
Machine Learning Based Upscaling of Finite-Box

Size Molecular Dynamics Diffusion Simulations

1

Calen J. Leverant,1,2 Jacob Harvey,3 Joshua Allers,4
Jeffery Greathouse,3 Todd Alam4

1Department of Chemical Engineering, University of Florida

2Department of WMD Threats & Aerosol Science, Sandia National Laboratory

3Department of Geochemistry, Sandia National Laboratory

4Department of Organic Material Science, Sandia National Laboratory

41741!"'
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2020-8577PE



2 I Molecular Dynamics Diffusion Simulations

• Diffusion experiments are slow, expensive, and often inconsistent

• Diffusion coefficients can be simulated using open-source MD packages

• MD uses Newton's equations of motion and an interatomic potential
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S. H. Jamali et al., OCTP: A Tool for On-the-Fly Calculation of Transport Properties of Fluids with the Order- n Algorithm in LAMMPS. J Chem lnf Model 59, 1290-1294 (2019).



3 Self-Diffusion of Lennard-Jones Fluids
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Machine learning prediction of self-diffusion in Lennard-Jones fluids

J. Chem. Phys. 153, 034102 (2020); https://doi.org/10.1063/5.0011512

Joshua P. Allers1, w Jacob A. Harvey2, 41) Fernando H. Garzon3.4, ande Todd M. Alaml.8)

• Joshua Allers et al. showed that artificial neural networks (ANN) can be
trained to predict self-diffusion of Lennard Jones (LJ) fluids

• ANN can replicate the MD results at a lower computational cost

• Expand: real fluids, diffusion in pores, multicomponent

J. Allers, J. Harvey, F. Garzon, T. Alam, Machine learning prediction of self-diffusion in Lennard-Jones fluids. J Chem Phys 153, (2020).



4 Jamali 2018

I Journal of Chemical Theory and Computation Article

5 Cite This: 1. Chem. Theory Comput. 2018, 14, 2667-2617 pubs.acstIrg/JCIC

Finite-Size Effects of Binary Mutual Diffusion Coefficients from
Molecular Dynamics
Seyed Hossein jamali, G Ludger Wolff; Tim M. Becker,119 Andrê Bardow,*0 Thijs J. H. Vlugt,
and Othonas A. Moultos'";

• Jamali published data for over 1000 simulation of binary LJ fluids

• Self-diffusion and Maxwell-Stefan diffusion coefficients

S. H. Jamali et al., Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics. J Chem Theory Comput 14, 2667-2677 (2018).



5 MD Input Parameters

N = Number of particles

x = Mole fraction of Particle 1

£ = Well depth (strength of attractive forces)

a = Van der Walls radius (particle size)

k = Non-ideal mixing parameter

Parameter Values

N
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0.1,0.3,0.5,0.7 0.9

1.0,0.8,0.6,0.5

1.0, 1.2, 1.4, 1.6

k12 0.05, 0.0, -0.3, -0.6



6 I Self-Diffusion Finite-Box Effects

• MD diffusion simulations show finite-box
size effects

• Yeh and Hummer (YH) correction used for
self-diffusion of single component fluids

YH Correction: D°° = DMD -E kB77
6TrriL

• Jamali used the YH correction for binary
fluids
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S. H. Jamali et al., Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics. J Chem Theory Comput 14, 2667-2677 (2018).



7 Maxwell-Stefan Diffusion Finite-Box Effects

• Jamali adapted the YH correction to be
used for Maxwell-Stefan Diffusion

• The correction factor overpredicts by
>100% for some datapoints

YHMS: D °°
L

DMD kB77
6TrriLT_
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Can we use ML ate better finite-box *ze corrections?
S. H. Jamali et al., Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics. J Chem Theory Comput 14, 2667-2677 (2018).



8 Heyes 2007 Packing Fraction Empirical Relationship

0.020-

0.005-

Packing Fraction

• 0.24

0.32

• 0.40

• 0.48

• 0.56

0.005 o.dio
DY"

0.015 0.020

50-

1 0

a

Tr(N1a1+N2a2)

. 6V

•
•
•

0.30 0.135 0.40 0.45 0.50

D. M. Heyes, M. J. Cass, J. G. Powles, W. A. Evans, Self-diffusion coefficient of the hard-sphere fluid: system size dependence and empirical correlations. J Phys Chem 8 111, 1455-1464 (2007).



9 I Heyes 2007 Packing Fraction Empirical Relationship

• Add an empirically fit parameter
based on packing fraction

• Heyes suggests: D°° = DMD + 
kBT

6T[flut
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• There is no physical argument for
this relationship
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Heyes 2007 Packing Fraction Empirical Relationship
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11 ANN SD Correction Prediction Option I

Train ANN to directly predict correction factor: D°° DMD

Hidden 1

  Hidden 2

  irt Hidden X
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Parameter Values
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0.05, 0.0, -0.3, -0.6



12 ANN SD Correction Prediction Option 2

• Train ANN to predict N

• Divide N by L to get D°° — DMD

• Preserving the I,- 1 scaling

A'  )
D' DMD

kBT

6-rinL

D' DMD = AV) x L-I-



1 3 ANN Correction Prediction
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1 4 ANN MS Correction Prediction Option 2

• F is a measure of interaction between species in a multicomponent
mixture
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1 5 ANN Correction Prediction MS
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16 Diffusion Coefficient Predictions

• MD alone under predicts the diffusion
coefficient

• Adding the YH correction always
overpredicts for the binary LJ fluids

• ANN performs consistently
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1 7 ANN Feature Importance

ANN: D°° DMD = AV) x L-1

• Iteratively added features to the ANN
to determine relative importance

• The error drops for every feature
added

• For binary LJ fluids, A' is a function of
the LJ parameters
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1 8 Replace MD Altogether?

• Directly predict D'I as opposed to calculating a
value correction to the MD diffusion coefficient

• Limited to LJ parameters - no MD simulated
variables like packing fraction

• Better prediction than YH corrected MD
simulations

• Worse than ANN corrected MD simulations

Combination of molecular dynamics simulation and
machine learning produces the best results



19 Overall Performance
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20 I Summary

• We used machine learning, not to replicate the current state of the art
finite-box size correction, but to improve it!

• The YH correction for single component mixtures is not sufficient for
binary LJ mixtures

• A'/B' are functions of all the LJ parameters D°° DMD = AV) x L-1

• The L-1 dependence is important
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