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2 | Molecular Dynamics Diffusion Simulations

 Diffusion experiments are slow, expensive, and often inconsistent
 Diffusion coefficients can be simulated using open-source MD packages

* MD uses Newton’s equations of motion and an interatomic potential

macro level molecular level

I design / optimize

S. H.Jamali et al., OCTP: A Tool for On-the-Fly Calculation of Transport Properties of Fluids with the Order- n Algorithm in LAMMPS. J Chem Inf Model 59, 1290-1294 (2019).



3 | Self-Diffusion of Lennard-Jones Fluids
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Machine learning prediction of self-diffusion in Lennard-Jones fluids
J. Chem. Phys. 1583, 034102 (2020); https://doi.org/10.1063/5.0011512

Joshua P. Allers’, & Jacob A. Harvey?, © Fernando H. Garzon®*%, and® Todd M. Alam"@

« Joshua Allers et al. showed that artificial neural networks (ANN) can be
trained to predict self-diffusion of Lennard Jones (LJ) fluids

« ANN can replicate the MD results at a lower computational cost

« Expand: real fluids, diffusion in pores, multicomponent

J. Allers, J. Harvey, F. Garzon, T. Alam, Machine learning prediction of self-diffusion in Lennard-Jones fluids. J Chem Phys 153, (2020).
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Jamali 2018

‘ I ‘ Journal of Chemical Theory and Computation
& Cite This: J. Chem. Theory Comput. 2018, 14, 2667—2677 pubs.acs.org/JCTC

Finite-Size Effects of Binary Mutual Diffusion Coefficients from
Molecular Dynamics

Seyed Hossein _];1mali,% Ludger Wolff,” Tim M. Becker,® André Bardow," Thijs J. H. Vlugtf
and Othonas A. Moultos™"'

« Jamali published data for over 1000 simulation of binary LJ fluids

« Self-diffusion and Maxwell-Stefan diffusion coefficients

S. H. Jamali et al., Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics. J Chem Theory Comput 14, 2667-2677 (2018).



s | MD Input Parameters

N = Number of particles

X = Mole fraction of Particle 1

e = Well depth (strength of attractive forces)
o = Van der Walls radius (particle size)

k = Non-ideal mixing parameter

Parameter Values

N 500, 1000, 2000, 4000

Xy 0.1,0.3,0.5,0.70.9

€ 1.0,0.8,0.6, 0.5

o, 1.0,1.2,1.4,1.6

ki, 0.05,0.0,-0.3,-0.6
- _




s | Self-Diffusion Finite-Box Effects

 MD diffusion simulations show finite-box

size effects

* Yeh and Hummer (YH) correction used for
self-diffusion of single component fluids

YH Correction: D = DMPD

EkpT

61N L

« Jamali used the YH correction for binary

fluids

S. H. Jamali et al., Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics. J Chem Theory Comput 14, 2667-2677 (2018).
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7 I Maxwell-Stefan Diffusion Finite-Box Effects

0.04 T T T

« Jamali adapted the YH correction to be B

used for Maxwell-Stefan Diffusion T oo ~o
« The correction factor overpredicts by 5’; : 8

>100% for some datapoints = 002 < 0 |
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Can we use ML to create better finite-box size corrections?

S. H. Jamali et al., Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics. J Chem Theory Comput 14, 2667-2677 (2018).
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D. M. Heyes, M. J. Cass, J. G. Powles, W. A. Evans, Self-diffusion coefficient of the hard-sphere fluid: system size dependence and empirical correlations. J Phys Chem B 111, 1455-1464 (2007).
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Heyes 2007 Packing Fraction Empirical Relationship

1.20

Add an empirically fit parameter

based on packing fraction 1.15-
EkpgT

e MD
Heyes suggests: D™ = D +6TmL°‘ 1 9D,

a(() = a;+a,{+a;q ...
There is no physical argument for & 1.05-
this relationship
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0 | Heyes 2007 Packing Fraction Empirical Relationship
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11 1 ANN SD Correction Prediction Option |

Train ANN to directly predict correction factor: D

_ DMD

Parameter

Values

Doo_DMD

number of particles

500, 1000, 2000, 4000
0.1,0.3,0.5,0.70.9
1.0,0.8,0.6,0.5
1.0,1.2,1.4,1.6
0.05,0.0,-0.3,-0.6




2 I ANN SD Correction Prediction Option 2

« Train ANN to predict A
- Divide A by L to get D® — DMP
* Preserving the L™ scaling

€ .

- Hidden 1 Do _ DMD _ EkBT

- _ " 61 L

: ) D® —DMP = A'(Q) x L
g




ANN Correction Prediction
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14 I ANN MS Correction Prediction Option 2

 ['is ameasure of interaction between species in a multicomponent
mixture

HMD _ CkpT
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D® — DMP = B'(7) x L1




s I ANN Correction Prediction MS
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16 | Diffusion Coefficient Predictions

« MD alone under predicts the diffusion
coefficient

« Adding the YH correction always
overpredicts for the binary LJ fluids

« ANN performs consistently

0.261 g = MD
mmm MD+YH
mmm  MD+ANN

500 1000 2000 4000
Number of Molecules




17 I ANN Feature Importance d

Best X feature ANN
X=1 X=2 X=3 X=4 X=h5

ANN: D — DMD = A"(0) x L1

« |teratively added features to the ANN
to determine relative importance

« The error drops for every feature
added

« For binary LJ fluids, A’is a function of
the LJ parameters

Mean Squared Error

C +0, +X3 +k12 + &>
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Replace MD Altogether?

« Directly predict D*, as opposed to calculating a
value correction to the MD diffusion coefficient

DOO

. Limited to LJ parameters - no MD simulated : Hidden 1
variables like packing fraction G Hidden 2
« Better prediction than YH corrected MD X .
simulations °
K Hidden X

« Worse than ANN corrected MD simulations

Combination of molecular dynamics simulation

machine learning produces the best results

and




19 1 Overall Performance

Bl Self

Mean Squared Error

Error reduction of over an order of magnitude for MS and

over two orders of magnitude for SD




20 | Summary
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We used machine learning, not to replicate the current state of the art
finite-box size correction, but to improve it!

The YH correction for single component mixtures is not sufficient for

binary LJ mixtures
A’'/B’ are functions of all the LJ parameters

D® —DMP = A" x L1

The L' dependence is important
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