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cREu 
➢ Have you had a shower today?

➢ Do you wear clean clothes?

➢ Have you had tea or coffee and a hot meal?

➢ Have you used your mobile phone or computer today?

➢ Have you traveled by plane, train, bus, or car?

Where Did The Energy Come From?
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Combustion Energy Demands

world energy cons trn ption by fu el
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✓ World energy usage increases by —50% between 2010 and 2040
✓ Fossil fuels continue to supply almost 80% of the world's energy demand in 2040
✓ Liquid fuels remain the largest energy source worldwide through 2040
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*\\ Engine Combustion A Complicated Process

/cRf'
❑ fluid dynamics coupled with chemical reaction

CI four-dimensional process in space — time.

U it's a multi-scale problem: (9 orders of magnitude

Length-Scale:
molecular scale <= few centimeters

Time-Scale:
from fast molecular reactions <= slow fluid transport

Diesel Engine
(compression i • nition)

fool injoct r

hot flanto region:
nitric oxid••• sntok•

Gasoline Engine

(spark ignited)

spark plu

hot I anutresplon:
nitric oxidos

HCCI Engine
(Homogeneous Charge
Compression Ignition)

Low t•mporaluto combustaron

ultra low emissoon..

v It is more complicated than

C.Hy + (x+y/4) 02

1'1
x CO2 + y/2 H20 + E

Chemistry can explain combustion
emissions.- soot, NO, CO2
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91H- II. C2H3
).ti

C2H,

CH20

H202

H20

OH
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CHO

Marques et al., J. Braz. Chem. Soc., 2006, 17, 302-315

V

H02

0

CO2

2.7e+07 1.76 7453.56
1.74e+07 1.48 3442.4
1.09e+07 1.59 3352.7
4.05e+04 2.38 9.34e+03
1.10e-03 4.55 3505
2.69e-02 3.9 684.9
5.19e-02 3.9 861.37
1.61e+00 3.59 7719.45
4.14e+02 2.87 4899.5
1.87e+00 3.50 6.00e+03
2.32e+00 3.49 6.09e+03
1.040E+06 1.800 15050.00
0.99140E+06 1.753 12532.12
0.99040E+06 1.786 13448.33
0.250E-04 5.000 12580.00
3.61E+03 2.89 -2291
1.54 3.7 -4940
5.4E+06 2 5 12.64
5.88e2 2.82 -584.58
1.206E14 0.0 51.87e+03
1.588E14 0.0 47.69e+03
1.588E14 0.0 47.69e+03
2.325E12 0.0 74.12e+03
9.540E+04 2.710 2106.00
0.78E+05 2.5 1113.77
1.289E+05 2.79 2183.65
1.000E+13 0.000 4690.00
5.28E+17 -1.638 8.39E+02
7.23E+12 0.0 15998.4
7.23E+12 0.0 15998.4
7.23E+12 0.0 15998.4
7.23E+12 0.0 15998.4
2.820E+11 0.000 7000.00
2.200E+11 0.000 4570.00
3.173E9 0.95 5644.0
2.820E+11 0.000 7000.00
1.926e-05 5.28 7.78e+03
1.41e-05 4.83 4.37e+03

; N/ needs to be validated by suitable
experiments

• quantitative detection of many species
simultaneously

• large sensitivity and dynamic range

i Bu0H+H=H2+C4H90i1
i Bu0H+H=H2+C4H90i2
i Bu0H+H=H2+C4H90i3
i Bu0H+H=H2+C4H90i4
i Bu0H+C2H3=C4H90i1+C2H4
i Bu0H+C2H3=C4H90i2+C2H4
i Bu0H+C2H3=C4H90i3+C2H4
i Bu0H+CH3=CH4+C4H90i 1
i Bu0H+CH3=CH4+C4H90i2
i Bu0H+CH3=CH4+C4H90i3
iBu0H+CH3=CH4+C4H90i4
i Bu0H+CH2OH=C4H90i 1+CH3OH
i Bu0H+CH2OH=C4H90i2+CH3OH
i Bu0H+CH2OH=C4H90i3+CH3OH
iBuOH+CH2OH=C4H9Oi4+CH3OH
iBu0H+OH=H2O+C4H90i3
iBu0H+OH=H2O+C4H90i2
i Bu0H+OH=H2O+C4H90i 1
i Bu0H+OH=H2O+C4H90i4
i Bu0H+02=C4H9Oi1+HO2
i Bu0H+02=C4H90i2+HO2
i Bu0H+02=C4H90i3+HO2
i Bu0H+02=C4H90i4+HO2
i Bu0H+0=C4H90i1+0H
i Bu0H+0=C4H90i2+0H
i Bu0H+0=C4H90i3+0H
i Bu0H+0=C4H90i4+0H
C4H90i3+02=C4H80-i3+HO2
C4H90i1+02=C4H80-i1+HO2
02+C4H90i3=H02+C4H80-i2
02+C4H90i2=H02+C4H80-i1
02+C4H90i2=H02+C4H80-i2
i Bu0H+CH30=C4H90i 1+CH3OH
i Bu0H+CH30=C4H90i2+CH3OH
i Bu0H+CH30=C4H90i3+CH3OH
C4H90i4+CH3OH=iBu0H+CH30
C2H6+C4H90i1=iBu0H+C2H5
i Bu0H+C2H5=C2H6+C4H90i2
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Combustion Research
Multi-Scale Nature of Combustion and Model Flames

V Depending on the mixing state of the reactants
laboratory flames are classified as non-premixed
or premixed.

dominated by rate of mixing

dominated by chemistry

V Depending on their fluid dynamics, flames are
further characterized as either laminar or
turbulent.

r
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*\\ Providing Experimental Data Under
Idealized Conditions For Model Verification

Virtually all flame chemistry research has been performed in laminar flames.

Low-Pressure Premixed Flames
Counter-Flow Diffusion Flames

At Low- and Atmospheric Pressure

Can we predict the chemical structure of such simple model flames?
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McKenna burner

Quartz probe —

Skimmer

Providing Experimental Data For

Model Verification

Turbo pumps

Multi-channel
plate

MCP detector

/ Flight tube

TOF-MS

ALS-
bean

i n V Orthogonal extraction reflectron time-of-flight

✓ Continuous ionization, rapid (35 kHz) ion
extraction

✓ Electron and photon ionization
2. lz Detection limit: - lppm

✓ Mass resolution mlAm - 4000
%.11...4 I I NJ I %A L s...• LI IV y V I I La I"..• I %..• I Ilf—lA1.1%./11
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Molecular 4. DeN
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❑ l
; 47 98

Signal

- - - Peak 1 (CH402)

 Peak 2 (C2H6180)

— Sum

V IV V VI,' •••• TV 
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et al., Prog. Energy Combust. Sci., 2009, 35, 168-191

48.08 48 10
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*\\

Synchrotron Radiation at the Lawrence Berkeley National Laboratory

Achianceci Light Source

V 3rd Generation light source for vacuum ultraviolet (VUV) and soft X-raysv (
Photons are generated by the acceleration of ultarelativistic electrons through
magnetic fields

.
Laperirnent

4, Endstations

woe-

go NI.

\ I 111111t,
41, Undolators

Electron Gun

00" Storage Ring
Accelerating Ctsainter

tS meters

V easy to tune in the range from 7.3 to 24 eV

V energy resolution of EIAE = 250-400
sufficient for the identification of individual

isomers of flame species
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Combustion Chemistry of Oxygenated Fuels
- performed for the Combustion Energy Frontier Research Center -

➢ Biodiesel/Ester: in collaboration with Yang (Tsinghua), Westbrook (LLNL), and Kohse-
Höinghaus (Bielefeld)

➢ Alcohols: in collaboration with Green (MIT)
and Sarathy (Kaust)

y+ OH

). +6 \ OH
y`01-1 <
i-butanol

H20

CH3 + \;/ OH

•
rOH yOH

8.0x 10-4
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i-C4H80
•

C4H8Oenoll C41-180enol2

CH3 OH CH3

+ + + +

C H0 •%.'N:)H y 7'•OH 
.N.,
OH
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Distance from Burner / mm

Flame 1
0.007

Flame-Sampled Data: •

O propen-1-ol

O acetone/allylalcohol (*0.5).

• propanal ('0.2)

Modeling Results:

- propen-1-ol

- - - -acetone/allylalcohol ('OS).

 propane! (•02)

0 0 0 ci
0.0--v--D-9, 0

- '
•Ac

A 6,AAAAAA
....... A A

5

 6

0.006 -

0.005 -

0.004 -

0.003 -

0.002 -

0.001 -

0.000

0

❑

•

Flame-Sampled Data:

I so-butanol (•O 2)

iso-butanal

sum of butenols

Modeling Results

- ,so-butanol (•0 2)

- - - • /so-butanel

  sum of butenols

1 2 3 4
Distance from Burner / mm

6

5 6

➢ largely predictive models can be generated for the combustion of these fuels
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i-C4 H90 H = i-C4 H80+ H2

-4.5x10-6 
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Distance from Burner / mm

Reliable experimental data can be explained
by "wrong" models.

More accurate experimental data are required
to further constrain the models.

N. Hansen et al., Combust. Flame, 2013, 160, 2343-2351

5 0

COMBUSTION RESEARCH FACILITY (2 Sandia National Laboratories



CRF

✓ Soot is a hazardous combustion
emission

Chemistry of Soot Formation

✓ Agreement has been achieved on
the general features of the overall
soot formation processes

✓ Soot is formed by molecular
growth reactions from small
unsaturated hydrocarbons

✓ Chemical reaction mechanisms in
flame models must be tested
against reliable experimental data
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Chemistry of Soot Formation
Experimental Approaches

Counter-Flow Diffusion Flames
At Low- and Atmospheric Pressure

Low-Pressure
4—* Preheat Zonr

41—* Reacti,

Surface reaction
and coagulation

Flame-Sampling Ae
Mass Spectrometry with
VUV Single-Photon

Ionization

Flame-Sampling Mass Spectrometry with
VUV Single-Photon Ionization, Electron
Ionization, and Resonance-Enhanced

Multi-Photon Ionization (REMPI)
rusulellie le

PAH formation

Flame-Sampling Molecular-Beam
Mass Spectrometry with VUV

Single-Photon Ionization

Distance from Burner

Precursor
molecules
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Fuel-Structure Dependence of
Benzene Formation

Allene + Propyne

1,3-Butadiene

Cyclopentene

Methylcyclohexane

1-Hexene

3,3-Dimethyl-
1-Butene

Methyl-
cyclopentane

Cyclohexane

➢ selected fuels represent a
variety of chemical structures,
including alkenes, a branched
alkene, an alkyne, a
cycloalkene, a cycloalkane,
and its methyl-substituted
derivative
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0.0008 
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0.0005 -

0.0004 -
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0.0001 -

0.0000 
0 2 3 4 5 6

Distance from Burner / mm

N. Hansen et al., Proc. Combust. Inst., 2011, 33, 585-592
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➢
➢
➢

➢

Formation of the First Aromatic Ring

Numerous formation pathways contribute

Significance of different pathways depends on the fuel structure

C3H3 + C3H3
= C•

— C.

=

+

=

i-C4H3 + C2H2

C3H 3 + C3H5

= C.
+ C.

Dehydrogenation

1
+

i-C4H5 + C2H2

C5H5 + CH3

n-05H3 + CH3

+ cH3

C.
+ CH3

i-05H3 + CH3

N. Hansen et aL, Combust. ExpL Shock Waves, 2012, 48, 508-515
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1
*\\ Identification of C4H5 Radicals
CRE

➢➢ 1-Methylallenyl:
H \ ./H

—C CC—C
H

\H

➢ CH3CHCCH:
H \

H \ /H
•C—C

H/

➢ n-C4H5:

/H

H/
H
/

H

) Flame-Sampled Photoionization Spectrum:

Ph
ot
oi
on
iz
at
io
n 
Ef

fi
ci

en
cy

 /
 a
.u

. 

—M— mlz = 53

CH3CCCH2

CH3CHCCH

Sum

i-C4H5

7.6 eV

.1-0100,1

High-Level ab initio calculations by
S. J. Klippenstein (Argonne)

CH3CHCCH

7.97 eV

CH3CCCH2
7.95 eV

✓ No evidence for n-C4H5 (IE = 7.10 eV)

✓ Detection of n-C4H5 might be limited by
small Franck-Condon Factors.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 5 7.6 7.7 7.8 7.9 8.0 8.1 8 2

Photon Energy / eV

N. Hansen et al., J. Phys. Chem. A, 2006, 110, 3670-3678
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*\\ Fuel-Rich 1-Hexene Flame:
Importance of Fuel Dissociation and C3H3+C3H5 Association

1 2 

C2H5 + n-C4H7

3%

1-Hexene
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a-C3H5 + n-C3H7 2-C6H13

72% 1%
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15-C6H11

2%

C2H5 + C4H6
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100%
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-0.6-

-0.8-

-1.0-

-1.2 

Benzene + OH -)
C6H5 + H20

..—Fulvene + H -› Benzene + H

+ C3H3 -> Benzene + H

n-C4H5 + C2H2 -› Benzene + H .

Benzene + O ->
C6H50 + H

-..
Benzene + H C6H5 + H2 -

C3H3 + a-C3H5 Fulvene + 2H .

+ C3H3 Fulvene

H5 + C2H2 Fulvene + H 7

i-C4H5 + C2H2 Fulvene + H

-.—Fulvene + H -) Benzene + H

1 2 3 4 5 6 7 8 9 10

Distance from Burner / mm

N. Hansen et al., Phys. Chem. Chem. Phys., 2010, 12, 12112-12122
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Methylcyclohexane Flames
Dehydrogenation, Dissociation and lsomerization

➢ H-Abstraction Reactions (dehydrogenation) —70%

+ X (H, O, OH)

HX

➢ Unimolecular Dissociation

CH-ri

6 or or

—15%

➢ Unimolecular lsomerization (ring opening) —15%

Or

• •
or or

• • •

/
En
er
gy
, 
kc

al
/m

ol
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20
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0 —

[1--?.1'7" cliPWRITER.TT,TT • , . • , , „

✓ stepwise via diradicals or through concerted
processes

✓ 13-scissions of the diradicals are energetically
not favored

✓ low-lying carbenes are unlikely intermediates

84

,

87 89 88 89

lsomerization of the fuel can be an
important fuel consumption pathway.

S. A. Skeen et al., Energy Fuels, 2011, 25, 5611-5625
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7xidizeir

Soot-
zone

Fuel

Flame

Molecular-Growth Chemistry:
Laminar Opposed-Flow Diffusion Flames

Motorized vertical
translator
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translator

Arquidr
translator

1/1.11/
photons

Multi-channel
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Molecular
beam

Ni skimmer
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1
. , ) 1. u.0i \ 4 ViNt 1 1., I
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7.0004
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4.0x10•4-

3.0x1e-
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0.0
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S. A. Skeen et al., Proc. Combust. lnst., 2013, 34, 1067-1075
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Molecular-Growth Chemistry:
Formation of Polycyclic Aromatic Hydrocarbons

+CH3/-H

-2 H 

+C2H2/-2H

•

-2H
114.5 115.0 115.5 116.0 117.5 118.0 118.5

(b)

 /A 

+CH3/-H

-2H

+CH3/-H

A. W. Jasper and N. Hansen, Proc. Combust. Inst., 2013, 34, 279-287

-H

Multiple pathways are likely to contribute:

❑ H-abstraction-C2H2-addition (HACA?)

❑ H-abstraction-methyl-addition

crucial for explaining the density of the spectra

❑ H-abstraction-phenyl-addition

crucial for explaining fast and non-sequential growth

(d)

+CII3/-H_ +CH3/-3H

IA*
164.5 165.0 16'5.5 166.0 167.5 168.0 16 .5

+CH3/-H

-2H\ t,

176.5 177.0 177.5 178.0 179.5 180.0 180.5

Mass-to-Charge Ratio
M. Schenk et aL, Proc. Combust. Inst., 2015, 35, 1761-1769
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z

Molecular-Growth Chemistry:
Formation of Polycyclic Aromatic Hydrocarbons

.V I s V I V ■ V ■ I ■ V ■ V I

i i i I i
l l i 4
i i i I
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P II i II
i i i 1
l I I I
P II I II

I I 1
1 1 i 1

! II

IFPF 111111111111111111111T1T1T1T1.

->

I ' I

'N 414. It 4-114,110-1( 11414 -11.11 1.1 e.11-11.1
,

+CH3/-H

+C2H2/-2H,
-2H
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ITVZ
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A,\\ Flame-Sampling Aerosol Mass Spectrometry

with VUV Single-Photon Ionization

Mass Spectra
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S. A. Skeen et al., J. Aerosol Sci., 2013, 58, 86-102
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*\\ Flame-Sampling Aerosol Mass Spectrometry

with VUV Single-Photon Ionization
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Soot Formation Chemistry Beyond Benzene
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Flame-Sampling Aerosol Mass Spectrometry
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A Jet-Stirred Reactor with

Molecular-Beam Sampling Capabilities

jet-stirred reactor
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Fuel + Ar

Molecular-Beam Jet-Stirred Reactor
ICR Quartz Cone

 w ,
Jet-stirred reactor system Sampling Product analysis
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Low-temperature oxidation of DME
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cRF Detection of the Ketohydroperoxide

Conformer-dependent lEs for Larger

Species

➢ Conformers characterized for both

the neutral and cation species

➢ Neutral conformer populations

estimated via a simple locally

harmonic scheme

➢ Locally adiabatic lEs calculated for

each conformer based on vertical

excitations

➢ 3 conformers with ionization

energies near —10.05 eV make up

35% of the total population
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➢ Conformer near 9.7 eV has a poor Fragment pattern gives additional evidence

Franck-Condon overlap for the experimental detection of HPMF

K. Moshammer et al., J. Phys. Chem. A, 2015, in press
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Additional Evidence for the Presence of the
Ketohydroperoxide

CH2 CH

rntz = 92.011 u
hydropercxymethyl formaie HPMF
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0 0
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A. Andersen, E.A. Carter, J. Phys. Chem. A, 2003, 107, 9463-9478.
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Detection of carbonic acid provides evidence for
the Korcek decomposition mechanism!
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*.\\N Quantification and Comparison with Model
CRF
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So, What Are The Problems?
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Challenges:
>,

➢ Number of possible isomers increases with molecular
size

➢ Smaller differences in heats of formation and similar
structural features result in almost identical IE's and
indistinguishable PIE curves

➢ !Es and PIE curves may not be known and need to
be measured/calculated

cyclohexane
9.88 eV

I

Chemical
Specificity!

But, how much detail is needed?
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0\;..,,, Summary and Conclusions
:..._.--it-4_,,

> Four different experiments are currently performed in my group to guide the
development of combustion chemistry models:

✓ Low-pressure premixed flames

✓ Low- and atmospheric-pressure counterflow diffusion flames
✓ Flame-sampling aerosol mass spectrometry

✓ Jet-stirred reactor

> Benzene Formation Chemistry is well understood.

> Our understanding of the molecular-weight growth
processes remains vague and many different pathways
are likely to contribute.

> Large kinetic models cannot be used to learn
anything about the flame chemistry.

> More reliable experimental data are
necessary to guide model development.

> New JSR capabilities provide detailed
validation targets for low-temperature
combustion chemistry modeling.
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Thank You!

Flame Experiments:
➢ K. Kohse-Höinghaus (Universität Bielefeld, Germany)

➢ B. Yang (Tsinghua University, Beijing, China)

➢ T. Kasper (Universität Duisburg-Essen, Germany)

➢ S. M. Sarathy and S. Chung (KAUST, Saudi Arabia)

➢ P. R. Westmoreland (North Carolina State University)

Flame-Sampling Aerosol Mass Spectrometry:
>' H. A. Michelsen (Sandia National Laboratories)

>. A. Violi (University of Michigan, Ann Arbor)

➢ K. R. Wilson (Lawrence Berkeley National Laboratory)

Jet-Stirred Reactor Experiments:
➢ S. R. Leone and D. M. Popolan-Vaida (UC Berkeley) "-Kenna°° ~̀r

➢ S. M. Sarathy (KAUST, Saudi Arabia)

>. K. Kohse-Höinghaus (Universitat Bielefeld, Germany)

➢ P. Dagaut (CNRS Orleans, France)

>. J. Yu (Princeton University)

➢ C. A. Taatjes (Sandia National Laboratories) ➢ A. W. Jasper (Sandia National Laboratories)

Postdocs: ➢ S. J. Klippenstein and J. A. Miller (Argonne National Laboratory)

➢ K. Moshammer, K. O. Johansson, >. W. H. Green (Massachusetts Institute of Technology)

A. Lucassen, and S. A. Skeen ➢ F. Maug and L. Seidel (Universität Cottbus, Germany)
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Thank You!

➢ Office of Basic Energy Sciences, US Department of Energy
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