• FutureLripCostJ = FutureTransitCosti,J ,m for that triplet (i,J ,m) having the
largest FutureTransitCosti,J ,m.

Auxiliary Parameters

These parameters are not input by the user, but are instead calculated from the value of
other user-entered parameters.

• FirstAvailablei gives the time period at which system type i first becomes available
for delivery. If the system is never available, then the parameter has value T + 1.

34

• MaxY earlyBrigTransitLimit gives maxm Y earlyBrigTransitLimitm.

• TotalV ehPopulation gives the total number of systems in the fleet.

• NumFutureSystems is the total number of types of future systems.

35

This page intentionally left blank.

Chapter 4

MILP Decision Variables

The following is a list of all decision variables used in the MILP formulation. Notice that
the integer iModernizedDeficiti,m,t and iF inalMandateDeficiti,m variables along with the
continuous “Budget Overrun” variables are used to diagnose business rule violations where
the optimization plan is unable to meet strict user-specified upgrade mandates or budgetary
limits.

Non-Negative Integer Variables

• iNumBrigInMissionUpgradedi,j,m,t denotes the number of groups of system type i
which are upgraded to system type j in mission m at time t. It is defined for all
(i, j,m) ∈MissionUpgrades and for all t ≤ T .

• iNumBrigFromStoragei,j,m,t denotes the number of groups of system i that are sent
out of mission m to storage in exchange for system j from storage into mission m at
time t. This is defined for all (i, j,m) ∈ Transitions and for all t ≤ T .

• iNumBatchesPurchasedi,t denotes the number of batches (whose size is given by
PurchBatchSizei) of system i purchased at time t. These purchased systems enter
storage and may immediately be sent out to a mission. This is defined for all i ∈
PurchasableV eh and for all t ≤ T .

• iNumInStorageUpgradedi,j,t denotes the number of systems of type i upgraded in
storage to type j at time t. This is defined for all (i, j) ∈ StorageUpgrades and for all
t ≤ T .

• iModernizedDeficiti,m,t denotes how far system i in mission m is below the system
modernization requirement (given by ModernPercenti,m,t) at time t . Any positive
value indicates a business rule violation. This variable is defined for all (i,m) ∈ Roles
and for all t ≤ T .

• iF inalMandateDeficiti,m denotes how far system i in mission m is below the end-
of-conventional-horizon system mandate (given by FinalMandatei,m). This variable
is denominated by group size (so if a mission is 17 systems below mandate and the
group size is 10, then this variable reports 2 brigades under mandate). Note that the

37

output reports the correct deficit in number of systems. Any positive value indicates
a business rule violation. This variable is defined for all (i,m) ∈MandatedRoles.

• iNumBrigReplacedi,J ,m,t denotes how many groups of system i are replaced by fu-
ture system J in mission m at time t. This variable is defined for all (i,J ,m) ∈
FutureTransitions and for all t ≤ T .

• iFutureSystemMandateDeficitJ denotes how many groups of future system J are
not fielded in the conventional or extended time horizons.

Binary Variables

• bTransitionedToDensityLeveli,m,` denotes if mission m ever has system i at one of
the three density levels ` ∈ UpgDensityLevelsm. This is defined for all (i,m, `) ∈
UpgDensityF lags.

• bHasFinalDensityi,m,` denotes whether system i in mission m during time T achieves
one of the three density levels ` ∈ FinalDensityLevelsm. This is defined for all
(i,m, `) ∈ FinalDensityF lags.

• bV ehDeliveredi,t denotes whether at least 1 system of type i is delivered (i.e. completes
production) at time t. This is defined for all i ∈ DeliverableV eh and for all t ≤ T .

• bV ehInStorageExchangeablei,t indicates whether there is at least 1 system of type i
that is exchangeable in storage at time t. It is defined for all i ∈ PrecedingSystems
and for all t ≤ T .

• bUpgBeforePurchInStorageExchangeablei,t indicates whether there is at least 1 sys-
tem of type i that is exchangeable in storage at time t. It is defined for all i ∈
UpgBeforePurch and for all t ≤ T .

• bLripV ehBaseY earp,i,t denotes whether system i of product family p first delivers non-
LRIP assets (i.e. FRP) at time t. It is defined for all (p, i) ∈ LripProfiles and for all
t.

• bProductFamilyActivep,t denotes whether product family p is active at time t. This
is needed only for families having a per-period active cost. Hence, it is defined for all
p ∈ PFWithActive and for all t ≤ T .

• bProductFamilyStartupp,t denotes whether product family p first becomes active at
time t ≤ T .

• bMissionCanFieldm,t denotes whether mission m is allowed to field in time t based
on the completion of predecessor missions. Since it is only needed for missions that
are preceded by some other mission, it is defined for all m ∈ PrecededMissions and
for all t ≤ T .

38

• bInterimBrigCanFieldi,m,t denotes whether intermediate systems i in mission m are
allowed (but not required) to field in time period t. This is defined for all (i,m) ∈
InterimRoles and for all t ≤ T .

• bFutureProrgamF denotes whether future program F is activated.

• bFutureSystemJ denotes whether future system J is activated.

• bFutureSystemDeficitJ denotes that a mandated future system J does not field.

• bFutureTransitionedToDensityLevelJ ,m,` denotes if mission m ever has system J
at one of the three density levels ` ∈ UpgDensityLevelsm. This is defined for all
(J ,m, `) ∈ FutureUpgDensityF lags.

• bFutureHasFinalDensityJ ,m,` denotes whether future system J in mission m during
time T achieves one of the three density levels ` ∈ FinalDensityLevelsm. This is
defined for all (J ,m, `) ∈ FutureF inalDensityF lags.

Continuous “Binary” Variables

These variables are continuous in the range [0, 1], but are explicitly restricted to binary
values by the nature their associated constraints.

• bV ehEverDeliveredi denotes whether at least 1 system of type i is ever delivered.
This is defined for all i ∈ DeliverableV eh.

• bProductFamilyDeliveredp,t denotes whether any system from family p has been de-
livered at time t ≤ T .

• bProductFamilyFrpStartedp,t denotes whether production in family p starts deliver-
ing FRP assets at time t ≤ T .

• bRdteDelayp,d denotes whether product family p is delayed by d time periods. If
bRdteDelayp,d = 1, then the associated cost profile RdteCostp,d,t is used. If product
family p is not used, then bRdteDelayp,d = 0 for all d.

Non-negative Continuous Variables

The first set of variables is used to represent budget overages in the categories of Pro-
curement, O&S, and RDT&E, as well as a user-specified combination of the three. The first
four sets of variables denote per-period overages in these categories during the conventional
time horizon. The next four denote the per-period overages during the extended time hori-
zon. The last four denote budget overages for the entire planning horizon (conventional plus
extended horizons). These are used to help diagnose modernization plans whose constraints
cannot be met without going over budget.

39

• fProcureBudgetOverrunt for all t ≤ T

• fOSBudgetOverrunt for all t ≤ T

• fRdteBudgetOverrunt for all t ≤ T

• fCombinedBudgetOverrunt for all t ≤ T

• fFutureProcureBudgetOverrunt for all T < t ≤ T

• fFutureOSBudgetOverrunt for all T < t ≤ T

• fFutureRdteBudgetOverrunt for all T < t ≤ T

• fFutureCombinedBudgetOverrunt for all T < t ≤ T

• fCumulativeProcureBudgetOverrun

• fCumulativeOSBudgetOverrun

• fCumulativeRdteBudgetOverrun

• fCumulativeCombinedBudgetOverrun

The following variable is used to represent the median product family production level for
each individual product family and is only used for the Production Smoothing business
rule

• fMedianDeliveryLevelp

40

Chapter 5

MILP Variable Expressions

The following variable expressions are used to conveniently capture additional information
about the model. These expressions are defined as fixed linear functions of input parameters
and decision variables. They greatly aid readability of the formulation without adding the
computational complexity of new variables. Note that the optimization code contains ap-
proximately 15 additional variable expressions than the ones documented below. However,
these addition expressions serve an auxiliary role (mainly for aiding output of optimization
data) and do not affect the mathematical structure in the formulation itself. For that reason,
we have opted not to include these auxiliary expressions in this document.

Fleet Structure and Flow

• NumV ehInMissionUpgradedi,j,m,t denotes the number of systems i transitioned by
an in-mission upgraded to system j for mission m at time t. Note that this is just a
redenomination of the variable iNumBrigInMissionUpgradedi,j,m,t.

∀(i, j,m) ∈MissionUpgrades, t ≤ T

NumV ehInMissionUpgradedi,j,m,t =

iNumBrigInMissionUpgradedi,j,m,t ∗ V ehPerBrigadem (5.1)

• NumV ehFromStoragei,j,m,t denotes the number of systems i that are swapped out for
system j in mission m at time t. Here, i is sent to storage while j is pulled from storage.
Note that this is just a redenomination of the variable iNumBrigFromStoragei,j,m,t.

∀(i, j,m) ∈ Transitions, t ≤ T

NumV ehFromStoragei,j,m,t =

iNumBrigFromStoragei,j,m,t ∗ V ehPerBrigadem (5.2)

• NumBrigInMissioni,m,t denotes the number of groups of system i performing in mis-

41

sion m at time t.

∀(i,m) ∈ Roles, t ≤ T
NumBrigInMissioni,m,t = InitialBrigInMissioni,m

+
∑
j,t∗:

j∈Inflowi,m

t∗≤min{t,T}

iNumBrigFromStoragej,i,m,t∗

+
∑
j,t∗:

(j,i,m)∈MissionUpgrades
t∗≤min{t,T}

iNumBrigInMissionUpgradedj,i,m,t∗

−
∑
j,t∗:

j∈Outflowi,m

t∗≤min{t,T}

iNumBrigFromStoragei,j,m,t∗

−
∑
j,t∗:

(i,j,m)∈MissionUpgrades
t∗≤min{t,T}

iNumBrigInMissionUpgradedi,j,m,t∗

−
∑
J ,t∗:

(i,J ,m)∈FutureTransitions
t∗≤t

iNumBrigReplacedi,J ,m,t∗ (5.3)

• NumV ehInMissioni,m,t denotes the number of systems i performing in mission m at
time t.

∀(i,m) ∈ Roles, t ≤ T
NumV ehInMissioni,m,t = NumBrigInMissioni,m,t ∗ V ehPerBrigadem (5.4)

• NumV ehMissionExchangeablei,m,t denotes the number of systems i in mission m that
are not “spoken for” (i.e. in production for a future mission upgrade) in time t.

∀(i,m) ∈ Roles, t ≤ T

NumV ehMissionExchangeablei,m,t =

NumV ehInMissioni,m,t

−
∑

j: (j,i,m)∈MissionUpgrades

NumV ehInMissionUpgradedj,i,m,t

−
∑

j∈Inflowi,m

NumV ehFromStoragej,i,m,t

−
∑
j,t∗:

(i,j,m)∈MissionUpgrades
t<t∗≤t+UpgProdDelayi,j

NumV ehInMissionUpgradedi,j,m,t∗ (5.5)

42

• TransitionedToRolei,m denotes whether system i ever fields to mission m. Caution,
if there is neither upgrade density nor final density requirements for mission m, then
this expression will take on value 0 regardless of whether systems i transitioned into
m. This is currently acceptable since this expression is only used in cases where there
exists a final density requirement.

∀(i,m) ∈ Roles

TransitionedToRolei,m =
∑

`: (i,m,`)∈UpgDensityF lags

bTransitionedToDensityLeveli,m,`

(5.6)

• NumBrigTransiti,j,m,t denotes the number of systems i transitioned to system j in
mission m at time t. Recall that “transition” refers to both the mission upgrades and
storage swaps.

∀(i, j,m) ∈ Transitions, t ≤ T

NumBrigTransiti,j,m,t = iNumBrigFromStoragei,j,m,t

+ iNumBrigInMissionUpgradedi,j,m,t (5.7)

• CumulativeBrigRetiredFromRolei,m,t denotes the total number of groups of systems
i that are transitioned out of mission m during time periods up to and including t.

∀(i,m) ∈ Roles, t ≤ T

CumulativeBrigRetiredFromRolei,m,t =
∑
j,t∗:

j∈Outflowi,m

t∗≤min{t,T}

iNumBrigFromStoragei,j,m,t∗

+
∑
j,t∗:

(i,j,m)∈MissionUpgrades
t∗≤min{t,T}

iNumBrigInMissionUpgradedi,j,m,t∗

+
∑
J ,t∗

(i,J ,m)∈FutureTransitions
t∗≤t

iNumBrigReplacedi,J ,m,t∗ (5.8)

• NumV ehReplacedi,J ,m,t denotes how many systems i are replaced by future system J
in mission m at time t. This variable is defined for all (i,J ,m) ∈ FutureTransitions
and for all t ≤ T .

∀(i,J ,m) ∈ FutureTransitions, t ≤ T
NumV ehReplacedi,J ,m,t = iNumBrigReplacedi,J ,m,t ∗ V ehPerBrigadem (5.9)

43

Low-Rate Initial Production

• LripDeliveredp,i,t denotes the number of LRIP systems i in product family p that are
delivered to storage at time period t.

∀(p, i) ∈ LripProfiles, t ≤ T

LripDeliveredp,i,t =∑
t∗∈LripY ears

t+t∗≤T

LripPreDeliveryp,i,t∗ ∗ bLripV ehBaseY earp,i,t+t∗ (5.10)

• LripSeedsConsumedi,t denotes the number of systems i that are consumed in the
production of LRIP systems and removed from storage in time period t. Note that
LRIP seeds are consumed (removed from storage) during the first production period
for that upgrade.

∀i, t ≤ T

LripSeedsConsumedi,t =∑
p,j,t∗:

(p,j)∈LripProfiles
t∗∈LripY ears
LripSeedp,j=i

LripConsumesSeedsp,j=1
t+t∗+LripDelayp,j≤T

LripPreProductionp,j,t∗ ∗ bLripV ehBaseY earp,j,t+t∗+LripDelayp,j

(5.11)

• NumLripV ehActivei,t denotes the number of systems i that are in administration or
production periods (i.e. active) due to LRIP at time period t. Here, βp,i is a binary
paramater that takes value 1 if LripDelayp,i = 0 and 0 if LripDelayp,i > 0.

∀i, t ≤ T

NumLripV ehActivei,t =∑
p,t∗,t∗∗:

p∈V ehPFMembershipi
t∗∈LripY ears

t∗∗−t∗−LripDelayp,i≤t<t∗∗−t∗+βp,i

LripPreProductionp,i,t∗ ∗ bLripV ehBaseY earp,i,t∗∗

(5.12)

Storage

• NumV ehPurchasedi,t denotes the number of systems i purchased at time t. These
purchases are placed directly into storage.

∀i ∈ PurchasableV eh, t ≤ T

NumV ehPurchasedi,t = PurchBatchSizei ∗ iNumBatchesPurchasedi,t (5.13)

44

• NumV ehInStoragei,t denotes the number of systems i that are currently in storage at
time t. This is calculated by adding what you start within in storage, plus what flows
into storage up to time t, minus what flows out of storage up to time t. Hence this
expression also counts systems that are “spoken for” in that they are in the middle of
production for a future in-storage upgrade.

∀i, t ≤ T

NumV ehInStoragei,t = InitialV ehInStoragei

+
∑
t∗≤t

NumV ehPurchasedi,t∗

+
∑
j,m,t∗:

(i,j,m)∈Transitions
t∗≤t

NumV ehFromStoragei,j,m,t∗

+
∑
j,t∗:

(j,i)∈StorageUpgrades
t∗≤t

iNumInStorageUpgradedj,i,t∗

+
∑
p,t∗:

(p,i)∈LripProfiles
t∗≤t

LripDeliveredp,i,t∗

−
∑
j,m,t∗:

(j,i,m)∈Transitions
t∗≤t

NumV ehFromStoragej,i,m,t∗

−
∑
j,t∗:

(i,j)∈StorageUpgrades
t∗≤t+UpgDelayi,j

iNumInStorageUpgradedi,j,t∗

−
∑
t∗≤t

LripSeedsConsumedi,t∗

+
∑
J ,m,t∗:

(i,J ,m)∈FutureTransitionPurchases
t∗≤t

NumV ehReplacedi,J ,m,t∗ (5.14)

• NumV ehInStorageExchangeablei,t denotes the number of systems i in time period t
thate are not “spoken for” by a future in-storage upgrade.

∀i, t ≤ T

NumV ehInStorageExchangeablei,t = NumV ehInStoragei,t

−
∑
j,t∗:

(i,j)∈StorageUpgrades
t<t∗≤t+UpgProdDelayi,j

iNumInStorageUpgradedi,j,t∗ (5.15)

45

Cost and Budgets

• ProdFamilyStartupCostp,t gives the startup expense incurred at time t for family p.

∀p ∈ PFWithStartup, t ≤ T

ProdFamilyStartupCostp,t =∑
t∗≤T

bProductFamilyStartupp,t∗ ∗ ProdFamilyStartupCostSchedp,t−t∗ (5.16)

• ProcureExpenset denotes the amount spent on procurement of non-future systems (in
storage upgrades, in mission upgrades, purchases, product families, and LRIP) at time
t within the conventional time horizon.

∀t ≤ T

ProcureExpenset =∑
i∈PurchasableV eh

NumV ehPurchasedi,t+PurchDelayi+1 ∗ PrePurchaseCosti

+
∑

i∈PurchasableV eh

NumV ehPurchasedi,t+PurchDelayi ∗ PurchCosti

+
∑

(i,j,m)∈MissionUpgrades

NumV ehInMissionUpgradedi,j,m,t+UpgDelayi,j+1∗PreUpgCosti,j

+
∑

(i,j,m)∈MissionUpgrades

NumV ehInMissionUpgradedi,j,m,t+UpgDelayi,j ∗ UpgCosti,j

+
∑

(i,j)∈StorageUpgrades

iNumInStorageUpgradedi,j,t+UpgDelayi,j+1 ∗ PreUpgCosti,j

+
∑

(i,j)∈StorageUpgrades

iNumInStorageUpgradedi,j,t+UpgDelayi,j ∗ UpgCosti,j

+
∑

p∈PFWithActive

bProductFamilyActivep,t ∗ ProdFamilyActiveCostp

+
∑
p

ProdFamilyStartupCostp,t

+
∑
p,i,t∗:

(p,i)∈LripProfiles
t+t∗+LripDelayp,i+1≤T

(
LripPreProductionp,i,t∗ ∗ LripPreCostp,i
∗bLripV ehBaseY earp,i,t+t∗+LripDelayp,i+1

)

+
∑
p,i,t∗:

(p,i)∈LripProfiles
t+t∗+LripDelayp,i≤T

(
LripPreProductionp,i,t∗ ∗ LripCostp,i
∗bLripV ehBaseY earp,i,t+t∗+LripDelayp,i

)
(5.17)

• FutureProcureExpenset denotes the total amount spent on procurement of future
systems (i.e. future system transition costs for LRIP and non-LRIP along with future

46

program active and startup costs) at time t within the conventional and extended time
horizons. Here the binary parameter γi,J ,k equals 1 if FutureLongLeadi,J ,m > 0 and 0
otherwise. Also, the binary parameter ηJ equals 1 if FutureLripLongLeadJ > 0 and
0 otherwise.

∀t ≤ T
FutureProcureExpenset =∑

i,J ,m:
(i,J ,m)∈FutureTransitions

t∗=t+FutureDelayi,J ,m+γi,J ,m≤T

(
NumV ehReplacedi,J ,m,t∗ ∗ FutureTransitCosti,J ,m
∗FutureLongLeadi,J ,m

)

+
∑
i,J ,m:

(i,J ,m)∈FutureTransitions
t∗=t+FutureDelayi,J ,m≤T

(
NumV ehReplacedi,J ,m,t∗ ∗ FutureTransitCosti,J ,m
∗(1− FutureLongLeadi,J ,m)

)

+
∑
F

bFutureProgramF ∗ FutureProgramStartupCostScheduleF ,t

+
∑
F

bFutureProgramF ∗ FutureProgramActiveCostScheduleF ,t

+
∑
J :

t∗=t+FutureLripDelayJ+ηJ≤T

(
bFutureSystemJ ∗ FutureLripCostJ
*FutureLripProfileF ,t∗*FutureLripLongLeadJ

)

+
∑
J :

t∗=t+FutureLripDelayJ≤T

(
bFutureSystemJ ∗ FutureLripCostJ
*FutureLripProfileF ,t∗ ∗ (1− FutureLripLongLeadJ)

)
(5.18)

• OSExpenset denotes the total amount spent on O&S of non-future systems at time t
within the conventional time horizon.

∀t ≤ T

OSExpenset =
∑

(i,m)∈Roles

V ehOSCosti,m ∗NumV ehInMissioni,m,t (5.19)

• FutureOSExpenset denotes the total amount spent on O&S of future systems at
time t in the conventional and extended time horizons and the total amount spent for

47

conventional systems in the extended time horizon.

∀t ≤ T
FutureOSExpenset =∑

i,J ,m,t∗:
(i,J ,m)∈FutureTransitions

t∗≤t

(NumV ehReplacedi,J ,m,t∗ ∗ V ehOSCostJ)

+



0 t ≤ T

OSExpenseT
−

∑
i,J ,m,t∗:

(i,J ,m)∈FutureTransitions
(i,m)∈Roles
T<t∗≤t

(NumV ehReplacedi,J ,m,t∗ ∗ V ehOSCosti,m) T < t ≤ T

(5.20)

• RdteEffortExpensep,t denotes the amount spent on RDT&E by product family p at
time t.

∀p ∈ PFWithRdte, t ≤ T

RdteEffortExpensep,t =
∑

d∈AllowedDelaysp

bRdteDelayp,d ∗RdteCostp,d,t (5.21)

• RdteExpenset denotes the amount spent on all non-future RDT&E efforts at time t
within the conventional time horizon.

∀t ≤ T

RdteExpenset =
∑

p∈PFWithRdte

RdteEffortExpensep,t (5.22)

• FutureRdteExpenset denotes the amount spent on RDT&E for all future programs
at time t within the conventional and extended time horizons.

∀t ≤ T
FutureRdteExpenset =∑

F

bFutureProgramF ∗ FutureRdteCostScheduleF ,t (5.23)

• CombinedExpenset denotes the combined amount spent on any set of the expenses
procurement, O&S, and RDT&E for time period t incurred by non-future systems.
Here bProc, bOS, and bRdte are user-specified binary indicators that take on value 1 if
that expense type is included in the combined expense, and 0 otherwise.

∀t ≤ T

CombinedExpenset =

bProc ∗ ProcureExpenset + bOS ∗OSExpenset + bRdte ∗RdteExpenset (5.24)

48

• FutureCombinedExpenset denotes the combined amount spent on any set of the ex-
penses procurement, O&S, and RDT&E for time period t incurred by future systems.

∀t ≤ T
FutureCombinedExpenset =

bProc∗FutureProcureExpenset+bOS∗FutureOSExpenset+bRdte∗FutureRdteExpenset

(5.25)

Production

• NumV ehInProductioni,t denotes the number of systems of type i that are in a pro-
duction period at time t. If a particular mission upgrade has no production delay, then
delivery is also counted as a production period in those cases. This counts all mission
upgrades, storage upgrades, and purchases.

∀i, t ≤ T

NumV ehInProductioni,t =
NumV ehPurchasedi,t if PurchProdDelayi = 0∑

t<t∗≤t+PurchProdDelayi

NumV ehPurchasedi,t∗ if PurchProdDelayi > 0

+
∑
j,m,t∗:

(j,i,m)∈MissionUpgrades
t<t∗≤t+UpgProdDelayj,i

UpgProdDelayj,i>0

NumV ehInMissionUpgradedj,i,m,t∗

+
∑
j,m:

(j,i,m)∈MissionUpgrades
UpgProdDelayj,i=0

NumV ehInMissionUpgradedj,i,m,t

+
∑
j,t∗:

(j,i)∈StorageUpgrades
t<t∗≤t+UpgProdDelayj,i

UpgProdDelayj,i>0

iNumInStorageUpgradedj,i,t∗

+
∑
j:

(j,i)∈StorageUpgrades
UpgProdDelayj,i=0

iNumInStorageUpgradedj,i,t (5.26)

• NumV ehInAdminPeriodi,t denotes the number of systems of type i that are in their
administrative period at time t. This counts all mission upgrades, storage upgrades,

49

and purchases.

∀i, t ≤ T

NumV ehInAdminPeriodi,t =∑
t+PurchProdDelayi<t

∗≤t+PurchDelayi

NumV ehPurchasedi,t∗

+
∑
j,t∗:

(j,i)∈StorageUpgrades
t+UpgProdDelayj,i<t

∗≤t+UpgDelayj,i

iNumInStorageUpgradedj,i,t∗

+
∑
j,m,t∗:

(j,i,m)∈MissionUpgrades
t+UpgProdDelayj,i<t

∗≤t+UpgDelayj,i

NumV ehInMissionUpgradedj,i,m,t∗ (5.27)

• NumV ehDeliveredi,t denotes the number of systems of type i that are delivered (i.e.
completed production) in time t via some production facility. This counts all mission
upgrades, storage upgrades, and purchases.

∀i, t ≤ T

NumV ehDeliveredi,t = NumV ehPurchasedi,t

+
∑
j:

(j,i)∈StorageUpgrades

iNumInStorageUpgradedj,i,t

+
∑
j,m:

(j,i,m)∈MissionUpgrades

NumV ehInMissionUpgradedj,i,m,t (5.28)

Objective Function

The objective function performs different roles depending on the current phase of a
mission priority tier. During the “schedule” phase, the objective function minimizes the
number of schedule violations. Similarly, the “budget” phase objective minimizes the num-
ber of budget violations given that the number of schedule violation found in the previous
phase cannot increase. Running these two phases prior to the performance phase guarantees
that, if at all possible, the performance phase is seeded with a business-rule-compliant initial
solution. Also, the sequential nature of the schedule and budget phases ensures that viola-
tions in schdule and budget cannot be traded off against each other. Since schedule violation
minimization occurs first and is then limited to not increase during the budget phase, this
assures that budget violations are preferred over schedule violations.

The “performance” phase maximizes the cumulative performance of the fleet over the
desired planning horizon (either the conventional horizon, or the conventional plus extended
horizon if future systems are included) by summing the performance (αi,m parameter) of each

50

system in each mission at each time period. This approach tends to choose modernization
schedules that upgrade as many systems as possible as soon as possible so that performance
improvements can take effect over as much of the planning horizon as possible. This is a broad
characterization however, and the model is also able to avoid early modernization options
when it is preferable to wait for even better options in the future. Finally during the “cost”
phase, the objective is to minimize a user-chosen combination of cumulative procurement,
O&S, and RDT&E expenditures while ensuring that the fleet performance attained in the
previous phase is not degraded. This will ensure that the smallest cumulative budget is
spent in the current tier and maximize the left-over budget that can be used for modernizing
lower tiers.

It should also be noted that the formulation source code contains additional variable
expressions relating to the objective function that are not documented here. These additional
structures are used to easily recreate legacy behavior for troubleshooting and debugging, but
are not used by the CPAT tool itself.

• TierScheduleDeficits denotes the sum of all “modernized” or “final mandate” deficit
variables throughout the planning horizon. This takes on value zero only if all schedule
mandates are met.

TierScheduleDeficits =
∑
i,m,t:

(i,m)∈Roles
T ierm=CurrentT ier

t≤T

iModernizedDeficiti,m,t

+
∑
i,m:

(i,m)∈Roles
T ierm=CurrentT ier

iF inalMandateDeficiti,m

+
∑
J

iFutureSystemMandateDeficitJ (5.29)

• BudgetOverruns denotes the sum of all budget overage amounts for all budget types
throughout the conventional and extended planning horizons. This takes on value zero
only if all budgets are satisfied.

BudgetOverruns =
∑
t≤T

(All Per-Period Budget Overruns)

+
∑
t≤T

(All Future Per-Period Budget Overruns)

+ (All Cumulative Budget Overruns) (5.30)

• FuturePerformance denotes the cumulative performance of future systems included
in the fleet through both conventional and extended time horizons in addition to non-

51

future systems in the extended time horizon.

FuturePerformance =
∑
i,m,t:

(i,m)∈Roles
T<t≤T

αi,m ∗NumV ehInMissioni,m,t

+
∑

i,J ,m,t:
(i,J ,m)∈FutureTransitions

t≤T

(
αJ ,m ∗NumV ehReplacedi,J ,m,t
∗(T − t+ 1)

)
(5.31)

• TotalPerformance denotes the cumulative performance of the systems in the fleet.
This may include the addition of future systems, if chosen by the user.

TotalPerformance =
∑
i,m,t:

(i,m)∈Roles
t≤T

αi,m ∗NumV ehInMissioni,m,t

+ FuturePerformance (if future systems are included) (5.32)

• CostPhaseExpenses denote the combined expenses procurement, O&S, and RDT&E
to minimize in the last phase of the optimization for all time periods incurred by
non-future systems and future systems. Here bCP−Proc, bCP−OS, and bCP−Rdte are user-
specified binary indicators that take on value 1 if that expense type is included in the
cost phase, and 0 otherwise.

CostPhaseExpenses =∑
t≤T

(bCP−Proc ∗ ProcureExpenset + bCP−OS ∗OSExpenset

+ bCP−Rdte ∗RdteExpenset) +
∑
t≤T

(bCP−Proc ∗ FutureProcureExpenset

+ bCP−OS ∗ FutureOSExpenset + bCP−Rdte ∗ FutureRdteExpenset) (5.33)

• Obj denotes the objective function that either minimizes schedule violations, min-
imizes budget overruns, maximizes cumulative fleet performance, or minimizes the
cumulative combined fleet cost, depending on the current phase. The SchedulePhase,
BudgetPhase, PerformancePhase, and CostPhase are binary parameters that indi-
cate which phase is currently being optimized. One of these parameters is always 1,
while the rest are 0.

Obj = −SchedulePhase ∗ TierScheduleDeficits
−BudgetPhase ∗ 0.00001 ∗BudgetOverruns
+ PerformancePhase ∗ TotalPerformance
− CostPhase ∗ 0.00001 ∗ CostPhaseExpenses

(5.34)

52

Chapter 6

MILP Constraints

Multi-Tier, Multi-Phase Constraints

• For phases after the schedule phase, limit the amount of schedule violation so that
it cannot increase from the violation amount reported in the schedule phase. During
the schedule phase, the TierScheduleDeficitBound parameter is not restrictive. This
partially addresses the Tier Phases business rule.

TierScheduleDeficits ≤ TierScheduleDeficitBound+ 0.001 (6.1)

• For phases after the budget phase, limit the amount of budget overrun so that it cannot
increase from the overages reported in the budget phase. Prior to and during the
budget phase, the BudgetOverrunBound parameter is not restrictive. This partially
addresses the Tier Phases business rule.

BudgetOverruns ≤ BudgetOverrunBound+ 0.001 (6.2)

• For phases after the performance phase, ensure that the cumulative fleet performance
does not degrade from the value found in the performance phase. Prior to and during
the performance phase, the MinimumPerformance parameter is not restrictive. This
partially addresses the Tier Phases business rule.

TotalPerformance >= MinimumPerformance− 0.001 (6.3)

• Constraints (6.4)–(6.7) ensure that no modernization occurs for missions in lower-
priority tiers than the current tier and address the Priority Tiers business rule.

∀(i, j,m) ∈MissionUpgrades, t ≤ T where Tierm > CurrentT ier

NumV ehInMissionUpgradedi,j,m,t = 0 (6.4)

∀(i, j,m) ∈ Transitions, t ≤ T where Tierm > CurrentT ier

NumV ehFromStoragei,j,m,t = 0 (6.5)

∀(i,m) ∈ Roles, t ≤ T where Tierm > CurrentT ier

iModernizedDeficiti,m,t = 0 (6.6)

53

∀(i,m) ∈ Roles where Tierm > CurrentT ier

iF inalMandateDeficiti,m = 0 (6.7)

• Constraints (6.8)–(6.11) ensure that the modernization schedules previously deter-
mined for higher-priority tiers continue to be held while optimizing lower priority tiers,
also addressing the Priority Tiers business rule.

∀(i, j,m, t,N) ∈ fixedV ehInMissionUpgraded

iNumBrigInMissionUpgradedi,j,m,t = N (6.8)

∀(i, j,m, t,N) ∈ fixedV ehFromStorage
iNumBrigFromStoragei,j,m,t = N (6.9)

∀(i,m, t,N) ∈ fixedModernizedDeficit

iModernizedDeficiti,m,t = N (6.10)

∀(i,m,N) ∈ fixedF inalMandateDeficit

iF inalMandateDeficiti,m = N (6.11)

• Constraints (6.12)–(6.14) ensure that if one mission precedes another, than the suc-
ceeding mission cannot field until the preceding mission has 1) finished fielding and 2)
modernized 100% of its initial systems. This fulfills the Mission Succession business
rule.

∀m ∈ PrecededMissions, t ≤ T∑
i,j: (i,j,m)∈Transitions

iNumBrigFromStoragei,j,m,t

+
∑

i,j: (i,j,m)∈MissionUpgrades

iNumBrigInMissionUpgradedi,j,m,t

≤ maxY earlyBrigTransitLimit ∗ bMissionCanFieldm,t (6.12)

54

∀m ∈ PrecededMissions, t ≤ T

1− bMissionCanFieldm,t

≤
∑
i,m∗:

(i,m∗)∈Roles
(m∗,m)∈MissionSuccessions
InitialBrigInMissioni,m∗>0

NumBrigInMissioni,m∗,t

+
∑

i,j,m∗,t∗:
(i,j,m∗)∈Transitions

(m∗,m)∈MissionSuccessions
t≤t∗≤T

iNumBrigFromStoragei,j,m∗,t∗

+
∑

i,j,m∗,t∗:
(i,j,m∗)∈MissionUpgrades

(m∗,m)∈MissionSuccessions
t≤t∗≤T

iNumBrigInMissionUpgradedi,j,m∗,t∗ (6.13)

∀m ∈ PrecededMissions, t ≤ T ∑
m∗: (m∗,m)∈MissionSuccessions

(BrigPerMissionm∗ ∗ (maxPathLengthm∗ + 1))


∗ (1− bMissionCanFieldm,t)

≥
∑
i,m∗:

(i,m∗)∈Roles
(m∗,m)∈MissionSuccessions
InitialBrigInMissioni,m∗>0

NumBrigInMissioni,m∗,t

+
∑

i,j,m∗,t∗:
(i,j,m∗)∈Transitions

(m∗,m)∈MissionSuccessions
t≤t∗≤T

iNumBrigFromStoragei,j,m∗,t∗

+
∑

i,j,m∗,t∗:
(i,j,m∗)∈MissionUpgrades

(m∗,m)∈MissionSuccessions
t≤t∗≤T

iNumBrigInMissionUpgradei,j,m∗,t∗ (6.14)

System Flow Conservation Constraints

• This constraint implies that the number of systems i in storage at time t, less the ones
already spoken for, must always be at least as many as how many are taken out at t.
This fulfills the storage part of the Outflow Availability business rule.

∀i, t ≤ T

NumV ehInStorageExchangeablei,t ≥ 0 (6.15)

55

• This constraint ensures that the number of systems i in mission m at time t (not
counting the ones that have been spoken for by future mission upgrades) is nonnegative.
This helps fulfill the mission part of the Outflow Availability business rule.

∀(i,m) ∈ Roles, t ≤ T

NumV ehMissionExchangeablei,m,t ≥ 0 (6.16)

• This constraint limits the pool of potential systems i that can be upgraded in storage
at time t (purchased i’s are not included in this pool). This partially prevents newly
purchased systems in storage from being upgraded before they are sent to mission,
thus addressing the No Pre-Usage Upgrades business rule.

∀i, t ≤ T ∑
j,t∗:

(i,j)∈StorageUpgrades
t∗≤t+UpgProdDelayi,j

iNumInStorageUpgradedi,j,t∗ ≤

InitialV ehInStoragei

+
∑
j,m,t∗:

(i,j,m)∈Transitions
t∗≤t

NumV ehFromStoragei,j,m,t∗

+
∑
j,t∗:

(j,i)∈StorageUpgrades
t∗≤t

iNumInStorageUpgradedj,i,t∗

+
∑
J ,m,t∗:

(i,J ,m)∈FutureTransitionPurchases
t∗≤t

NumV ehReplacedi,J ,m,t∗ (6.17)

• This constraint is only used if pre-purchasing is turned off and ensures that all systems
i purchased up in-storage-upgraded to at time period t must be fielded to some mission
m in that same time period. This addresses the Optional Pre-Purchasing business
rule.
If AllowPrePurchasing = 0

∀i, t ≤ T

NumV ehPurchasedi,t

+
∑
j:

(j,i)∈StorageUpgrades

iNumInStorageUpgradedj,i,t ≤

∑
j,m:

(j,i,m)∈Transitions

NumV ehFromStoragej,i,m,t (6.18)

56

• Constraints (6.19) and (6.20) ensure that any group of systems i that are retired from
some mission m in time period t cannot be immediately re-fielded back to the same
mission in the same time period. This fulfills the No Retire and Re-Field business
rule.

∀(i,m) ∈ InterimRoles, t ≤ T

Y earlyBridgadeTransitLimitm ∗ bInterimBrigCanFieldi,m,t ≥∑
j∈Inflowi,m

iNumBrigFromStoragej,i,m,t (6.19)

∀(i,m) ∈ InterimRoles, t ≤ T

Y earlyBridgadeTransitLimitm ∗ (1− bInterimBrigCanFieldi,m,t) ≥∑
j∈Outflowi,m

iNumBrigFromStoragei,j,m,t (6.20)

General Scheduling Constraints

• Constraints (6.21)–(6.23) ensure that at the beginning of the planning horizon, no
systems are purchased, in-mission upgraded, or in-storage upgraded earlier than the
length of the associated delivery delay (plus an extra year if there is an accompanying
long lead). If this was not done, then costs could be incurred prior to the beginning of
the planning horizon. These fulfill the Early Transition Charging business rule.

∀i ∈ PurchasableV eh, t ≤
{
PurchDelayi + 1 if PrePurchCosti > 0
PurchDelayi if PrePurchCosti = 0

iNumBatchesPurchasedi,t = 0 (6.21)

∀(i, j,m) ∈MissionUpgrades, t ≤
{
UpgDelayi,j + 1 if PreUpgCosti,j > 0
UpgDelayi,j if PreUpgCosti,j = 0

iNumBrigInMissionUpgradedi,j,m,t = 0 (6.22)

∀(i, j) ∈ StorageUpgrades, t ≤
{
UpgDelayi,j + 1 if PreUpgCosti,j > 0
UpgDelayi,j if PreUpgCosti,j = 0

iNumInStorageUpgradedi,j,t = 0 (6.23)

• This constraint ensures that the required percentage of initial systems i in mission
m are retired (i.e. transitioned out) by time t. If it is not possible to retire the
required percentage due to other constraints, then this deficit is captured by the

57

iModernizedDeficiti,m,t variables. This fulfills the System Modernization Re-
quirements business rule.

∀(i,m) ∈ Roles, t ≤ T where ModernPercenti,m,t > 0 and Tierm = CurrentT ier

CumulativeBrigRetiredFromRolei,m,t∗V ehPerBrigadem+iModernizedDeficiti,m,t ≥
ModernPercenti,m,t ∗ InitialV ehInMissioni,m (6.24)

• This constraint ensures that the number of groups transitioned for mission m at time t
is below a specified limit, fulfilling the Per-Period Mission Modernization Limit
business rule.

∀m, t ≤ T where Y earlyBrigTransitLimitm <∞ and Tierm = CurrentT ier∑
i,j: (i,j,m)∈Transitions

NumBrigTransiti,j,m,t ≤ Y earlyBrigTransitLimitm (6.25)

• This constraint ensures that the cumulative number of groups of initial systems mod-
ernized for mission m throughout the conventional and extended planning horizon is
below a specified limit. This fulfills the Cumulative Mission Modernization Limit
business rule.

∀m where CumulativeBrigTransitLimitm <∞ and Tierm = CurrentT ier∑
i,j,t:

(i,j,m)∈Transitions
InitialV ehInMissioni,m>0

t≤T

NumBrigTransiti,j,m,t

+
∑
i,J ,t:

(i,J ,m)∈FutureTransitions
InitialV ehInMissioni,m>0

t≤T

iNumBrigReplacedi,J ,m,t ≤ CumulativeBrigTransitLimitm

(6.26)

• This constraint ensures that the number of systems i in mission m meets or exceeds a
certain level by time T , fulfilling the System Mandates business rule.

∀(i,m) ∈MandatedRoles where Tierm = CurrentT ier

NumV ehInMissioni,m,T + iF inalMandateDeficiti,m ∗ V ehPerBrigadem ≥
FinalMandatei,m (6.27)

• This constraint ensures for system obviation pairs (i, j) that system j can be delivered
only if system i has not been delivered at time t or earlier. In other words, j deliveries
can only occur before i deliveries. This fulfills the System Obviation business rule.

∀(i, j) ∈ SystemObviations, t, t∗ where i, j ∈ DeliverableV eh and t∗ ≤ t ≤ T

bV ehDeliveredj,t <= 1− bV ehDeliveredi,t∗ (6.28)

58

• This constraint ensures that for each synchronization set s, the number of groups of
synchronized systems in the synchronized mission is always equal. This fulfills the
Synchronization Sets business rule. Note that for any set, such as Z = {z1, z2, z3},
we have the syntax that First(Z) = z1.

∀s,m ∈ SyncMissionss, t ≤ T where m 6= First(SyncMissionss)∑
i,m∗:

(i,m∗)∈Roles
m∗=First(SyncMissionss)

i∈SyncSystemss

NumBrigInMissioni,m∗,t =
∑
i:

(i,m)∈Roles
i∈SyncSystemss

NumBrigInMissioni,m,t

(6.29)

• Constraints (6.30)–(6.32) properly set the value of the bV ehInStorageExchangeablei,t
indicator variable and then enforce the Storage Consumption Priority business
rule.

∀i, t ≤ T where ∃(i, j) ∈ StoragePriorityPairs
bV ehInStorageExchangeablei,t ≤ NumV ehInStorageExchangeablei,t (6.30)

∀i, t ≤ T where ∃(i, j) ∈ StoragePriorityPairs
TotalV ehPopulation ∗ bV ehInStorageExchangeablei,t ≥

NumV ehInStorageExchangeablei,t (6.31)

∀i, t ≤ T where ∃(i, j) ∈ StoragePriorityPairs∑
j,j∗:

(i,j)∈StoragePriorityPair
(j,j∗)∈StorageUpgrades
t+UpgProdDelayj,j∗≤T

iNumInStorageUpgradedj,j∗,t+UpgProdDelayj,j∗ ≤

TotalV ehPopulation2 ∗ (1− bV ehInStorageExchangeablei,t) (6.32)

• Constraints (6.33) – (6.35) properly set bUpgBeforePurchInStorageExchangeablei,t
and then enforce the Upgrades Trump Purchases business rule.

∀i ∈ UpgBeforePurch, t ≤ T

bUpgBeforePurchInStorageExchangeablei,t ≤
NumV ehInStorageExchangeablei,t (6.33)

∀i ∈ UpgBeforePurch, t ≤ T

TotalV ehPopulation ∗ bUpgBeforePurchInStorageExchangeablei,t ≥
NumV ehInStorageExchangeablei,t (6.34)

59

∀i ∈ UpgBeforePurch, t ≤ T∑
j:

(i,j)∈StorageUpgrades
j∈PurchasableV eh

t+PurchProdDelayj≤T

iNumBatchesPurchasedj,t+PurchProdDelayj ≤

TotalV ehPopulation ∗ (1− bUpgBeforePurchInStorageExchangeablei,t) (6.35)

Budget Constraints

• Constraints (6.36) – (6.39) combine to fulfill the Per-Period Budgets business rule
for time periods in the conventional time horizon. Note that some future programs
may incur costs during the conventional time horizon that must be accounted for. Also
note that if other constraints throughout the formulation force a particular per-period
budget to be violated, then the amount of overage is determined by the appropriate
budget constraint and stored in the “Overrun” variables. These variables can help the
analyst pin-point where particular business rule violations arise due to overly restrictive
input parameters.

∀t ≤ T where ProcureBudgett <∞
ProcureExpenset + FutureProcureExpenset ≤

ProcureBudgett + fProcureBudgetOverrunt (6.36)

∀t ≤ T where OSBudgett <∞
OSExpenset + FutureOSExpenset ≤

OSBudgett + fOSBudgetOverrunt (6.37)

∀t ≤ T where RdteBudgett <∞
RdteExpenset + FutureRdteExpenset ≤

RdteBudgett + fRdteBudgetOverrunt (6.38)

∀t ≤ T where CombinedBudgett <∞
CombinedExpenset + FutureCombinedExpenset ≤

CombinedBudgett + fCombinedBudgetOverrunt (6.39)

• Constraints (6.40) – (6.43) combine to fulfill the Per-Period Budgets business rule
in the extended time horizon. They operate in a manner similar to the previous con-
straints above, but only need to limit expenses incurred in the extended time horizon.

∀ T < t ≤ T where FutureProcureBudgett <∞
FutureProcureExpenset ≤

FutureProcureBudgett + fFutureProcureBudgetOverrunt (6.40)

60

∀ T < t ≤ T where FutureOSBudgett <∞
FutureOSExpenset ≤

FutureOSBudgett + fFutureOSBudgetOverrunt (6.41)

∀ T < t ≤ T where FutureRdteBudgett <∞
FutureRdteExpenset ≤

FutureRdteBudgett + fFutureRdteBudgetOverrunt (6.42)

∀ T < t ≤ T where FutureCombinedBudgett <∞
FutureCombinedExpenset ≤

FutureCombinedBudgett + fFutureCombinedBudgetOverrunt (6.43)

• Constraints (6.44) – (6.47) combine to fulfill the Cumulative Budgets business rule.
“Overrun” variables are used here in a similar manner to the previous per-period
constraints. Note that a cumulative budget applies both to the future and non-future
system expenses across both the conventional and extended time horizons.

if CumulativeProcureBudget <∞∑
t≤T

ProcureExpenset +
∑
t≤T

FutureProcureExpenset ≤

CumulativeProcureBudget+ fCumulativeProcureBudgetOverrun (6.44)

if CumulativeOSBudget <∞∑
t≤T

OSExpenset +
∑
t≤T

FutureOSExpenset ≤

CumulativeOSBudget+ fCumulativeOSBudgetOverrun (6.45)

if CumulativeRdteBudget <∞∑
t≤T

RdteExpenset +
∑
t≤T

FutureRdteExpenset ≤

CumulativeRdteBudget+ fCumulativeRdteBudgetOverrun (6.46)

if CumulativeCombinedBudget <∞∑
t≤T

CombinedExpenset +
∑
t≤T

FutureCombinedExpenset ≤

CumulativeCombinedBudget+ fCumulativeCombinedBudgetOverrun (6.47)

61

Group Density Levels

• Constraints (6.48) and (6.49) ensure that the bTransitionedToDensityLeveli,m,` in-
dicator variable equals 1 if and only if there are ever any transitions to system i in
mission m and those transitions achieve a density level of ` ∈ UpgDensityLevelsm
groups. These constraints partially fulfill the Minimum Group Transition Den-
sity business rule.

∀(i,m) where ∃(i,m, `) ∈ UpgDensityF lags∑
j,t:

(j,i,m)∈Transitions
t≤T

NumBrigTransitj,i,m,t ≥

∑
`∈UpgDensityLevelsm

(bTransitionedToDensityLeveli,m,` ∗ `) (6.48)

∀(i,m) where ∃(i,m, `) ∈ UpgDensityF lags∑
j,t:

(j,i,m)∈Transitions
t≤T

NumBrigTransitj,i,m,t ≤

∑
`:

`∈UpgDensityLevelsm
6̀=max(UpgDensityLevelsm)

(bTransitionedToDensityLeveli,m,` ∗ `)

+
∑
`:

`∈UpgDensityLevelsm
`=max(UpgDensityLevelsm)

(bTransitionedToDensityLeveli,m,` ∗BrigPerMissionm)

(6.49)

• Constraint (6.50) ensures that system i in mission m can satisfy at most 1 of the
minimum transition density levels. Note that if system i never transitions into system
m at any time, then all three of the bTransitionedToDensityLevel binaries will be
0. Together with (6.48) and (6.49), this fulfills the Minimum Group Transition
Density business rule.

∀(i,m) where ∃(i,m, `) ∈ UpgDensityF lags∑
`∈UpgDensityLevelsm

bTransitionedToDensityLeveli,m,` ≤ 1 (6.50)

• Constraints (6.51) and (6.52) ensure the bHasFinalDensityi,m,` indicator variable
equals 1 if and only if system i in mission m has density ` ∈ FinalDensityLevelsm
groups at time T . These constraints partially fulfill the Minimum Group Final

62

Density business rule.

∀(i,m, `) ∈ FinalDensityF lags
NumBrigInMissioni,m,T ≥

(bHasFinalDensityi,m,` + TransitionedToRolei,m − 1) ∗ `

−
{
CumulativeBrigRetiredFromRolei,m,T ∗ ` if ` = max(FinalDensityLevelsm)

0 otherwise

(6.51)

∀(i,m) where ∃(i,m, `) ∈ FinalDensityF lags
NumBrigInMissioni,m,T ≤∑
`:

`∈FinalDensityLevelsm
6̀=max(FinalDensityLevelsm)

(bHasFinalDensityi,m,` ∗ `)

+
∑
`:

`∈FinalDensityLevelsm
`=max(FinalDensityLevelsm)

(bHasFinalDensityi,m,` ∗BrigPerMissionm)

(6.52)

• Constraint (6.53) ensures that system i in mission m can satisfy at most 1 of the final
transition density levels. Note that if system i never transitions into system m at any
time, then all three of the bHasFinalDensity binaries will be 0. Together with (6.51)
and (6.52), this fulfills the Minimum Group Final Density business rule.

∀(i,m) where ∃(i,m, `) ∈ FinalDensityF lags∑
`∈FinalDensityLevelsm

bHasFinalDensityi,m,` ≤ 1 (6.53)

System Production Constraints

• Constraints (6.54) and (6.55) ensure that the bV ehDelivered flag for each time period
is 1 if and only if systems are delivered in that period. This flag is then used to help
fulfill a variaty of business rules.

∀i ∈ DeliverableV eh, t ≤ T

bV ehDeliveredi,t ≤ NumV ehDeliveredi,t (6.54)

∀i ∈ DeliverableV eh, t ≤ T

TotalV ehPopulation ∗ bV ehDeliveredi,t ≥ NumV ehDeliveredi,t (6.55)

63

• If a system i is not a free interim upgrade, then this constraint ensures that i cannot be
delivered at time t unless it is also fielded to a mission at some other time. This avoids
unnecessary production costs and fulfills the Delivery Implies Fielding business
rule.

∀i, t ≤ T where i ∈ DeliverableV eh and i 6∈ FreeInterimUpgV eh∑
j,m,t∗:

(j,i,m)∈Transitions
t∗≤T

NumBrigTransitj,i,m,t∗ ≥ bV ehDeliveredi,t (6.56)

• Constraints (6.57) and (6.58) ensure that the bV ehEverDeliveredi flag is 1 if and only
if system i ever delivered throughout the conventional planning horizon. This flag will
then determine which LRIP profiles to activate.

∀i ∈ DeliverableV eh, t ≤ T

bV ehEverDeliveredi ≥ bV ehDeliveredi,t (6.57)

∀i ∈ DeliverableV eh

bV ehEverDeliveredi ≤
∑
t≤T

bV ehDeliveredi,t (6.58)

Product Family Constraints

• Constraints (6.59) and (6.60) ensure that for each product family having a minimum
production rate, the bProductFamilyDeliveredp,t indicator variable is 1 if and only if
at least one of the member systems of p is delivered at time t. This flag helps support
the Minimum Sustaining Rate and Production Smoothing business rules.

∀p ∈ PFWithProdCtrls, t ≤ T

bProductFamilyDeliveredp,t ≤
∑

i∈ProductFamilyp∩DeliverableV eh

bV ehDeliveredi,t (6.59)

∀p ∈ PFWithProdCtrls, i ∈ DeliverableV eh, t ≤ T

bProductFamilyDeliveredp,t ≥ bV ehDeliveredi,t (6.60)

• Constraints (6.61) and (6.62) ensure that for each product family p having an active
cost and for each t, the bProductFamilyActivep,t flag is 1 if and only if some member
systems of p are in production or administrative periods (for either LRIP or FRP) at
time t. This flag supports the Active Product Families and Family Per-Period

64

Costs business rules.

∀p ∈ PFWithActive, t ≤ T

bProductFamilyActivep,t ≤∑
i∈ProductFamilyp

NumV ehInProductioni,t +
∑

i∈ProductFamilyp

NumV ehInAdminPeriodi,t

+
∑

i∈ProductFamilyp

NumLripV ehActivei,t (6.61)

∀p ∈ PFWithActive, t ≤ T

10 ∗ TotalV ehPopulation ∗ bProductFamilyActivep.t ≥∑
i∈ProductFamilyp

NumV ehInProductionp,t +
∑

i∈ProductFamilyp

NumV ehInAdminPeriodi,t

+
∑

i∈ProductFamilyp

NumLripV ehActivei,t (6.62)

• Constraints (6.63)–(6.65) ensure that for each product family p having a start-up cost
profile, the flag bProductFamilyStartupp,t is 1 if and only if time t is the first time
that a member system of p enters a FRP delay period. This helps fulfill the Family
Start-Up Costs business rule.

∀p ∈ PFWithStartup, t ≤ T

bProductFamilyStartupp,t ≤∑
i∈ProductFamilyp

(NumV ehInProductioni,t +NumV ehInAdminPeriodi,t) (6.63)

∀p ∈ PFWithStartup, t ≤ T

TotalV ehPopulation ∗
∑
t∗≤t

bProductFamilyStartupp,t∗

≥
∑

i∈ProductFamilyp

(NumV ehInProductioni,t +NumV ehInAdminPeriodi,t) (6.64)

∀p ∈ PFWithStartup ∑
t≤T

bProductFamilyStartupp,t ≤ 1 (6.65)

• Constraints (6.66)–(6.68) ensure that for each product family p having LRIP, the
bProductFamilyFrpStartedp,t flag is 1 if and only if time t is the first time that a

65

member system of p delivers FRP assets. This helps fulfill the LRIP Timing busi-
ness rule.

∀p ∈ PFWithLrip, t ≤ T

bProductFamilyFrpStartedp,t ≤
∑

i∈ProductFamilyp∩DeliverableV eh

bV ehDeliveredi,t

(6.66)

∀p, i, t ≤ T where p ∈ PFWithLrip and i ∈ ProductFamilyp ∩DeliverableV eh∑
t∗≤t

bProductFamilyFrpStartedp,t∗ ≥ bV ehDeliveredi,t (6.67)

∀p ∈ PFWithLrip ∑
t≤T

bProductFamilyFrpStartedp,t ≤ 1 (6.68)

• This constraint ensures that for each product family p that disallows gaps, all systems
in the family must be delivered during a set of contiguous time periods. This satisfies
the Delivery Gaps business rule.

∀p, t, t∗ where ProdFamilyAllowGapsp = 0 and t∗ + 1 < t ≤ T

bProductFamilyDeliveredp,t − bProductFamilyDeliveredp,t−1
+ bProductFamilyDeliveredp,t∗ ≤ 1

(6.69)

• Constraints (6.70) and (6.71) ensure that each product family p having a startup
profile can only become active at times when the entire start-up cost profile would be
incurred (i.e. no parts of the cost profile occur before or after the planning horizon).
This partially fulfills the Early/Late Transition Charging business rule.

∀p ∈ PFWithStartup, t ≤ T where
∑

t≤t∗<T

ProdFamilyStartupCostSchedp,−t∗ > 0

bProductFamilyStartupp,t = 0 (6.70)

∀p ∈ PFWithStartup, t ≤ T where
∑

T−t<t∗<T

ProdFamilyStartupCostSchedp,t∗ > 0

bProductFamilyStartupp,t = 0 (6.71)

66

• This constraint ensures that the number of systems delivered each time period by each
product family is less than the specified capacity. This fulfills this Family Per-Period
Capacity business rule.

∀p, t ≤ T where ProdFamilyMaxDeliveryp,t <∞∑
i∈ProductFamilyp

NumV ehDeliveredi,t ≤ ProdFamilyMaxDeliveryp,t (6.72)

• This constraint ensures that the cumulative number of systems delivered by each prod-
uct family is less than the specified capacity. This fulfills this Family Cumulative
Capacity business rule.

∀p where ProdFamilyMaxCumulativeDeliveryp <∞∑
i,t:

i∈ProductFamilyp
t≤T

NumV ehDeliveredi,t ≤ ProdFamilyMaxCumulativeDeliveryp

(6.73)

• This constraint ensures that if systems are delivered from product family p at time t,
then the number of systems delivered must at least meet the minimum sustaining rate
for that family. This fulfills the Minimum Sustaining Rate business rule.

∀p, t < T where 1 < ProdFamilyMinDeliveryp < ProdFamilyMaxDeliveryp,t∑
i∈ProductFamilyp

NumV ehDeliveredi,t ≥

bProductFamilyDeliveredp,t ∗ ProdFamilyMinDeliveryp

− (1− bProductFamilyDeliveredp,t+1) ∗ TotalV ehPopulation (6.74)

• Constraints (6.75)–(6.78) combine to enforce the RDT&E Costs business rule when
non-zero RDT&E delays are allowed. They are enforced if and only if the delays are
allowed.

If EnableRdteDelays = 1

∀p ∈ PFWithRdte, d

bRdteDelayp,d ≤
∑
i:

i∈ProductFamilyp∩DeliverableV eh
F irstAvailablei+d≤T

bV ehDeliveredi,F irstAvailablei+d (6.75)

∀p ∈ PFWithRdte, d, i where i ∈ DeliverableV eh and FirstAvailablei+d ≤ T∑
d∗≤d

bRdteDelayp,d∗ ≥ bV ehDeliveredi,F irstAvailablei+d (6.76)

67

∀p ∈ PFWithRdte ∑
d

bRdteDelayp,d ≤ 1 (6.77)

∀p ∈ PFWithRdte, d /∈ AllowedDelaysp ∑
d

bRdteDelayp,d = 0 (6.78)

• Constraints (6.79)–(6.81) combine to enforce legacy RDT&E behavior if the parame-
ter EnableRdteDelays = 0. Note that this does not imply that systems in a product
family with RDT&E cost profiles can only start on time or not at all. Instead, legacy
behavior allows systems in the product family to start at any time, as long as the
0-delay cost profile is incurred.

If EnableRdteDelays = 0

∀p ∈ PFWithRdte, d > 0

bRdteDelayp,d = 0 (6.79)

∀p ∈ PFWithRdte

bRdteDelayp,0 ≤
∑
i,t:

i∈ProductFamilyp∩DeliverableV eh
t≤T

bV ehDeliveredi,t (6.80)

∀p ∈ PFWithRdte, i, t ≤ T where i ∈ ProductFamilyp ∩DeliverableV eh
bRdteDelayp,0 ≥ bV ehDeliveredi,t (6.81)

LRIP Constraints

• Constraints (6.82)–(6.84) ensure that the bLripV ehBaseY earp,i,t flag is 1 if and only
if 1) product family p enters full-rate production at time t and, 2) system i is ever
delivered. This ensures that LRIP profiles from different systems in a product family
will all line up with the beginning of FRP for that family, fulfilling the LRIP Timing
business rule.

∀(p, i) ∈ LripProfiles, t ≤ T

bLripV ehBaseY earp,i,t ≤ bProductFamilyFrpStartedp,t (6.82)

∀(p, i) ∈ LripProfiles, t ≤ T

bLripV ehBaseY earp,i,t ≤ bV ehEverDeliveredi (6.83)

68

∀(p, i) ∈ LripProfiles, t ≤ T

bLripV ehBaseY earp,i,t ≥ bV ehEverDeliveredi + bProductFamilyFrpStartedp,t − 1

(6.84)

• This constraint ensures that for all systems i in product family p with an LRIP profile
cannot begin full-rate production for those systems until all delays are complete. Here,
the binary parameter ψp,i takes value 1 if LripPreCostp,i > 0 and 0 otherwise. This
partially satisfies the Early/Late Transition Charging business rule.

∀(p, i) ∈ LripProfiles, t∗ ∈ LripY ears, t where LripPreProductionp,i,t∗ > 0 and

t <= t∗ + LripDelayp,i + ψp,i

bLripV ehBaseY earp,i,t = 0 (6.85)

Production Smoothing Constraints

• These constraints ensure that the total number of systems i produced for product
family p, when that product family is in production, for each time period t is within a
certain variance of that family’s median production level. This fulfills the Production
Smoothing business rule.

∀p, t where MaxDeliveryV ariancep ≥ 0 and RampUpp < t ≤ T∑
i∈ProductFamilyp

NumV ehDeliveredi,t ≤

(1 + 0.5 ∗MaxDeliveryV ariancep) ∗ fMedianDeliveryLevelp (6.86)

∀p, t where MaxDeliveryV ariancep ≥ 0 and RampUpp < t < T − 1∑
i∈ProductFamilyp

NumV ehDeliveredi,t ≥

(1− 0.5 ∗MaxDeliveryV ariancep) ∗ fMedianDeliveryLevelp

−
∑

t∗∈{0,...,RampUpp}

(1− bProductFamilyDeliveredp,t−t∗) ∗ TotalV ehPopulation

− (1− bProductFamilyDeliveredp,t+1) ∗ TotalV ehPopulation (6.87)

• This constraint ensures that for each product family p having a ramp-up, the number
of systems delivered during ramp-up is non-decreasing. This fulfills the Production

69

Ramp-up business rule.

∀p, t where MaxDeliveryV ariancep ≥ 0 and RampUpp > 0 and 1 < t ≤ T∑
i∈ProductFamilyp

NumV ehDeliveredi,t ≥∑
i∈ProductFamilyp

NumV ehDeliveredi,t−1

−
{

0 if t ≤ RampUpp + 1
bProductFamilyDeliveredp,t−RampUpp−1 ∗ TotalV ehPopulation if t > RampUpp + 1

− (1− bProductFamilyDeliveredp,t) ∗ TotalV ehPopulation (6.88)

Future Program Constraints

• Constraints (6.89) and (6.90) ensure that each future program F can be activated if
and only if at least one of the future systems associated with that program is also
activated. These fulfill the first part of the Future Program Activation business
rule.

∀F ∑
J∈FutureProgramF

bFutureSystemJ ≤ NumFutureSystems ∗ bFutureProgramF

(6.89)

∀F ∑
J∈FutureProgramF

bFutureSystemJ ≥ bFutureProgramF (6.90)

• Constraints (6.91) and (6.92) ensure that each future system J is activated if and only
if at least one brigade of non-future systems is replaced by J at some time t within
the conventional or extended horizon. These partially fulfill the part of the Future
System Fielding business rule.

∀J ∑
i,m,t:

(i,J ,m)∈FutureTransitions
t≤T

iNumBrigReplacedi,J ,m,t ≤

10, 000 ∗ bFutureSystemJ (6.91)

70

∀J ∑
i,m,t:

(i,J ,m)∈FutureTransitions
t≤T

iNumBrigReplacedi,J ,m,t ≥

bFutureSystemJ (6.92)

• Some future programs may only be activated if every associated future system is fielded.
This constraint enforces that behavior of the programs F where the the user has set the
FieldAllWithinProgramF flag to 1. This fulfills the optional portion of the Future
Program Activation business rule.

∀F ,J ∈ FutureProgramF where FieldAllWithinProgramF = 1

bFutureProgramF ≤ bFutureSystemJ (6.93)

• Constraints (6.94) and (6.95) ensure that once future systems start fielding to a mission,
non-future systems are no longer allowed to field to that mission, neither by mission
upgrades nor storage swaps. These fulfill the Future Obviates Present business
rule.

∀J
10, 000 ∗ (1− bFutureSystemJ) ≥∑

i,j,m,t:
(i,j,m)∈Transitions

m=FutureMissionMapJ
FutureSysF irstF ieldJ≤t≤T

iNumBrigFromStoragei,j,m,t (6.94)

∀J
10, 000 ∗ (1− bFutureSystemJ) ≥∑
i,j,m,t:

(i,j,m)∈Transitions
m=FutureMissionMapJ

FutureSysF irstF ieldJ≤t≤T

iNumBrigInMissionUpgradedi,j,m,t (6.95)

• This constraint ensures that if future system J is activated, then it must fielded ac-
cording to a fixed schedule given by the input FutureF ieldingProfileJ ,t. Note that
the optimization can still decided which non-future systems will be replaced first. To-
gether with (6.91) and (6.92), this satisfies the Future System Fielding business
rule.

∀J , t ≤ T ∑
i,m:

(i,J ,m)∈FutureTransitions

iNumBrigReplacedi,J ,m,t =

bFutureSystemsJ ∗ FutureF ieldingProfileJ ,t (6.96)

71

• Constraints (6.97) and (6.98) ensure that the number of future systems flowing in must
not exceed the number of non-future systems in service that are being replaced. This
fulfills the Outflow Availability buisness rule in relation to future systems.

∀(i,m) ∈ Roles∑
J ,t:

(i,J ,m)∈FutureTransitions
t≤T

iNumBrigReplacedi,J ,m,t ≤ NumBrigInMissioni,m,T (6.97)

∀(i,m) ∈ Roles, 1 < t ≤ T∑
J :

(i,J ,m)∈FutureTransitions

iNumBrigReplacedi,J ,m,t ≤ NumBrigInMissioni,m,t−1 (6.98)

• This constraint ensures that all the future system types that are mandated to field are
actually fielded. This helps fulfill the Future System Fielding business rule.

∀J ∈ FutureMandatedSystems

bFutureSystemJ + bFutureSystemIndicatorDeficitJ = 1 (6.99)

• This constraint ensures that the correct number of groups of future systems that are
not fielded are calculated when the indicated future system does not field.

∀J
iFutureSystemMandateDeficitJ =∑

t

FutureF ieldingProfileJ ,t ∗ bFutureSystemIndicatorDeficitJ (6.100)

• Constraints (6.101) and (6.102) ensure that the bFutureTransitionedToDensityLevelJ ,m,`
indicator variable equals 1 if and only if there are ever any transitions to future system
J in mission m and those transitions achieve a density level of ` ∈ UpgDensityLevelsm
groups. These constraints partially fulfill the Future Minimum Group Transition
Density business rule.

∀(J ,m, `) ∈ FutureUpgDensityF lags∑
i,t:

(i,J ,m)∈FutureTransitions

iNumBrigReplacedi,J ,m,t ≥

(bFutureTransitionedToDensityLevelJ ,m,` + bFutureSystemJ − 1) ∗ ` (6.101)

72

∀J where m = FutureMissionMapJ and ∃(J ,m, `) ∈ FutureUpgDensityF lags∑
i,t:

(i,J ,m)∈FutureTransitions

iNumBrigReplacedi,J ,m,t ≤

∑
`:

`∈UpgDensityLevelsm
` 6=max(UpgDensityLevelsm)

(bFutureTransitionedToDensityLevelJ ,m,` ∗ `)

+
∑
`:

`∈UpgDensityLevelsm
`=max(UpgDensityLevelsm)

(bFutureTransitionedToDensityLevelJ ,m,`∗BrigPerMissionm)

(6.102)

• Constraint (6.103) ensures that future system J in mission m can satisfy at most 1 of
the future minimum transition density levels. Note that if future system J never transi-
tions into mission m at any time, then all three bFutureTransitionedToDensityLevel
binaries will be 0. Together with (6.101) and (6.102), this fulfills the Future Mini-
mum Group Transition Density business rule.

∀J where m = FutureMissionMapJ and ∃(J ,m, `) ∈ FutureUpgDensityF lags∑
`∈UpgDensityLevelsm

bFutureTransitionedToDensityLevelJ ,m,` ≤ 1 (6.103)

• Constraints (6.104) and (6.105) ensure that the bFutureHasFinalDensityJ ,m,` indi-
cator variable equals 1 if and only if future system J in mission m has a density level
of ` ∈ FinalDensityLevelsm groups at time T . These constraints partially fulfill the
Future Minimum Group Final Density business rule.

∀(J ,m, `) ∈ FutureF inalDensityF lags∑
i,t:

(i,J ,m)∈FutureTransitions

iNumBrigReplacedi,J ,m,t ≥

(bFutureHasF inalDensityJ ,m,` + bFutureSystemJ − 1) ∗ ` (6.104)

73

∀J where m = FutureMissionMapJ and ∃(J ,m, `) ∈ FutureF inalDensityF lags∑
i,t:

(i,J ,m)∈FutureTransitions

iNumBrigReplacedi,J ,m,t ≤

∑
`:

`∈FinalDensityLevelsm
6̀=max(FinalDensityLevelsm)

(bFutureHasFinalDensityJ ,m,` ∗ `)

+
∑
`:

`∈FinalDensityLevelsm
`=max(FinalDensityLevelsm)

(bFutureHasFinalDensityJ ,m,` ∗BrigPerMissionm)

(6.105)

• Constraint (6.106) ensures that future system J in mission m can satisfy at most 1 of
the final transition density levels. Note that if future system J never transitions into
mission m at any time, then all three of the bFutureHasFinalDensity binaries will
be 0. Together with (6.104) and (6.105), this fulfills the Future Minimum Group
Final Density business rule.

∀J where m = FutureMissionMapJ and ∃(J ,m, `) ∈ FutureF inalDensityF lags∑
`∈FinalDensityLevelsm

bFutureHasFinalDensityJ ,m,` ≤ 1 (6.106)

74

DISTRIBUTION:

1 Roy E. Rice
Teledyne Brown Engineering
300 Sparkman Drive
Huntsville, AL 35805-1912

1 MS 0330 Liliana Shelton, 421

1 MS 0671 Gio K. Kao, 5629

1 MS 1188 Richard O. Griffith, 6130

1 MS 1188 Stephen M. Henry, 6133

1 MS 1188 Matthew J. Hoffman, 6133

1 MS 1188 Craig R. Lawton, 6130

1 MS 1188 Darryl J. Melander, 9529

1 MS 1188 Frank M. Muldoon, 6133

1 MS 1188 Alan Nanco, 6114

1 MS 1188 Bruce M. Thompson, 6133

1 MS 0899 Technical Library, 9536 (electronic copy)

75

This page intentionally left blank.

v1.38

